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On the strong convergence of orthogonal series with almost 
everywhere uniformly bounded orthonormal systems 

I. SZALAY 

Strong convergence with index X was introduced by HYSLOP [2] as a limit case 
of strong Cesaro summability for positive orders. More exactly, the series 2 a k with 
partial sums sn and Cesaro means a^ is said to be strongly Cesaro summable with 
parameter a > 0 and index X > 0 — or summable [C, — to the sum s if 

fl+L k = 0 

and it is said to be strongly convergent with index X — or [C, 0]; convergent — to 
the sum s if s„—j=o(l) and 

(1) - ^ ¿ ^ 1 ^ = 0 ( 1 ) . 

It is known that if A s l and then summability [C, a]x 

implies summability [C, /?]„ (see [2], Th. 4). 
Recently, TANOVIC-MILLER [4] introduced a new definition for convergence 

[C, 0]A, namely the series 2 a k is called [C, 0]; convergent to the sum s if 

<2> - ^ T T 2 = o(l), (s_x = 0). n+l k = 0 

Definitions of Hyslop and Tanovic-Miller are equivalent for indices A s l . Further-
more, Tanovic-Miller showed that the series 2 a k is summable [C, 0]A ( A s l ) if and 
only if < 7 « - i = o ( l ) and (1) holds. (See [5], (iii), 4., p. 128.) 

Considering (2), the case of series having terms ak=1 for k=T, (v=0,1 , ...) 
and ak=0 otherwise, shows that if 0 < A < 1 then the strong convergence does not 
imply the ordinary convergence, despite of the series ]?ak is [C, 0]A convergent to the 
sum 0, so in next we assume that A s i . 
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We say that an orthonormal system {<pk (*)}£!0 on the interval (0, 1), is almost 
everywhere uniformly bounded if there exists a constant M, such that for any k, 
\<PK(X)\=M, almost everywhere on (0,1). Shortly, we write that {</>*(*)}*Lo 
ONSUBae. 

In this note we discuss strong convergence of orthogonal series 

oo 

(3) 2 c*<Pk(x), 
k=0 

where the coefficients {ct}£L0 are real numbers and is ONSUBae. The 
Hyslop's definition says that the series (3) is [C, 0]^, (As l ) convergent almost 
everywhere on (0, 1) if it converges almost everywhere and 

1 n 

(4) 2 = o,(l), almost everywhere. 
n + 1 k=o 

Using the result of Tanovic-Miller, mentioned above, we have that the series (3) is 
[C, 0]A, (A^l) convergent almost everywhere if and only if it is summable (C, 1) 
almost everywhere and (4) holds. 

Theorem 1. Let A s l . If the series (3) is [C,0]k convergent almost everywhere 
then 

(5) —J-j- ¿ ^ 1 ^ = 0(1) n+ 1 h=0 
holds. 

Proof . Being the system {<p*(x)}jtl0 ONSUBae, with the bound M, we may 
assume that M > 1/^2. 

Denoting by \H\ the Lebesgue measure of a set H, considering the sets 

E i = {x- *€[0, 1] and \<pk(x)\ S 1/2), (fc = 0, 1, . . .) 
by 

I 

/ (pl(x)dx = 1, 
o 

we have that |£ t*|Sl/2M2, (k=0, 1, ...). 
Considering now an arbitrary measurable subset E of the interval [0,1], with 

\E\>\-\I4M\ we can see that ¡Ef)E^\^l/4M2 which yields 

(6) / \<Pk(xtdx S ( l / 2 / ( l / 4 M 2 ) , (fc = 0, 1, ...). 
£ 

On the other hand by (4) we have that sequence of measurable functions 

{ — ! r r i fcAlc*<z>*(*)l4~ o l n + 1 k~0 Jn=° 
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converges to the function / (* )=0 , almost everywhere on [0,1]. According to the 
well-known Egoroff theorem (see e.g. [3], p. 97) there exists a subset E of the interval 
[0,1] with Lebesgue measure greater than 1 — 1/4M2, such that 

- 4 t 2 kx \ckMx)\x = o(l), / 1 + 1 k= o 

uniformly on E. This means that for any positive e there exists a natural number N, 
such that if H>JV then for any x£E 

(7) —^r- jt k*\ckcpk(x)\^ e. n+l k=o 

Integrating the left hand side of (7) on E and using (6) we obtain (5). 

Remark 1. In Theorem 1 the assumption of the boundedness of the system 
{%(*)}r=o is essential: For, let us consider the system of the functions 

f / f c ( k + l ) , for xi(l/k+l, 1 / fc) = 4 
*pk(x) - i 

10, otherwise 
and the function 

<M*) = 
1), if x belongs to an Ik, (k = 1,2,.. .), 

0, otherwise. 

It is obvious that the series 2 •/'tW is [C, 0]A convergent to ij/(x) everywhere, but 
t= i 

it does not fulfil (5) with ck=1. 
Theorem 1 yields the following corollaries immediately. 

, Coro l l a ry 1. Let A s l . The series (3) is [C, 0]A convergent to the function f(x) 
almost everywhere, if and only if it converges to f(x) almost everywhere and (5) is 
satisfied. 

Coro l l a ry 2. Let A s l . The series (3) is [C, 0]A convergent to the function fix) 
almost everywhere, if and only if it is (C, 1) summable to f(x) almost everywhere and 
(5) is satisfied. 

The following theorems and remarks show an essential difference between the 
cases of indices A>1 and A= 1. 

Theorem 2. Let Jf the series (3) is [C, 0]A convergent to fix) almost 
everywhere then'/£ H LP and 

l«p<oo 

1 
(8) ck= f f(x)cpk(x)dx, ik = 0, 1, 2, ...). 
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P r o o f . By Theorem 1, we have the condition (5) with First we show that 
this implies 

(9) |c t|" = (n — 
k = 2"+l 

for any 1 </ j<A. 
Using the Holder's inequality with indices X/fi and A/(A—/J.) we obtain 

I n ( \ n 

i r n - g w ^ - ^ & w ) = 0 ( 1 ) . 

Hence the inequality 

2» + l 2 1 2n + 1 

proves (9). 

For any we denote by d the number for which — + — = 1 . Considering 
a a' 

an arbitrary p ^ l , we may choose the number /¿>1 such that 

(10) max (p, 2, A') < 

which guarantees and by (9) we have 

k = 2 

The condition (10) shows that 1 < ^ < 2 , so we may apply a theorem of F. Riesz 
(see e.g. [6] vol. II, p. 102, Th. 2.8, point (ii)), which says that there is a function 
<*>££*', such that 

I 
(11) ck= J Hx)cpk(x)dx, (fc = 0, 1,2, ...), 

o 
holds. 

Using again (10), we get that I/'aL", so <t>f f | L" is obtained. By (11), 
1 

the series (3) is the orthogonal expansion of so the sequence of its partial sums 
sn(x), converges to $ in L2-sense. Hence we get a subsequence {jn (x)}£l0 which 
converges to <P(x) almost everywhere. On the other hand Corollary 1 shows that this 
subsequence is also convergent to / ( x ) , almost everywhere. Thus f f P) LP and 

1 S p < ° ° 
by (11) we have (8). 

R e m a r k 2 . Theorem 2 is false for A = 1 . Really, TANOVIC-MILLER ([5] , Th. 3 ) 

showed an almost everywhere [C, 0]x convergent trigonometric series with sum f(x) 
3 

being not m LP if . 
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Theorem 3. Let The series (3) is [C, 0]A convergent almost everywhere, 
if and only if the condition (5) is fulfilled. 

Proof . Choosing the number p such that 1 </ i<min (A, 2), by (9), we get 

2 kt|"(loglogfc)2 si const ¡g (log(n+1))2/2"("_1) 

k=3 n=l 

Observing that (5) implies ck=o( 1), so assuming that k is large enough we have 
I q ^ - ^ s l . Thus we obtain that 

(12) . 2 CkOoglog kf <», 
FC=3 . 

and applying the Menchoff—Kaczmarz theorem (see e.g. [1], p. 125, Th. 2.8.1), we 
have that the series (3) is (C, l)-summable almost everywhere. Hence Corollary 2 
completes our proof. 

Remark 3. Theorem 3 is false for 2=1. Really, considering the Rademacher 
series 

oo 
(13) 2 ck rk (X), (rk (x) = sign sin 2* nx), 

l c=0 

with coefficients ck=v~1/z if k=2V, (v = l ,2 , ...) and ck=0 otherwise, then for (5) 
we have 

o o 

but by 2 cl=°°> the series (13) diverges almost everywhere (see e.g. [1], p. 54. 
k = 0 

Th. 1.7.4). Now the Corollary 1, shows that the series (13) is not [C, O^-summable 
almost everywhere. 

From the Menchoff—Kaczmarz theorem and Corollary 2 we may reduce a suf-
ficient coefficient test for [C, 0]x-convergence of orthogonal series with system 
ONSUBae as follows. 

Theorem 4. The series (3) is [C, 0^-convergent almost everywhere, if the con-
dition (12) is fulfilled and the condition (5) is satisfied, with 1=1. 

Observing that if the sequence {c*}~=0 is a positive monotone decreasing se-
quence then (5) with 1 = 1 is equivalent to ck=o(\/k), hence Theorem 4 yields. 

Coro l l a ry 3. If K}r=0 is a positive monotone decreasing sequence then the 

8 
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series (3) is [C, 0]! -convergent almost everywhere if and only if 

ck = 0(l/k) 
holds. 

The author is indebted to the referee for valuable hints. 

This note was made while the author was visiting researcher at Steklov Math. 
Inst. Moscow, USSR. 
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