Some operational formulas of O. V. Viskov involving Laguerre polynomials

H. M. SRIVASTAVA

1. Introduction. For the classical Laguerre polynomials

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}=\binom{n+\alpha}{n}{ }_{1} F_{1}(-n ; \alpha+1 ; x), \tag{1}
\end{equation*}
$$

a standard operational representation is provided by the Rodrigues formula:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{x^{-\alpha} e^{x}}{n!} D^{n}\left\{x^{n+\alpha} e^{-x}\right\}, \quad D \equiv \frac{d}{d x} \tag{2}
\end{equation*}
$$

Among various other known operational representations for the Laguerre polynomials, we first recall the following formula of O. V. Viskov [5]:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{(-1)^{n} e^{x}}{n!}\left[x D^{2}+(\alpha+1) D\right]^{n}\left\{e^{-x}\right\} \tag{3}
\end{equation*}
$$

For $\alpha=0$, Viskov's formula (3) reduces to an operational representation for the simple Laguerre polynomials, which was given earlier by L. B. Rédei [2]. In fact, as already observed by us.elsewhere [3], Rédei's formula is a rather natural consequer.ce of (2) with $\alpha=0$, since

$$
\left(x D^{2}+D\right)^{n}=(D x D)^{n}=D^{n} x^{n} D^{n} \quad(n=0,1,2, \ldots)
$$

It may be of interest to remark in passing that, since

$$
\begin{equation*}
D^{n}\left\{e^{-x}\right\}=(-1)^{n} e^{-x} \quad(n=0,1,2, \ldots) \tag{4}
\end{equation*}
$$

the general result (3) can be proven directly (and simply) by comparing the first part

[^0]of the definition (1) with the operator identity (cf., e.g., [1]):
\[

$$
\begin{equation*}
\left(x D^{2}+\lambda D\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \frac{\Gamma(\lambda+n)}{\Gamma(\lambda+k)} x^{k} D^{n+k} \tag{5}
\end{equation*}
$$

\]

for $\lambda=\alpha+1$.
More recently, Viskov [6] gave another interesting operational representation for the Laguerre polynomials:

$$
\begin{equation*}
L_{n}^{(x)}(x)=\frac{x^{-n} e^{x}}{n!}\left[x^{2} D+(\alpha+1) x\right]^{n}\left\{e^{-x}\right\} \tag{6}
\end{equation*}
$$

The object of this note is to present two independent proofs of Viskov's formula (6). Each of our proofs of (6) is markedly different from the proof given by Viskov [6].
2. First proof. Many recent developments in the theory of special functions are based upon some remarkable applications of the differential operator (see, for example, [4, p. 368]):

$$
\begin{equation*}
T_{\lambda}=x(\lambda+x D), \quad \lambda \text { a constant } \tag{7}
\end{equation*}
$$

which evidently has the property that [loc. cit.]

$$
\begin{equation*}
T_{\lambda}^{n}\left\{x^{\mu}\right\}=\frac{\Gamma(\lambda+\mu+n)}{\Gamma(\lambda+\mu)} x^{\mu+n} \quad(n=0,1,2, \ldots) \tag{8}
\end{equation*}
$$

for arbitrary parameters λ and μ.
Observe first that the operator involved in (6) is precisely the differential operator $T_{\alpha+1}$. Denoting, for convenience, the right-hand side of (6) by Ω, and expanding e^{-x} in powers of x, we find from (8) that
(9) $\Omega=\frac{x^{-n} e^{x}}{n!} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} T_{\alpha+1}^{n}\left\{x^{k}\right\}=e^{x}\binom{n+\alpha}{n}{ }_{1} F_{1}(n+\alpha+1 ; \alpha+1 ;-x)$.

Now the confluent hypergeometric ${ }_{1} F_{1}$. function, occurring in (9), can be transformed by appealing to Kummer's theorem [4, p. 37]

$$
\begin{equation*}
{ }_{1} F_{1}(a ; c ; z)^{\prime}=e^{z}{ }_{1} F_{1}(c-a ; c ;-z), \tag{10}
\end{equation*}
$$

and we thus have

$$
\begin{equation*}
\Omega=\binom{n+\alpha}{n}_{1} F_{1}(-n ; \alpha+1 ; x)=L_{n}^{(\alpha)}(x) \tag{11}
\end{equation*}
$$

by virtue of the second part of the definition (1).
3. Second proof. Yet another interesting proof of Viskov's formula (6) would make use of the operator identity (cf., e.g., [1])

$$
\begin{equation*}
\left(x^{2} D+\lambda x\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \frac{\Gamma(\lambda+n)}{\Gamma(\lambda+k)} x^{n+k} D^{k} \tag{12}
\end{equation*}
$$

for $\lambda=\alpha+1$. Indeed, in view of (4), the right-hand side of (6) becomes

$$
\Omega=\frac{e^{x}}{n!} \sum_{k=0}^{n}\binom{n}{k} \frac{\Gamma(\alpha+n+1)}{\Gamma(\alpha+k+1)} x^{k} D^{k}\left\{e^{-x}\right\}=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}=L_{n}^{(\alpha)}(x)
$$

where we have employed the first part of the definition (1).
We should like to conclude by observing that, since

$$
\begin{equation*}
T_{\lambda}^{n} \equiv x^{n} \prod_{j=1}^{n}(x D+\lambda+j-1) \tag{13}
\end{equation*}
$$

which is easily verified by induction on n, Viskov's formula (6) may be rewritten in its equivalent form:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{e^{x}}{n!} \prod_{j=1}^{n}(x D+\alpha+j)\left\{e^{-x}\right\} \tag{14}
\end{equation*}
$$

On the other hand, Viskov's formula (3) can immediately be put in the alternative form:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{(-1)^{n} e^{x}}{n!}\left(x^{-\alpha} D x^{\alpha+1} D\right)^{n}\left\{e^{-x}\right\} \tag{15}
\end{equation*}
$$

which incidentally can be proven fairly easily by induction on n, using certain wellknown derivative and recursion formulas for Laguerre polynomials.

It may be of interest to remark that, in view of the easily verifiable identity [cf. equation (7)]:

$$
T_{1}^{n}\left\{x^{\alpha} f(x)\right\}=x^{\alpha} T_{\alpha+1}^{n}\{f(x)\}
$$

the operational formula (6) can also be deduced directly from the familiar result:

$$
L_{n}^{(\alpha)}(x)=\frac{x^{-n-\alpha} e^{x}}{n!}\left(x^{2} D+x\right)^{n}\left\{x^{x} e^{-x}\right\}
$$

Acknowledgements. This work was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

References

[1] L. M. Berkovič and V. I. Kval'vasser, Operator identities and certain ordinary linear differential equations of higher orders which are integrable in closed form, Izv. Vysš. Učebn. Zaved. Matematika, 1968 (1968), no. 5 (72), 3-16 (Russian).
[2] L. B. Rédei, An identity for Laguerre polynomials, Acta Sci. Math., 37 (1975), 115-116.
[3] H. M. Srivastava, An operational representation for the Laguerre polynomials, Nordisk Mat. Tidskr., 25/26 (1978), 137-138.
[4] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (New York, Chichester, Brisbane and Toronto, 1984).
[5] O. V. Viskov, On an identity of L. B. Rédei for Laguerre polynomials, Acta Sci. Math., 39 (1977), 27-28 (Russian).
[6] O. V. Viskov, Representation of Laguerre polynomials, Acta Sci. Math., 50 (1986), 365-366 (Russian).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF VICTORIA
VICTORIA, BRITISH COLUMBIA V8W 2 Y2
CANADA

[^0]: Received September 15, 1987.

