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Contraction representations of semigroups in finite 
von Neumann algebras 

ISTVÁN KOVÁCS and WILLIAM R. McMILLEN 

Let § be a complex Hilbert space, and let be the algebra of all bounded 
linear operators of §>. Furthermore, let si <~ ¡¡8 (%>) be a von Neumann algebra. By a 
contraction representation of a semigroup S in si we mean a homomorphism 
n: S—s/i, where six denotes the multiplicative semigroup of the unit ball of si. 

In connection with a previous result of the first author [4], Shigeru Itoh has 
recently suggested studying contraction representations of right reversible semigroups 
in finite von Neumann algebras [5]. A semigroup S is called right reversible if for 
any s, t£S, the set S j f l S i is not empty. If, in such a semigroup S, we define " s " 
by t^s if and only if t=s or then S becomes a directed set which will be 
denoted by the same letter S. 

Here we intend to study contraction representations of right reversible semi-
groups S under the condition that for each ?€S, the orbit {i"}„eN is cofinal in the 
directed set S [6]. Under this condition S will be called archimedean. The additive 
semigroup of the positive cone R+ of the «-dimensional euclidean space R" is an 
example of a right reversible archimedean semigroup. The study of contraction 
representations of right reversible archimedean semigroups in finite von Neumann 
algebras (cf. [1]) will eventually lead us, as shown below, to generalize considerations 
carried out in [3] for a single contraction. 

Before formulating our first result, let us agree to call an element T of a 
von Neumann algebra si partially unitary if there is an orthogonal projection E in si 
such that T*T=TT*=E [3]. Furthermore, a contraction representation n of an 
archimedean semigroup S in si is called partially unitary (resp. completely non-unit-
ary) if each element of 7t(S) is a partially unitary (resp, completely non-unitary [2]) 
element of si. 

We now have , 
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Theorem 1 (Cf. [3], Th. 2 and Prop. 1). Let S be a right reversible archimedean 
semigroup, and let n be a contraction representation of S in a finite von Neumann 
algebra sfcz &(§>). Then, there is a unique orthogonal projection P£si reducing n 
to a partially unitary representation nu ofS in si. The orthognal projection E=I—P, 
in turn, reduces n to a completely non-unitary representation n0 of S in si so that we 
have 

(1) 7I = 7r0 + 7Tu, 

(2) no(s)nu(t)=nu(t)no(s)=0 (s, Í6S), 

(3) [no('y)]n"*"0 strongly as for every s£S. 

Proof . It is based upon methods used in [3] with the natural modifications. 
Consider the nets Pt=.n*(t)Ti(t) and Rt=n(t)n*(t) (teS) [6]. Evidently, 

P, and R, are in the positive cone. si+ of ¿^. Moreover, the nets P, and Rt are 
downward directed; Let us prove this statement just for P, since similar argument 
applies to Rt. Let t, S be given arbitrarily. Then there is a z£S such that z s i 
and Z É J ( Z É S Í D S / for instance). Thus, in particular, z=s1t with an appropriate 
Sx. Now, for every we have 

s K0*ll2 = (7r*(í)7í(0xW = (P,x\x); 

hence Pz^Pt. Observing that z can be also written as z=s2s with some s2£S, 
a similar reasoning shows P Z ^P S . 

Therefore, the nets F, and /^converge to elements P and R of si1C\si+, re-
spectively, in the strong topology [1]. In symbols: 

(4) ' limPt = l imn*( f )n ( t ) = P, lim i?f = lim n(/)n*(/) = R. 

We claim that 

(5) N*(s)Pn(s) = P and . TI(S)RTZ*(S) = R for every s£S. 

We will prove the first statement. The second one can be proved similarly. 

As-.i ,.=lim n*(t)n(t)~ it .is natural to..consider .the. net 
t 

7t*(s)7l*(t)7l(t)7l(s) = (7l(t)7l(s))*7l(t)x(s) = 7l*(ts)n(ts), 

where s is fixed and t runs over S. As long as we can prove that 

Q(ts) = n*(ts)n(ts) <76S) 
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is a subnet of Pt, the first half of (5) will be proven. To do this, we prove 

(i) t 1 ^t 2 =>i 1 s^i 2 s (isotony); 
(ii) (te) t es is cofinal in S. 

Ad (i). t^tz means that ^ S / j , i.e. with some / ^ S , then, t2s=. 
=s't1s, thus tzSdStxS implying (i). 

Ad (ii). Let /0£S be arbitrary, and consider an element from S? 0nSi 0 j . This 
element can be written as s,t0s=s"t„. Let then t1s=s"t0£St0, i.e., 
whence (ii). 

Now, as in [3], by virtue of (4), one may prove that for every finite normal trace 
cp on si, we have 

lim v ((ti* (0 ?t (0 - i?)* (te* (0 71 (0 - J«)) = 0, 

from which we conclude that 

(6) P = lim 71* (i) 7i (0 = lim n(t)n*(t) = R 

and that P=R is an orthogonal projection of si. The details are omitted. Also, it 
follows from (6) that 

(7) (I~P)*> = lim n(t)x = 0} = lim n*(t)x = 0}. 

In fact, x£(I—P)§> is equivalent to Px=Rx=0. Then the conclusion is drawn from 
(4). In addition, for every the operators n(s) and ri*(s) transform (/— P)§> 
into itself. To show this, we follow the arguments carried out to prove (5). Details 
are again omitted. Therefore, I—P, and thus P "reduces".each n(s) (i€S), i.e., we 
have .... . 

(8) Pn(s) = TC(s)P (s€S). 

Using the techniques of [3], we may prove that 

(9) (7t(s)P)*(7t(s)P) = (n(s)P)(n(s)P)* = P, 

i.e., each 71 (s)P (s€S) is a partially unitary element of st. For every s£S, let 

(10) 7i„(s) = Pn(s). 

Now, if we let 

( ID 7i0(s) = (I-P)n(s) (s€S), 
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then we evidently have (1). In fact, 7r0(j)+7ru(j)=(/— P)n (s)+Pn(s)=n(s). By 
virtue of (8), it is evident that it0 and nu are representations of S in s i . Now, if we 
prove (3), we will surely know that each n0(s) (s£S) is completely non-imitary. 
To do this, let I—P—E and fix a 7t(j) arbitrarily. Then (3) can be equivalently 
formulated as follows: for every x£ESj we have 

(12) [7r(s)]"jc - 0 as n 

Now, since, [7r(j)]"=7i(y), consider the function g :N—S defined as g(n)=s" 
(n£N). Then, by assumption, g(N) is colinal in S. Furthermore, g is also isotone; 
/ijSWa ("u "a^N) implies g("i)=if(w2)- In fact, it is enough to prove g(n 
S£(w+1), i.e., But this is evident since thus f + 1 £ S s » , hence 

So, (nog)(n)=n(s") is a subnet of n(s), a fact from which (12) follows on 
account of (7). Moreover, the uniqueness of P follows from the observation that P 
(or E=l—P) simultaneously decomposes each contraction n(s) (J^S) into a com-
pletely non-unitary and a unitary part, and the decomposition of this kind of contrac-
tions is canonical. Finally, (2) is an immediate consequence of the fact that the ele-
ments of n0(S) and 7iu(S) mutually operate on subspaces orthocomplement one to 
another. The proof is complete. 

T h e o r e m 2 (Cf. [3], Prop. 2). Let S be a right reversible archimedean semigroup, 
and let J—7I ( 1 ) ( J ) (resp. s—TC(2)(J)) be a contraction representation of S in a finite 
von Neumann algebra /''ci®'1») (resp. ^(2)c^(§(2))). Let X be a bounded 
linear transformation of §(2) into §(1) such that nm(s)X=Xni2)(s) for each 
Now, if Em and E(2) are the orthogonal projections corresponding to E=I—P in 
Theorem 1, then we also have EmX=XE(2). 

Although the proof is similar to that of Prop. 2 in [3], we include it here for 
completeness. 

P roof . First we prove that E(1)XE(2)=XE(2). Indeed, if x 2 e£ ( 2 ) $ 2 , i.e., 
x 2 = E m x 2 (on the orthocomplement of 2?(2)§, the sides of the proposed equality 
are zero), then 

[T:*1'(.*)№, = n^(s")Xx2 = Xn™(sn)E™x2 = Z[4 2 ) (S)]"JC 2 - 0 (n -

This means that Zx2=Z£ , ( 2 )x2€£ ( 1 )$1 implying E ^ X E ^ x 2 = X E ^ x 2 , whence 
the assertion. A similar argument proves E(2)X*E(1)=X*E1, from which 

XE™ = EWXE™ = (E'^X*E^f = (X*E^)* = EmX . 

follows. The proof is complete. 
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