Contraction representations of semigroups in finite von Neumann algebras

ISTVÁN KOVÁCS and WILLIAM R. McMILLEN

Let \mathfrak{G} be a complex Hilbert space, and let $\mathscr{B}(\mathfrak{H})$ be the algebra of all bounded linear operators of \mathfrak{G}. Furthermore, let $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$ be a von Neumann algebra. By a contraction representation of a semigroup \boldsymbol{S} in \mathscr{A} we mean a homomorphism $\pi: S \rightarrow \mathscr{A}_{1}$, where \mathscr{A}_{1} denotes the multiplicative semigroup of the unit ball of \mathscr{A}.

In connection with a previous result of the first author [4], Shigeru Itoh has recently suggested studying contraction representations of right reversible semigroups in finite von Neumann algebras [5]. A semigroup \mathbf{S} is called right reversible if for any $s, t \in S$, the set $\mathbf{S} s \cap \mathbf{S} t$ is not empty. If, in such a semigroup S, we define " \geqq " by $t \geqq s$ if and only if $t=s$ or $t \in S s$, then S becomes a directed set which will be denoted by the same letter \mathbf{S}.

Here we intend to study contraction representations of right reversible semigroups S under the condition that for each $t \in S$, the orbit $\left\{t^{n}\right\}_{n \in \mathbf{N}}$ is cofinal in the directed set \mathbf{S} [6]. Under this condition \mathbf{S} will be called archimedean. The additive semigroup of the positive cone \mathbf{R}_{+}^{n} of the n-dimensional euclidean space \mathbf{R}^{n} is an example of a right reversible archimedean semigroup. The study of contraction representations of right reversible archimedean semigroups in finite von Neumann algebras (cf. [1]) will eventually lead us, as shown below, to generalize considerations carried out in [3] for a single contraction.

Before formulating our first result, let us agree to call an element T of a von Neumann algebra \mathscr{A} partially unitary if there is an orthogonal projection E in \mathscr{A} such that $T^{*} T=T T^{*}=E$ [3]. Furthermore, a contraction representation π of an archimedëan semigroup S in \mathscr{A} is called partially unitary (resp. completely non-unitary) if each element of $\pi(S)$ is a partially unitary (resp. completely non-unitary [2]) element of \mathscr{A}.

We now have

Theorem 1 (Cf. [3], Th. 2 and Prop. 1). Let S be a right reversible archimedean semigroup, and let π be a contraction representation of S in a finite von Neumann algebra $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$. Then, there is a unique orthogonal projection $P \in \mathscr{A}$ reducing π to a partially unitary representation π_{u} of S in \mathscr{A}. The orthognal projection $E=I-P$, in turn, reduces π to a completely non-unitary representation π_{0} of S in \mathscr{A} so that we have
(1) $\pi=\pi_{0}+\pi_{u}$,
(2) $\pi_{0}(s) \pi_{u}(t)=\pi_{u}(t) \pi_{0}(s)=0 \quad(s, t \in S)$,
(3) $\left[\pi_{0}(s)\right]^{n} \rightarrow 0$ strongly as $n \rightarrow \infty$ for every $s \in S$.

Proof. It is based upon methods used in [3] with the natural modifications.
Consider the nets $P_{t}=\pi^{*}(t) \pi(t)$ and. $R_{t}=\pi(t) \pi^{*}(t)$. ($t \in S$) [6]. Evidently, P_{t} and R_{t} are in the positive cone \mathscr{A}^{+}of $\mathscr{A}:$ Moreover, the nets P_{t} and R_{t} are downward directed: Let us prove this statement just for P_{t} since similar argument applies to R_{t}. Let $t, s \in \mathbf{S}$ be given arbitrarily. Then there is a $z \in S$ such that $z \geqq t$ and $z \geqq s\left(z \in S s \cap S t\right.$ for instance). Thus, in particular, $z=s_{1} t$ with an appropriate s_{1}. Now, for every $x \in \mathfrak{G}$; we have

$$
\begin{aligned}
\left(P_{z} x \mid x\right)= & \left(\pi^{*}\left(s_{1} t\right) \pi\left(s_{1} t\right) x \mid \dot{x}\right)=\left\|\pi\left(s_{1} t\right) x\right\|^{2}=\left\|\pi\left(s_{1}\right) \pi(t) \dot{x}\right\|^{2} \leqq \\
& \leqq\|\pi(t) x\|^{2}=\left(\pi^{*}(t) \pi(t) x \mid x\right)=\left(P_{t} x \mid x\right)
\end{aligned}
$$

hence $P_{z} \leqq P_{t}$. Observing that z can be also written as $z=s_{2} s$ with some $s_{2} \in S$, a similar reasoning shows $P_{z} \leqq P_{s}$.

Therefore, the nets P_{t} and R_{t} converge to elements P and R of $\mathscr{A}_{1} \cap \mathscr{A}^{+}$, respectively, in the strong topology [1]. In symbols:

$$
\begin{equation*}
\lim _{t} P_{t}=\lim _{t} \pi^{*}(t) \pi(t)=P, \lim _{t} R_{t}=\lim _{t} \pi(t) \pi^{*}(t)=R \tag{4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\pi^{*}(s) P \pi(s)=P . \text { and } . \pi(s) R \pi^{*}(s)=R \quad \text { for every } s \in \mathbf{S} . \tag{5}
\end{equation*}
$$

We will prove the first statement. The second one can be proved similarly.
As $. . P=\lim \pi^{*}(t) \pi(t)$ it is natural to consider the net:

$$
\pi^{*}(s) \pi^{*}(t) \pi(t) \pi(s)=(\pi(t) \pi(s))^{*} \pi(t) \pi(s)=\pi^{*}(t s) \pi(t s)
$$

where s is fixed and t runs over S. As long as we can prove that

$$
Q(t s)=\pi^{*}(t s) \pi(t s) \quad(t \in \mathbf{S})
$$

is a subnet of P_{t}, the first half of (5) will be proven. To do this, we prove
(i) $t_{1} \leqq t_{2} \Rightarrow t_{1} s \leqq t_{2} s$ (isotony);
(ii) $(t s)_{t \in S}$ is cofinal in S.

Ad (i). $t_{1} \leqq t_{2}$ means that $t_{2} \in S t_{1}$, i.e. $t_{2}=s^{\prime} t$, with some $s^{\prime} \in \mathrm{S}$, then, $t_{2} s=$: $=s^{\prime} t_{1} s$, thus $t_{2} s \in S t_{1} s$ implying (i).

Ad (ii). Let $t_{0} \in S$ be arbitrary, and consider an element from $S t_{0} \cap S t_{0} s$. This element can be written as $s^{\prime} t_{0} s=s^{\prime \prime} t_{0}$. Let $s^{\prime} t_{0}=t_{1}$, then $t_{1} s=s^{\prime \prime} t_{0} \in \mathrm{~S} t_{0}$, i.e., $t_{0} \leqq t_{1} s$, whence (ii).

Now, as in [3], by virtue of (4), one may prove that for every finite normal trace φ on \mathscr{A}, we have

$$
\lim _{t} \varphi\left(\left(\pi^{*}(t) \pi(t)-R\right)^{*}\left(\pi^{*}(t) \pi(t)-R\right)\right)=0
$$

from which we conclude that

$$
\begin{equation*}
P=\lim _{\boldsymbol{t}^{\prime}} \pi^{*}(t) \pi(t)=\lim \pi(t) \pi^{*}(t)=R \tag{6}
\end{equation*}
$$

and that $P=R$ is an orthogonal projection of \mathscr{A}. The details are omitted. Also, it follows from (6) that

$$
\begin{equation*}
(I-P) \mathfrak{G}=\left\{x \in \mathfrak{F}: \lim _{t} \pi(t) x=0\right\}=\left\{x \in \mathfrak{H}: \lim _{\mathfrak{t}} \pi^{*}(t) x=0\right\} \tag{7}
\end{equation*}
$$

In fact, $x \in(I-P) \mathfrak{S}$ is equivalent to $P x=R x=0$. Then the conclusion is drawn from (4). In addition, for every $s \in S$, the operators $\pi(s)$ and $\pi^{*}(s)$ transform ($\left.I-P\right) \mathfrak{H}$ into itself. To show this, we follow the arguments carried out to prove (5). Details are again omitted. Therefore, $I-P$, and thus P "reduces". each $\pi(s)(s \in \mathrm{~S})$, i.e., we have

$$
\begin{equation*}
P \pi(s)=\pi(s) P \quad(s \in S) \tag{8}
\end{equation*}
$$

Using the techniques of [3], we may prove that

$$
\begin{equation*}
(\pi(s) P)^{*}(\pi(s) P)=(\pi(s) P)(\pi(s) P)^{*}=P \tag{9}
\end{equation*}
$$

i.e., each $\pi(s) P(s \in S)$ is a partially unitary element of \mathscr{A}. For every $s \in S$, let

$$
\begin{equation*}
\pi_{u}(s)=P \pi(s) \tag{10}
\end{equation*}
$$

Now, if we let

$$
\begin{equation*}
\pi_{0}(s)=(I-P) \pi(s) \quad(s \in \mathrm{~S}) \tag{11}
\end{equation*}
$$

then we evidently have (1). In fact, $\pi_{0}(s)+\pi_{u}(s)=(I-P) \pi(s)+P \pi(s)=\pi(s)$. By virtue of (8), it is evident that π_{0} and π_{u} are representations of S in \mathscr{A}. Now, if we prove (3), we will surely know that each $\pi_{0}(s) \cdot(s \in S)$ is completely non-unitary. To do this, let $I-P=E$ and fix a $\pi(s)$ arbitrarily. Then (3) can be equivalently formulated as follows: for every $x \in E \mathcal{G}$ we have

$$
\begin{equation*}
[\pi(s)]^{n} x \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{12}
\end{equation*}
$$

Now, since. $[\pi(s)]^{n}=\pi\left(s^{n}\right)$, consider the function $g: N \rightarrow \mathbf{S}$ defined as $g(n)=s^{n}$ ($n \in \mathbf{N}$). Then, by assumption, $g(\mathbf{N})$ is cofinal in \mathbf{S}. Furthermore, g is also isotone; $n_{1} \leqq n_{2} \quad\left(n_{1}, n_{2} \in \mathbf{N}\right)$ implies $g\left(n_{1}\right) \leqq g\left(n_{2}\right)$. In fact, it is enough to prove $g(n) \leqq$ $\leqq g(n+1)$, i.e., $s^{n} \leqq s^{n+1}$. But this is evident since $s^{n+1}=s s^{n}$; thus $s^{n+1} \in S s^{n}$, hence $s^{n} \leqq s^{n+1}$. So, $(\pi \circ g)(n)=\pi\left(s^{n}\right)$ is a subnet of $\pi(s)$, a fact from which (12) follows on account of (7). Moreover, the uniqueness of P follows from the observation that P (or $E=I-P$) simultaneously decomposes each contraction $\pi(s)(s \in S)$ into a completely non-unitary and a unitary part, and the decomposition of this kind of contractions is canonical. Finally, (2) is an immediate consequence of the fact that the elements of $\pi_{0}(S)$ and $\pi_{u}(S)$ mutually operate on subspaces orthocomplement one to another. The proof is complete.

Theorem 2 (Cf. [3], Prop. 2). Let S be a right reversible archimedean semigroup, and let $s \rightarrow \pi^{(1)}(s)$ (resp. $\left.s \rightarrow \pi^{(2)}(s)\right)$ be a contraction representation of S in a finite von Neumann algebra $\mathscr{A}^{(1)} \subset \mathscr{B}\left(\mathfrak{G}^{(1)}\right)$ (resp. $\mathscr{A}^{(2)} \subset \mathscr{B}\left(\mathfrak{S}^{(2)}\right)$). Let X be a bounded linear transformation of $\mathfrak{S}^{(2)}$ into $\mathfrak{S}^{(1)}$ such that $\pi^{(1)}(s) X=X \pi^{(2)}(s)$ for each $s \in \mathbf{S}$. Now, if $E^{(1)}$ and $E^{(2)}$ are the orthogonal projections corresponding to $E=I-P$ in Theorem 1, then we also have $E^{(1)} X=X E^{(2)}$.

Although the proof is similar to that of Prop. 2 in [3], we include it here for completeness.

Proof. First we prove that $E^{(1)} X E^{(2)}=X E^{(2)}$. Indeed, if $x_{2} \in E^{(2)} \mathfrak{G}_{2}$, i.e., $x_{2}=E^{(2)} x_{2}$ (on the orthocomplement of $\dot{E}^{(2)} \mathfrak{G}$, the sides of the proposed equality are zero), then

$$
\left[\pi^{(1)}(s)\right]^{n} X x_{2}=\pi^{(1)}\left(s^{n}\right) X x_{2}=X \pi^{(2)}\left(s^{n}\right) E^{(2)} x_{2}=X\left[\pi_{\delta}^{(2)}(s)\right]^{n} x_{2} \rightarrow 0 \quad(n \rightarrow \infty) .
$$

This means that $X x_{2}=X E^{(2)} x_{2} \in E^{(1)} \mathfrak{S}_{1}$ implying $E^{(1)} X E^{(2)} x_{2}=X E^{(2)} x_{2}$, whence the assertion. A similar argument proves $E^{(2)} X^{*} E^{(1)}=X^{*} E_{1}$, from which

$$
X E^{(2)}=E^{(1)} X E^{(2)}=\left(E^{(2)} X^{*} E^{(1)}\right)^{*}=\left(X^{*} E^{(1)}\right)^{*}=E^{(1)} X
$$

follows. The proof is complete.

References

[1] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Paris, 1957).
[2] B. Sz.-Nagy et C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert (Budapest, 1563).
[3] C. Foiaş et I. Kovács, Une caractérisation nouvelle des algèbres de von Neumann finies, Acta Sci. Math., 23 (1962), 274-279.
[4] I. Kovács, Dilation theory and one-parameter semigroups of contractions, Acta Sci. Math., 45 (1983), 279-280.
[5] Sh. Ітон, A note on contraction semigroups in finite von Neumann algebras, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 33 (1986), 1-3.
[6] J. L. Kelley, General Topology, Springer, 1975.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF SOUTH ALABAMA
MOBILE, AL 36688, USA

