Contraction representations of semigroups in finite von Neumann algebras

ISTVÁN KOVÁCS and WILLIAM R. MCMILLEN

Let \mathfrak{H} be a complex Hilbert space, and let $\mathscr{B}(\mathfrak{H})$ be the algebra of all bounded linear operators of \mathfrak{H} . Furthermore, let $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$ be a von Neumann algebra. By a *contraction representation* of a semigroup \mathfrak{S} in \mathscr{A} we mean a homomorphism $\pi: \mathfrak{S} \to \mathscr{A}_1$, where \mathscr{A}_1 denotes the multiplicative semigroup of the unit ball of \mathscr{A} .

In connection with a previous result of the first author [4], Shigeru Itoh has recently suggested studying contraction representations of right reversible semigroups in finite von Neumann algebras [5]. A semigroup S is called *right reversible* if for any $s, t \in S$, the set $Ss \cap St$ is not empty. If, in such a semigroup S, we define " \geq " by $t \geq s$ if and only if t=s or $t \in Ss$, then S becomes a directed set which will be denoted by the same letter S.

Here we intend to study contraction representations of right reversible semigroups S under the condition that for each $t \in S$, the orbit $\{t^n\}_{n \in \mathbb{N}}$ is cofinal in the directed set S [6]. Under this condition S will be called *archimedean*. The additive semigroup of the positive cone \mathbb{R}^n_+ of the *n*-dimensional euclidean space \mathbb{R}^n is an example of a right reversible archimedean semigroup. The study of contraction representations of right reversible archimedean semigroups in finite von Neumann algebras (cf. [1]) will eventually lead us, as shown below, to generalize considerations carried out in [3] for a single contraction.

Before formulating our first result, let us agree to call an element T of a von Neumann algebra \mathscr{A} partially unitary if there is an orthogonal projection E in \mathscr{A} such that $T^*T=TT^*=E$ [3]. Furthermore, a contraction representation π of an archimedean semigroup S in \mathscr{A} is called *partially unitary* (resp. completely non-unitary) if each element of $\pi(S)$ is a partially unitary (resp. completely non-unitary [2]) element of \mathscr{A} .

We now have

Received August 18, 1987.

Theorem 1 (Cf. [3], Th. 2 and Prop. 1). Let S be a right reversible archimedean semigroup, and let π be a contraction representation of S in a finite von Neumann algebra $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$. Then, there is a unique orthogonal projection $P \in \mathscr{A}$ reducing π to a partially unitary representation π_u of S in \mathscr{A} . The orthogonal projection E=I-P, in turn, reduces π to a completely non-unitary representation π_0 of S in \mathscr{A} so that we have

- (1) $\pi = \pi_0 + \pi_u$,
- (2) $\pi_0(s)\pi_u(t) = \pi_u(t)\pi_0(s) = 0$ (s, $t \in S$),
- (3) $[\pi_0(s)]^n \rightarrow 0$ strongly as $n \rightarrow \infty$ for every $s \in S$.

Proof. It is based upon methods used in [3] with the natural modifications.

Consider the nets $P_t = \pi^*(t)\pi(t)$ and $R_t = \pi(t)\pi^*(t)$ $(t \in S)$ [6]. Evidently, P_t and R_t are in the positive cone \mathscr{A}^+ of \mathscr{A} . Moreover, the nets P_t and R_t are downward directed. Let us prove this statement just for P_t since similar argument applies to R_t . Let $t, s \in S$ be given arbitrarily. Then there is a $z \in S$ such that $z \ge t$ and $z \ge s$ $(z \in Ss \cap St$ for instance). Thus, in particular, $z = s_1 t$ with an appropriate s_1 . Now, for every $x \in \mathfrak{H}$, we have

$$(P_{z}x|x) = (\pi^{*}(s_{1}t)\pi(s_{1}t)x|x) = \|\pi(s_{1}t)x\|^{2} = \|\pi(s_{1})\pi(t)x\|^{2} \leq \\ \leq \|\pi(t)x\|^{2} = (\pi^{*}(t)\pi(t)x|x) = (P_{t}x|x);$$

hence $P_z \leq P_t$. Observing that z can be also written as $z=s_2s$ with some $s_2 \in S$, a similar reasoning shows $P_z \leq P_s$.

Therefore, the nets P_t and R_t converge to elements P and R of $\mathscr{A}_1 \cap \mathscr{A}^+$, respectively, in the strong topology [1]. In symbols:

(4)
$$\lim_{t} P_{t} = \lim_{t} \pi^{*}(t)\pi(t) = P, \quad \lim_{t} R_{t} = \lim_{t} \pi(t)\pi^{*}(t) = R.$$

We claim that

(5)

- $\pi^*(s)P\pi(s) = P$ and $\pi(s)R\pi^*(s) = R$ for every $s \in S$.
- We will prove the first statement. The second one can be proved similarly. As $P = \lim \pi^*(t)\pi(t)$ it is natural to consider the net

$$\pi^*(s)\pi^*(t)\pi(t)\pi(s) = (\pi(t)\pi(s))^*\pi(t)\pi(s) = \pi^*(ts)\pi(ts),$$

where s is fixed and t runs over S. As long as we can prove that

$$Q(ts) = \pi^*(ts)\pi(ts) \quad (t \in \mathbf{S})$$

134-- .

is a subnet of P_t , the first half of (5) will be proven. To do this, we prove

(i) $t_1 \leq t_2 \Rightarrow t_1 s \leq t_2 s$ (isotony); (ii) $(ts)_{t \in S}$ is cofinal in S.

Ad (i). $t_1 \le t_2$ means that $t_2 \in St_1$, i.e. $t_2 = s't_1$, with some $s' \in S$, then, $t_2s = -s't_1s$, thus $t_2s \in St_1s$ implying (i).

Ad (ii). Let $t_0 \in S$ be arbitrary, and consider an element from $St_0 \cap St_0s$. This element can be written as $s't_0s=s''t_0$. Let $s't_0=t_1$, then $t_1s=s''t_0\in St_0$, i.e., $t_0\leq t_1s$, whence (ii).

Now, as in [3], by virtue of (4), one may prove that for every finite normal trace φ on \mathscr{A} , we have

$$\lim_{t \to \infty} \varphi((\pi^*(t)\pi(t) - R)^*(\pi^*(t)\pi(t) - R)) = 0,$$

from which we conclude that

(6)
$$P = \lim \pi^*(t)\pi(t) = \lim \pi(t)\pi^*(t) = R$$

and that P=R is an orthogonal projection of \mathcal{A} . The details are omitted. Also, it follows from (6) that

(7)
$$(I-P)\mathfrak{H} = \{x \in \mathfrak{H} : \lim_{t \to \infty} \pi(t)x = 0\} = \{x \in \mathfrak{H} : \lim_{t \to \infty} \pi^*(t)x = 0\}.$$

In fact, $x \in (I-P)\mathfrak{H}$ is equivalent to Px = Rx = 0. Then the conclusion is drawn from (4). In addition, for every $s \in S$, the operators $\pi(s)$ and $\pi^*(s)$ transform $(I-P)\mathfrak{H}$ into itself. To show this, we follow the arguments carried out to prove (5). Details are again omitted. Therefore, I-P, and thus P "reduces" each $\pi(s)$ ($s \in S$), i.e., we have

(8)
$$P\pi(s) = \pi(s)P \quad (s \in \mathbf{S}).$$

Using the techniques of [3], we may prove that

(9)
$$(\pi(s)P)^*(\pi(s)P) = (\pi(s)P)(\pi(s)P)^* = P,$$

i.e., each $\pi(s)P$ ($s\in S$) is a partially unitary element of \mathcal{A} . For every $s\in S$, let

(10)
$$\pi_{\mu}(s) = P\pi(s).$$

Now, if we let

(11)
$$\pi_0(s) = (I-P)\pi(s) \quad (s \in \mathbf{S}),$$

then we evidently have (1). In fact, $\pi_0(s) + \pi_u(s) = (I - P)\pi(s) + P\pi(s) = \pi(s)$. By virtue of (8), it is evident that π_0 and π_u are representations of S in \mathscr{A} . Now, if we prove (3), we will surely know that each $\pi_0(s)$ ($s \in S$) is completely non-unitary. To do this, let I - P = E and fix a $\pi(s)$ arbitrarily. Then (3) can be equivalently formulated as follows: for every $x \in E\mathfrak{H}$ we have

(12)
$$[\pi(s)]^n x \to 0 \quad \text{as} \quad n \to \infty.$$

Now, since $[\pi(s)]^n = \pi(s^n)$, consider the function $g: N \to S$ defined as $g(n) = s^n$ $(n \in N)$. Then, by assumption, g(N) is cofinal in S. Furthermore, g is also isotone; $n_1 \le n_2$ $(n_1, n_2 \in N)$ implies $g(n_1) \le g(n_2)$. In fact, it is enough to prove $g(n) \le \le g(n+1)$, i.e., $s^n \le s^{n+1}$. But this is evident since $s^{n+1} = ss^n$; thus $s^{n+1} \in Ss^n$, hence $s^n \le s^{n+1}$. So, $(\pi \circ g)(n) = \pi(s^n)$ is a subnet of $\pi(s)$, a fact from which (12) follows on account of (7). Moreover, the uniqueness of P follows from the observation that P (or E = I - P) simultaneously decomposes each contraction $\pi(s)$ $(s \in S)$ into a completely non-unitary and a unitary part, and the decomposition of this kind of contractions is canonical. Finally, (2) is an immediate consequence of the fact that the elements of $\pi_0(S)$ and $\pi_u(S)$ mutually operate on subspaces orthocomplement one to another. The proof is complete.

Theorem 2 (Cf. [3], Prop. 2). Let S be a right reversible archimedean semigroup, and let $s \to \pi^{(1)}(s)$ (resp. $s \to \pi^{(2)}(s)$) be a contraction representation of S in a finite von Neumann algebra $\mathscr{A}^{(1)} \subset \mathscr{B}(\mathfrak{H}^{(1)})$ (resp. $\mathscr{A}^{(2)} \subset \mathscr{B}(\mathfrak{H}^{(2)})$). Let X be a bounded linear transformation of $\mathfrak{H}^{(2)}$ into $\mathfrak{H}^{(1)}$ such that $\pi^{(1)}(s)X = X\pi^{(2)}(s)$ for each $s \in S$. Now, if $E^{(1)}$ and $E^{(2)}$ are the orthogonal projections corresponding to E = I - P in Theorem 1, then we also have $E^{(1)}X = XE^{(2)}$.

Although the proof is similar to that of Prop. 2 in [3], we include it here for completeness.

Proof. First we prove that $E^{(1)}XE^{(2)} = XE^{(2)}$. Indeed, if $x_2 \in E^{(2)}\mathfrak{H}_2$, i.e., $x_2 = E^{(2)}x_2$ (on the orthocomplement of $E^{(2)}\mathfrak{H}$, the sides of the proposed equality are zero), then

$$[\pi^{(1)}(s)]^n X x_2 = \pi^{(1)}(s^n) X x_2 = X \pi^{(2)}(s^n) E^{(2)} x_2 = X [\pi_0^{(2)}(s)]^n x_2 \to 0 \quad (n \to \infty).$$

This means that $Xx_2 = XE^{(2)}x_2 \in E^{(1)}\mathfrak{H}_1$ implying $E^{(1)}XE^{(2)}x_2 = XE^{(2)}x_2$, whence the assertion. A similar argument proves $E^{(2)}X^*E^{(1)} = X^*E_1$, from which

$$XE^{(2)} = E^{(1)}XE^{(2)} = (E^{(2)}X^*E^{(1)})^* = (X^*E^{(1)})^* = E^{(1)}X$$

follows. The proof is complete.

References

- [1] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien (Paris, 1957).
- [2] B. SZ.-NAGY et C. FOIAŞ, Analyse harmonique des opérateurs de l'espace de Hilbert (Budapest, 1963).
- [3] C. FOIAŞ et I. KOVÁCS, Une caractérisation nouvelle des algèbres de von Neumann finies, Acta Sci. Math., 23 (1962), 274-279.
- [4] I. Kovács, Dilation theory and one-parameter semigroups of contractions, Acta Sci. Math., 45 (1983), 279–280.
- [5] SH. ITOH, A note on contraction semigroups in finite von Neumann algebras, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 33 (1986), 1-3.

[6] J. L. KELLEY, General Topology, Springer, 1975.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF SOUTH ALABAMA MOBILE, AL 36688, USA