The distance to operators with a fixed index

RICHARD BOULDIN

1. Introduction. Let H be a fixed complex separable Hilbert space. For any (bounded linear) operator T on H we define the nullity and deficiency, denoted nul T and def T, to be the dimensions of the kernels of T and T^{*}, respectively. Of course, the index of T, denoted ind T, is defined to be (nul $T-\operatorname{def} T$), with $\infty-\infty$ understood to be 0 . We denote the operator norm of T by $\|T\|$.

In [2] the basic properties of the minimum modulus and the essential minimum modulus were developed; the distances from an arbitrary operator to the invertible operators, denoted G, and to the Fredholm operators were determined using the essential minimum modulus. In [1] the methods of [2] were extended to compute the distance from T to the semi-Fredholm operators with index n. In [3] the conclusions and some methods from [2] were used to compute the distance from T to the Fredholm operators with index n, which we denote F_{n}. Unfortunately the false assertion that $\left(S^{n} S^{*(n)} G\right)^{-}=\bar{G}$ in the proof given in [3] leaves a gap in the argument. In this note we give a rather brief proof that establishes the results of [3] plus some new conclusions. Part of the method is a refinement of a device in [3]. Other papers that continue the research in [2] are [4] and [5].
2. Preliminaries. Let J_{n} denote the set of operators on H with index equal to the integer n. Let I_{n} denote all operators T in J_{n} with a finite value for either nul T or def T. Note that $J_{n} \supset I_{n} \supset F_{n}$ and $J_{0} \supset I_{0} \supset F_{0} \supset G$. It is immediate from Theorem 3 of [2] that $J_{0} \subset \bar{G}$ and, consequently,

$$
\bar{J}_{0}=\bar{I}_{0}=\bar{F}_{0}=\bar{G} .
$$

We use notation like $P G$ for $\{P B: B \in G\}$.

Lemma 1. Let S be a unilateral shift on H with multiplicity n (an integer) and let P denote the orthogonal projection $S S^{*}$. If $P B=B$ then
(i) $\operatorname{dist}(B, G)=\operatorname{dist}(B, P G)$
(ii) $\operatorname{dist}\left(B, F_{0}\right)=\operatorname{dist}\left(B, F_{0} \cap P F_{0}\right)$
(iii) $\operatorname{dist}\left(B, I_{0}\right)=\operatorname{dist}\left(B, I_{0} \cap P I_{0}\right)$.

Proof. For $C \in G$ define C_{λ} to be $P C+\lambda Q C$ where $Q=I-P$ and $\lambda \in(0,1]$. For any vector $f \in H$ we have

$$
\left\|\left(B-C_{\lambda}\right) f\right\|^{2}=\|(B-P C) f\|^{2}+\lambda^{2}\|Q C f\|^{2}
$$

It follows that

$$
\left(\|B-P C\|^{2}+\lambda^{2}\|Q C\|^{2}\right)^{1 / 2} \geqq\left\|B-C_{\lambda}\right\| \geqq\|B-P C\| .
$$

Thus,

$$
\cdot \inf \left\{\left\|B-C_{\lambda}\right\|: 0<\lambda \leqq 1\right\}=\|B-P C\| .
$$

It is routine to see that C_{λ} is one-to-one and onto; so $C_{\lambda} \in G$. This argument shows that

$$
\operatorname{dist}(B, G)=\operatorname{dist}(B, P G) .
$$

Now we prove parts (ii) and (iii). It is readily verified that $P G \subset F_{0}$ and the containment $P G \subset P F_{0}$ is obvious. Thus, we have $P G \subset F_{0} \cap P F_{0}$ and

$$
\operatorname{dist}(B, P G) \geqq \operatorname{dist}\left(\dot{B}, F_{0} \cap P F_{0}\right) \geqq \operatorname{dist}\left(B, F_{0}\right) .
$$

Since $\bar{F}_{0}=\bar{G}$ we know that

$$
\operatorname{dist}(B, G)=\operatorname{dist}\left(B, F_{0}\right)
$$

Now it follows that

$$
\operatorname{dist}\left(B, F_{0} \cap P F_{0}\right)=\operatorname{dist}\left(B, F_{0}\right)
$$

The proof of part (iii) is identical to the proof of part (ii).
The next lemma will provide the remaining facts necessary to implement our method of proof for the main result.

Lemma 2. Let S be a unilateral shift on H with multiplicity n (an integer) and let P denote the orthogonal projection $S S^{*}$. Then
(i) $S I_{n}=I_{0} \cap P I_{0}$, and
(ii) $S F_{n}=F_{0} \cap P F_{0}$.

Proof. Because S maps H isometrically onto $P H$ the deficiency of $S A$, for $A \in I_{n}$, is $(n+\operatorname{def} A)$ while nul $S A=$ nul A. Thus, $S A$ belongs to I_{0} and since $P S A=S A$ we see that $S A$ belongs to $P I_{0}$. Thus,

$$
S I_{n} \subset I_{0} \cap P I_{0}
$$

If the range of A is closed then the range of $S A$ is closed and

$$
S F_{n} \subset F_{0} \cap P F_{0}
$$

Take $B \in I_{0} \cap P I_{0}$ and let $A=S^{*} B$. Since $P B=B$, def B and nul B are not less than n. Because S^{*} maps $P H$ isometrically onto H, it follows that

$$
\operatorname{def} A=\operatorname{def}\left(S^{*} B\right)=\operatorname{def} B-n
$$

Since S is an isometry, we get

$$
\operatorname{nul} A=\operatorname{nul}(S A)=\operatorname{nul}\left(S S^{*} B\right)=\operatorname{nul} B
$$

and so

$$
, \text { ind } A=n \text { or } A \in I_{n}
$$

Clearly $S A=B$ and we have proved that

$$
S I_{n}=I_{0} \cap P I_{0}
$$

The argument in the preceding paragraph shows that if $B \in F_{0} \cap P F_{0}$ then $A \in F_{n}$ and consequently

$$
S F_{n}=F_{0} \cap P F_{0}
$$

3. Main results.

Theorem 3. Let A be an operator on H and let n represent an integer. If $A \nsubseteq I_{n}$ then
(i) $\operatorname{dist}\left(A, I_{n}\right)=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}$
(ii) $\operatorname{dist}\left(A, F_{n}\right)=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}$
(iii) $\operatorname{dist}\left(A, J_{n}\right)=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}$.

Proof of (i). Let n be a positive integer and let S be a unilateral shift on H with multiplicity of n. Let A be an operator belonging to I_{m} for $m \neq n$ and define B by $B=S A$. If π projects the ring of operators into the Calkin algebra then $\pi(S)$ is unitary. Regarding the Calkin algebra as an algebra of operators (as in Theorem 2 of [2]), we have

$$
\begin{aligned}
& m_{e}(A)=m(\pi(A))=m(\pi(B))=m_{e}(B) \\
& m_{e}\left(A^{*}\right)=\dot{m}\left(\pi\left(A^{*}\right)\right)=m\left(\pi\left(B^{*}\right)\right)=m_{e}\left(B^{*}\right)
\end{aligned}
$$

For $C \in I_{n}$ we have

$$
\|B-S C\|=\|S(A-C)\|=\|A-C\|
$$

and so by Lemma 2 we get

$$
\operatorname{dist}\left(B, I_{0} \cap P I_{0}\right)=\operatorname{dist}\left(A, I_{n}\right)
$$

According to Lemma 1 it follows that

$$
\operatorname{dist}\left(A, I_{n}\right)=\operatorname{dist}\left(B, I_{0}\right)
$$

Since $\bar{I}_{0}=\bar{G}$ we know that

$$
\operatorname{dist}\left(A, I_{n}\right)=\operatorname{dist}(B, G)=\max \left\{m_{e}(B), m_{e}\left(B^{*}\right)\right\}=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}
$$

In the formula for $\operatorname{dist}(B, G)$ we used Theorem 3 of [2]. We should note that ind $B=0$ is not possible since $A \in I_{m}$ for $m \neq n$ and the multiplicity of S is n.

Another way that $A \notin I_{n}$ can occur is for precisely one of the quantities nul A or $\operatorname{def} A$ to be infinite. In that case precisely one of the quantities nul B or def B is infinite and, consequently, ind B is not zero. The only remaining possibility for the occurrence of $A \nsubseteq I_{n}$ is that both nul A and $\operatorname{def} A$ are infinite. In this case it follows from Theorem 2 of [2] that $m_{e}(A)=0=m_{e}\left(A^{*}\right)$. Since A belongs to J_{0} and the closures of J_{0} and I_{0} coincide, we know that

$$
\operatorname{dist}\left(A, I_{0}\right)=\operatorname{dist}\left(A, J_{0}\right)=0=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\} .
$$

Recall that n is a positive integer. Let $\left\{f_{1}, f_{2}, \ldots\right\}$ be an orthonormal basis for $\operatorname{ker} A^{*}=(A H)^{\perp}$ and let the union of $\left\{g_{1}, \ldots, g_{n}\right\}$ and $\left\{e_{1}, e_{2}, \ldots\right\}$ be an orthonormal basis for $\operatorname{ker} A$. Define C to coincide with A on $(\operatorname{ker} A)^{\perp}$, to be zero on $\left\{g_{1}, \ldots, g_{n}\right\}$, and to send e_{j} to εf_{j} for $j=1,2, \ldots$. Clearly nul $C=n$, $\operatorname{def} C=0$ and $C \in I_{n}$. Since $\|A-C\|=\varepsilon$ we see that

$$
\operatorname{dist}\left(A, I_{n}\right)=0=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\} .
$$

We have now considered all instances of $A \nsubseteq I_{n}$ for n a positive integer.
If $n=0$ then the desired conclusion follows from the fact that $\bar{I}_{0}=\bar{G}$ and the formula in Theorem 3 of [2] provided ind $A \neq 0$. Our hypothesis that $A \notin I_{0}$ implies that either ind $A \neq 0$ or both nul A and $\operatorname{def} A$ are infinite. In the latter case the preceding paragraph showed that

$$
\operatorname{dist}\left(A, I_{0}\right)=\operatorname{dist}\left(A, J_{0}\right)=0=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}
$$

Thus, we have considered all instances of $A \nsubseteq I_{0}$.
For negative n we apply the preceding result to A^{*} and $I_{-n}^{*}=\left\{C^{*}: C \in I_{-n}\right\}=I_{n}$.
Proof of (ii). For ' $A \in I_{m}$ with $m \neq n$ and n a positive integer the differences in the proof are modest. We choose $C \in F_{n}$ rather than $C \in I_{n}$, we use part (ii) of Lemma 2 rather than part (i), we use part (ii) of Lemma 1 rather than part (iii), and we note that $\bar{F}_{0}=\bar{G}$. Again if precisely one of the quantities nul A and $\operatorname{def} A$ are infinite then the same is true for B and ind $B \neq 0$.

The case of nul $A=\infty=\operatorname{def} A$ is more complicated. In view of the construction given in the second paragraph of the proof of (i) the following will suffice. For any operator C such that $\operatorname{def} C=0$ and nul $C=n$ where n is a positive integer, we have
$\operatorname{dist}\left(C, F_{n}\right)=0$. Let $C=U R$ be the usual polar factorization for C and let $E()$ be the spectral measure for R. Define $R(\varepsilon)$ to coincide with R on $E([\varepsilon, \infty]) H$ and let it agree with εI on $E([0, \varepsilon)) H$. It is routine to see that $R(\varepsilon)$ is invertible and the kernel of $U R(\varepsilon)$ is $E(\{0\}) H=\operatorname{ker} R=\operatorname{ker} C$. (Recall that U sends $(R H)^{-}$isometrically onto (CH) ${ }^{-}$and ker $U=(R H)^{\perp}=\operatorname{ker} R$.) Clearly

$$
\|C-U R(\varepsilon)\| \leqq\|R-R(\varepsilon)\| \leqq 2 \varepsilon
$$

and $(U R(\varepsilon)) \in F_{n}$. We conclude that dist $\left(C, F_{n}\right)=0$ and it follows that dist $\left(A, F_{n}\right)=$ $=0=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}$.

If $n=0$ then the desired conclusion follows from the fact that $\bar{I}_{0}=\bar{F}_{0}$ and the formula has already been proved for $\operatorname{dist}\left(A, I_{0}\right)$.

Proof of (iii). Since $I_{n}=J_{n}$ for $n \neq 0$, this part follows from part (i) provided $n \neq 0$. Because the closures of J_{0} and I_{0} coincide we know that

$$
\operatorname{dist}\left(A, J_{0}\right)=\operatorname{dist}\left(A, I_{0}\right)=\max \left\{m_{e}(A), m_{e}\left(A^{*}\right)\right\}
$$

The following corollary is immediate from Theorem 3.
Corollary. For n an integer we have

$$
\bar{J}_{n}=\bar{I}_{n}=\bar{F}_{n} .
$$

Unfortunately this method does not help in computing the distance to the semiFredholm operators with indices ∞ or $-\infty$. Indeed, for any isometry S we have

$$
S I_{\infty} \cap I_{0}=\emptyset
$$

in sharp contrast to part (i) of Lemma 2.
The author is grateful to the referee who found an error in the original manuscript.

References

[1] C. Apostol, L. A., Fialkow, D. A. Herrero and D. Voiculescu, Approximation of Hilbert space operators, Vol. II, Pitman (Boston, 1984).
[2] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J., 30 (1981), 513-517.
[3] S. Izumino and Y. Kato, The closure of invertible operators on a Hilbert space, Acta Sci. Math., 49 (1985), 321-327.
[4] P. Y. WU, Approximation by invertible and noninvertible operators, J. Approx. Theory, to appear.
[5] J. Zemánek, Geometric interpretation of the essential minimum modulus, in: Invariant subspaces and other topics, Birkhäuser Verlag (Basel, 1982), pp. 225-227.

