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Kernels of generalized derivations

TONG YUSUN

The concept of generalized derivations is a natural generalization of the inner
derivations. In this paper, the kernels of the generalized derivations will be studied.
It will be proved that the kernels of generalized derivations of any order coincide
with each other for several special kinds of operators. An asymptotic form of this -
kind of results will be obtained and a related theorem concerning compact operators
will be given.

Let $ be a Hilbert space and B($) the Banach algebra of all linear bounded
operators in 9. For A4, BCB(9), the generalized derivation d,5 is defined by
d4p: B(H)~B(H),

m _ 8,5(X) = AX—XB.

Correspondingly, for any natural number n, the higher derivation 6% is

@ SHX) = go (= 1) (7] AXB*,

In the case A=B, we denote &%) by 6.

It is easily seen from the following discussion that all of the results in this paper
still hold if A and B are defined in two different Hilbert spaces, and sometimes we
shall deal with this case. But for brevity, we restrict our statement of theorems in
one Hilbert space.

Obviously, ker §,zcker 8%, for any 4,B¢B(9) and n=1. In general,
ker 8,p=ker 8. For example, :

[8 ?]Eker S\ Kker 6 4,
. 01
if A_[O O]'

Received April 3, 1987.



160 Tong Yusun

1. The well-known Fuglede—Putnam theorem asserts that if 4, B¢ B($) and
4, B are normal operators, then the pair (4, B) of operators has the following pro-
perty:
(FP) If AX=XB where X¢B(9), then A*X=XB*.

Theorem 1. Suppose that A, BEB(9), the pair (A, B) of operators has pro-
perty (FP), then
3) ker ¢} =kerd,s n=1,2, ...

Proof. It will suffice to show that ker 6% =ker ,5. Suppose that X¢ker 6%},
then
AX—XB¢rané gNkerd 5.

For any Y¢ker d 45, it follows from [7] that ran Y reduces 4, (ker Y)* reduces B, and
the restrictions Ajran ¥, B|(ker ¥Y)' are normal operators. Take two decomposi-
tions of §:

S =9 =ran¥®(ran¥)L, H;=9H = (kerY)L Dker?.

Then we get decompositions of operators respectively:
A1 0] [B1 0
B= 0 B,

where A,, B, are normal operators. For linear operators X, Y from $, into 9,
we have

X, Xz] Yo [Y1 0

~lx, x )’
It follows that A4,Y,—Y,B,=0 from AY— YB=[AIYIEYIB1 g] On the other
hand,
AX—XB-Y = [AIXI"XIBI_Y’ *]
* *

From [1] Theorem 1.5, it follows that
|AX—-XB-Y| = |4 X,—X, B, - 1| = [} = Y],

which implies that
ran 6ABnker 6AB = {0}.
Hence Xcker 6 ,5.

Corollary. Suppose that A, B¢ B($), and A, B* are hyponormal operators then
kerdQ) =kerd,; (n=1,2,..).
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Proof. In thls case, the pair (4, B) of operators has property (FP) [7]

Of course, property (FP) is not necessary for ker 5(") =ker 6,45. This. fact can
be shown.by the next theorem.
. Let {#(n)} be a sequence of- posmve numbers: We consnder the space H 2(,B)
of sequences f={f(n)} such that

1£12 = Z 1 ()R (m)2.
H?2(p) is a Hilbert space with the inner product

(f, 8) = 3 fmgm By

We use the notation f(z)= 3 f(n)z" for fe H*(B). Let fi(n)=8,;. Conseqeuently,
fi(2=z" and | £l =B(k). Now consider the linear operator M, of multiplication
by z on §: . o
' , (M. f)(2) = 5 f(m) "+
If sup B(k+1)B(k) 1< +oe, then M, is bounded [6].

Theorem 2. Suppose that there exist positive constants ¢, ¢, such that o<
<B(k)<c,, k=0,1,2,..., then

4) kero{p =kerdy,, n=12,... _
Proof. It will suffice to prove (4) for n=2. Assume that Xckerd(, ie.
M. (M, X—~XM,) = (M. X—XM,)M..
Since the commutant of M, is H*(f), so there exists pcH>(f), such that
(5) M.X—XM, = M, ,
Denote y=Xf,c H(). It follows from (5) that M—Xfi=M, f;, ie.
Xfh=My—M,f.
By induction, we obtain.
‘ Xfo =My —nM,f,_,,
which im plies
© 1XFl = nl| M fo-al - MY
Write |//=2’$(k)z" o=2¢(k)z*, then
M, fo-ll? = 3 Blk+n—12p(k) = (01/02)2”(0”2
IMzy2 = 3 Bk +nRlf (k) = (6‘2/01)2Il¢|12
Hence ||=0 by (6). In other words, by (5),
M. X—XM,=0, ie. Xekerdy,.

1
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M, is the unilateral shift if f(n)=1 for all n. In this case, the pair (M,, M,)
does not possess property (FP), since the commutant of unilateral shift is the set of
all analytic Toeplitz operators, and the adjoint operator of an analytic Toeplitz
operator is no longer the same kind of operators.

By K(9) we denote the set of all compact operators on $.

Theorem 3. Suppose that A, BEB(S), |Ax|=|x|=|Bx|l hold for all xc$.
Then ‘

W) ker 6¢3NK(9) = kerd,zNK(H), n=1,2,....
To prove this theorem, we should establish a lemma.

Lemma 1 Under the conditions of theorem 3, if YEK(D) and AY=YB, then
ran Y reduces A, (ker Y)J- reduces B, and Alran Y, B\(ker Y)L are unitary operators.

Proof. Suppose that the polar decomposmon of Yis Y=UP where ker Y=
=ker P. Then :
U *A UP—PB = 0.

Denote the spectral representation of P by P=_}a;P; where a,>a,>...>a,>...
are non-zero eigenvalues of P, P,H=ker (P—a,J]). We claim that P,H re-
duce B, and B|P;$ are unitary operators.

Take x€P,$. Then we have

layxl® = layUxl]® = lla, AUx|}* = || 3 ¢, AUPx|[* = | AUPx|* = | PBx|* =
= |2 aP.Bx|}* = a}||Bx||* = a}||x]%

It is easily seen that the above estlmation's hold if and only if Bx€ P, $, and ||Bx|[=
=[x||. Since dim P,$H<<, so B|P,$ is a unitary operator. In this case, from

(U*AUP-PB)|B,$ =0

we get U*AU|P,H=B|P,9H, hence U*AU|P,$ is unitary. Repeating the same
arguement, we get the same conclusion for P,$. By induction, it can be seen that
(ker P)L =(ker Y)* reduces U*AU and B, U*AU|(ker Y)* =B|(ker Y)* is a unitary
operator. However, U is a unitary operator from (ker ¥Y) onto ran Y, thus ran ¥
reduces A4, and Ajran ¥ is a unitary operator, too.

Proof of Theorem 3. It will suffice to prove that Xcker §,; for any
Xcker SBNK(H). In fact, from Lemma 1 and

A(AX—XB) = (AX—XB)B

it can be seen that 4,=A|P,$, B,=B|P,$ are unitary operators where P,, P, are
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projections from £ onto- ran (AX — XB), (ker (4X— XB))l respectively. Moreover,
1t can be easﬂy seen that

‘f)al(PlXPz) = 0fX) =
Thus from the corollary of Theoremn 1, weé obtain
048(X) = 84,5, (AXF) = 0.
Corollary 1. Under rh;'z conditions of Theorem 3,
8) “ker SSYNK(H) = ker 55, NK(9), n=1,2, ...

Proof. Since 47! exists and it is a contraction, the adjoint operator of a con-
traction is still a contraction, so

lA*xl = llx(l, 18] = [
hold for all x¢$. It 'fv<_)lvlows from Theorem. 3 that
ker 6. NK(H) = ker 8 +5:NK(D).

We note that the set of all the ad]omt elements of ker 53’23* is ker 63%. Therefore
(8) holds. : '

Corollgry 2. Suppose that A, BeB(9), A is invertible and ||AY||B||=1.

then
ker 693 NK(S) = ker 8,,NK(S), ker 60 NK(S) = ker 55, NK($)
hold for n=1,2, ....
Proof. ‘Consider the operators
A= 1B]~*4, B = [1B]~'B.

We have || Ax]=|x|, |Bxll=|x|| forall x€¢$. From the above theorem and Corol-
lary 1, we come to the conclusion.

2. The Fuglede theorem tells us that if N is a normal operator, S is a Borel set
in the plane, then Xckerdy implies Xcker Or(sy» where E(S) is the spectral
projection of N corresponding to S. Does the asymptotic form of this theorem still
hold? In other words, if NX—XN is “small”, is E(S)X—XE(S) “small”? [2]
showed the answer is “‘no” for the norm topology, by constructing a normal oper-
ator N, a Borel set S and a sequence {X,} for which ||X,||=1 for all », and |NX,—
-X,N|-0 but |E(S)X,—X,E(S)|=1 for all n. However, we shall show that
the answer is “‘yes” for the strong operator topology and weak operator topology.
This is the following theorem.

11*
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Theorem 4. Let NcB(H) be a normal operator, S be a Borel set in the plane,
%Y C B(9) be a neighborhood of 0 with repect to the strong (weak) operator topology,
K=0, n be a natural number. Then there exists a neighborhood ¥ of 0 with respect to
the same topology such that

Opsy(X)eu
if 1X|<K, and 8§ (X)eV¥.

Proof. First, we assume that n=1. It follows from a computation that

k—1
O] N*X—XN*= 3 N*'-{(NX—XN)N'
. i=0
(10) N¥X—-XN* = 2 NH-1-{(N*X— XN*)N*
-i=0

bold for any k, I. Multiply N*! from the left to the both sides of (9), and N* from the
right to the both sides of (10), add these results, we obtain

NkN*lX_XNkN*I — N*IZ' Nk-—l—i(NX_XN)Ni_I_Z N*l—l—i(N*X_XN*)N*iNk

since N is normal. Thus for bivariable polynomial p(z, )= Ja,z*Z, we have
(11) [X, p(N, N*)] = |
= 2 ay(> N¥N*"i(NX—XN)N'+ 3 N*-1-i{(N*X— XN*) N*N¥),
k, i i

where we use the notation [A4, Bj]=AB—BA for brevity. Since the addition of
operators is continuous and the multiplication is separately continuous with respect
to strong (weak) operator topology, it follows from (11) that there exists a neigh-
borhood ¥4, such that [X,p(N, N*)]e% if [X,N]e¥ and [X, N*]c¥.

For ¥, it follows from asymptotic Fuglede—Putnam theorem [5], that there
exists a neighborhood ¥ C¥; such that [X, N*}cy; if |X II <K, [X, Niev .
In this case, clearly

[X, p(N, N¥))e.

Since the set of all p(N, N*) is dense in the w*-algebra generated by N with respect
to the strong operator topology, we obtain the desired conclusion for n=1.
For general n, take K;=>0 such that

18R EDX) =K,y k=1,...,n—1

for all [ X[ <K. Take %,c% such that SEP(X)e if 8% (X)eU,.
Now, take ¥; (i=0,1,...,n) as follows:

Yo =%, Ops(X)E¥; if ||X| =K,
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and Oy(X)€¥,,. Denote ¥'=¥,. If l[X!|<K and 69 (X)c¥;, then
355)0% (X)€Y, -,. But E(S)N= NE(S),

o5~ 1)55(5)()() = 5E(S)5(" 1)(X)€"V
By induction, we get :
N E(S)(X)E%o-‘
It is easily seen that

Srs)(X) = 88%(X)eUy %, for odd n,
and ‘ _
Sps)(X) = 6FEN(X) < %, for even n.

Corollary. Let NcB(9) be a normal operator, K=0, n be natural number
% B(®) be a neighborhood of 0 with respect to the strong (weak) operator topology.
Then there exists a neighborhood ¥~ with respect to the same topology such that
W(X)EU if |X|<K and 8(X)eV . : ®

Proof. First, take a neighborhood #; of O such that %, +%,c%. Take a

m
partition of o(N): o(N)=J o;, where g; are some disjoint Borel sets satisfying
i=1

Oy (X)— 0y, (X)e,

if |X||<K, where Ny=2c;E(s;), ¢;€0;. Then for fixed N,, using Theorem 4, we
can get a neighborhood ¥~ of O such that dy (X)€% if |X|<K, 6((X)e¥.

Hence . )
Oy (X) = 8y, (X)—(6n(X)— by, (X))

if 1X|<K, of)(X)e7.

3. Now, we generalized some results in Section 1 to an asymptotic form. First
we should show that the corollary of Theorem 4 is still hold with respect to the norm

topology.

Lemma 2. Let N¢B(9) be a normal operator, K=>0, n be a natural number.
Then for any =0, there exists n=>0 such that {|6y(X)|<e if | X|<K, |69 (X)|<n.

Proof. Take a partmon of a(N) by a finite number of straight lines whxch are
parallel to x-axis or y-ax1s o(N)= U 6;, where o, are dlSjOlnt each other such
that :

(12) 68, (X)— 65 (Xl < &/2
for | X||=K, where N,=2 c;E(6;), c;€0o;, and
(13) 4 < g/36K
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where A=max diam ;. Denote N;=NE(c), we have
' 5P (X) = [0, (X,
where X;;=E(0;)XE(o)).
(14 O, (X) = [(ci—c) X5l = [(ci— ) Xijli+ (i — ) Xijhas

where the non-zero elements in [ ], are those corresponding to o(N)No(N;)=0.
First, consider [(c;—c;)X;];. Since 52'3,\,] is invertible if o(N)No(N)=0,
[3], so we can take n>0 such that .

(15) n < (¢/4m") min {lei—c;l 168, ||_1|0(N)OG(N ) =0}

Obvioﬁsly, 105w (Xl <n if [Ié(")(X W=<n. It follows from (15) that
lI(e;—e) Xyl = le;—c 1108l |l5$r,~, = lei—cillofvHin < 8/4"‘12

if 8@X)| <1 Thus in this case

(16) l(c;— ) Xihll < e/4.

Next, consider [(c;— J) :j12. We claim that .. ]2|[<s/4 In fact for any f€9,
\fll=1, f=2f; where fi=E(o)f, we have

Ie=epXilof I* = Za | Saeie Xy £l = Za 3l WX 1L*
For each fixed j, the number of i satisfying ¢;No;=@ doesn’t exceed nine. Hence
each f; appears in Zz 22 at most nine times. Smce | X; |]<||X <K, and |¢;—c;|<
<24 in this sum, therefore
Ii(ci=—e) Xyl fII* = 9(243K* > llf, [2 = 364*K* < 82/42
by (13). Thus :
an (c:i—ep) Xyjlall < €/4.

From (1'4), (16)’, (17) we obtain '|]5N1(X)||<s/2. Using (12), vwe.get’us,,, X)) <e
if |X]<K and [6®(X)|<n.

Lemma 3. Let N;, N, be normal operators, K=0, n be a natural number
U< B(D) be aneighborhood of 0 wi ith respect to the norm topology (or strong operator
topology, weak operator topology). Then there exists a neighborhood ¥~ of 0 with
respect to the same topology such that :

(18) Onn (X)EU
if |XlI<K and 8§, (X)c¥.



Kernels of generalized derivations 167

Proof. Using Putnam’s technique, consider the normal opefator N= [A(;I

on H9H. Denote

- {5

X, X4 X,-'E”Zl}.

Ais a neighborhood of 0 in B(9 6955) From Lemma 2 and the corollary of Theorem
4, it follows that there exists a neighborhood ¥ of 0'such that Oy(X )6021 if ||X <K

and 5‘"’(X)E"If Define
el e}

It XEB(sj) satisﬁes ”X”<K’ ég'sz(X)gf, then for )?=[g 1(‘()’] we have [[X| <K,

)
0 6Py

and 89 (F)= [ ,(X)]G,;_ In this case

' o~ '— 0 5N1N2(X)] ~
3(X) = [0 o i
* which implies dy 5 (X)E%.

Theorem 5. Let ‘A, B*¢B(9) be subnormal operators, K=0, n be a natural
number, % be a neighborhood of 0 with respect to the norm topology (or strong opera-
tor topology, weak operator topology), then there exists a neighborhood ¥ of O with
respect to the same topology such that §,p5(X)EU if |X|<K and 8W(X)e?.

Proof. With no loss of generality, we may assume that the normal dilations of
A and B* are :

. 4 AI] " B*_Bl]
4=1o 4> F=lo Bl

X X,
X3 X4

of 0, such that 8, ;5(£)€4 if |Xl<K and 8%)(£)e¥ Denote '~/f={X| [“(;'8]@7},
then "/f cB($) is a neighborhood of 0. For |X| <K, 6%(1\’_)?//,' cor_iside_f
'X— ] We have [|f[|<K ‘and ' ‘ | |

5(n) (f) [5AB(X) O]E‘V

Denote % ={ X, ,E“Il}. Then, by Lemma 3, there exists a heighborhood 2 '
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thprefore
8:5(X) = [5“()() O]EJZI

O45(X)EX.

which implies

From Theorem 5, we can rewrite the asymptotic Fuglede—Putnam theorem
[4], [5] as follows.

Corollary. Let A, B*¢B($) be subnormal operators, K>0, n, m be two natural
numbers, U CB(9) be a neighborhood of 0 with respect to the norm topology (or
strong operator topology, weak operator topology), then there exists a neighborhood ¥
of O with respect to the same topology, such that

M (X)U if |X||<K and &N(X)eV:

4. At last, we ‘study the case when the generalized derivations are compact
operators.

Theorem 6. Let N, M€B(S) be normal operators, Xc B(9), n be a natural -
number, & (X) be a compact operator. Then Sy (X) is a compact operator.

Proof. First we assume that N=M. Suppose that {£,}< 9, | /]=1, w-limf,=
=0, We shall prove that s-lim dy(X)f,=0

Let ¢=0 be an arbitrary fixed positive number. Similar to the proof of Lemma 2,
make a partition of ¢(N) by a finite number of straight lines which are parallel to

x-axis or y-axis, o(N)= O o;, where o; are disjoint each other, such that
. i=1
(19) ’ |08 (X) =6y, (X))l < &/2
where N,=2 ¢;E(0;), c€0;, and
(20) 4 < ¢/24] X|)
- where A=m?x diam o;. Denote N,=NE(s;), X;;=E(0,)XE(s;). We have
@n X)) = [68n,(X:))
(22)
O, (X)fe = l(e;—c) Xl fe = > (01—Cj)X1jf;{, s 2 (cn“cj)anfJ{) =fathe

where fl=E(o ')j;, Jiu 1s the element each of its components is the sum of the terms
corresponding to a(N)N o(N;)=0.
By >, we denote the sum corresponding to ﬁz Apparently

fiell® = ;z ”1212 (ci_cj)Xijﬁuz = .Z'z %’2 Ici_cjlzllXijllzuﬁuz‘
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Since each f;/ appears at most nine times in the sum of the right side, so we get

23 [ fiell® = 9-4- 42| X||? < (e/4)
by (20).

Now, let us consider f;,. We note that all of the 5‘") (X;;) are compact since
8 (X) is compact. Besides, all of the 61,, ~, Which relate to ﬁd are invertible since
o(N)Na(N;)=9 in this case. Thus for these X X 5,‘;')1,,115"‘ (X;;) are com-
pact operators. From the structure of £, it follows that there ex1sts K, such that
249 I fall < /4
for k=K. Therefore, from (19), (22), (23), (24), we obtain

I65(Xf) <e if k=K.

In general, N and M are two different normal operators. Similar to the proof of
Lemma 3, consider the operators

ou ¥=loo
59(%) = [o 50 (X)]

is a compact operator, it follows from what has been proved for the case N=M that

- [ 1)

By the hypothesis,

is compact, S0 is dyp(X).
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