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Notes on tolerance relations of lattices 

G. GRATZER and | G. H. WENZEL | *) 

0. Introduction 

A tolerance relation 0 on a lattice L is a reflexive and symmetric binary rela-
tion satisfying the substitution property. In 1982, G . C Z E D L I [1] proved that, for a 
lattice L and a tolerance relation 0, the maximal 0-connected subsets of L form 
a lattice. He considered lattices as algebras of type (2, 2) and gave an algebraic 
proof. In Section 1, we investigate tolerances from the point of view of partial 
ordering in detail; in particular, we give an order-theoretical proof of Czedli's result. 
Our proof avoids Zorn's axiom needed by Czedli. Some results on 0-block fixing 
sets and consequences thereof are added. 

Tolerances can be viewed as quotients of congruences in a natural way. Using 
this fact, we extend the Second Isomorphism Theorem from congruences to tolerance 
relations in Section 2. In connection with the extended Second Isomorphism Theo-
rem, a question on the product of lattice varieties arises naturally. In Section 3 
we answer it partially and illustrate the situation with examples. 

1. The lattice L/0 

For concepts and notations not defined in this paper, see G . G R A T Z E R [ 3 ] . 

Let L=(L; s ) be a lattice and 0 a tolerance relation on L. x0y (x,y£L) 
denotes, as usual, that (x, y)£Q holds; also, (H1, H2QL) denotes that 
xOy holds for every x£H1, y£H2. The following two lemmata are useful in 
many situations. 

Lemma 1. Let x^x' and y=y' be elements of L with x'&x, y'Qy, x0y', 
y0x'. Then (x'\Jy')6(xAy). ' 

*) The research of both authors was supported by the NSFRC of Canada. 
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Proof . xQy', xOx' imply that x<9(x'V/). Similarly, yQ{x'\Jy') holds. 
Thus, (xAy)6(x,yy'). 

Lemma 2 .Let x, y, x',y' be elements of L with x6x', y0y' and x, y S 
Sx'A/. Then x&y and x'Qy'. 

Diagram 1 

:o v' 

Diagram 2 
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Proof , x&x', yQy' imply that ( X V J O 0 ( X ' V / ) . From X V . Y S I X ' , y'^x'Vy', 
we conclude that x'Qy'. The other assertion follows analogously. 

We use the following notations and terminology. A subset H of L is called 
©-connected if xQy holds for all x, y£H. If H is an arbitrary subset of L, then 
we define Cw :={x£L; x0h for all h£H}. CH is either empty or it is a convex 
sublattice of L. C„ is not necessarily ©-connected. We further define 

(H]:= x ^ h for some h£H) and [H):= {x6L; x S h for some h£H). 

Finally, H0:=C,,r}(H] and He:=CHf][H). 

Lemma 3. Let H be a subset of the lattice L. 
(1) HB is a ©-connected, convex, A-closed subset of L. If H is upward directed, 

then H0 is either empty or it is a sublattice of L. 
(2) He is a ©-connected, convex, V -closed subset of L. If H is downward directed, 

then H9 is either empty or it is a sublattice of L. 

Proof . We only prove (1). H0 is clearly convex and A-closed. To show-that 
it is ©-connected, let x,y£H0. There are x',y'£H with x^x', ySy', x&x', 
y©x', x©y', yQy'. By Lemma 1, x©y. If H is upward directed, we can choose 
x'=y' and obtain x V j ^ x ' , hence x\/y£(H]. Since x\/y£C„ is clear, we get 
xVy£He. 

Lemma 4. Let H be a ©-connected subset of L. 
(1) (H°f=H* and (He)e=H0. 
(2) H^HeQ(He)e=((Hg)e)e = ... , and (He)e is a ©-connected, convex sub-

lattice of L, if H7±0. 

Proof . (1) is clear. As to (2): Lemma 3 yields that H<gH e Q(H 0 f Q{(H ef)e• 
Let x£{(He)e)e. Then x^y^uSv for some y£(H0)0, u£H0 and v£H. We 
claim that xAu£He. Indeed, clearly, -xAu^v, hence xA«€(//]. If h£H, then 
x©h. Together with uQh we get (xAu)6h ; hence, xAu£CH and xAu£H0, 
as claimed. Now x€ [He) fl CH&—(He)°, and the first part of (2) has been proved. 
He is ©-connected and A-closed, by Lemma 3. Hence, again by Lemma 3, (HB)0 

is a ©-connected, convex sublattice of L. 

The significance of (He)e comes from the next lemma. 

Lemma 5. Let X be a subset of L. The following two statements are equivalent: 
(1) X is a maximal ©-connected subset of L. 
(2) X=(He)9 for some non-empty ©-connected HQL. 

Proof . (1) implies (2) follows by taking H=X and by Lemma 4. In order to 
prove that (2) implies (1), we choose u£L with u©(H0)e. For every xg(.H0)e , 

l* 



232 G. Gratzer and G. H. Wenzel 

we get uf\xi{{He)9)0. From u0((Ho)e)e, we get ui(({He)9)e)e={He)9. Hence, 
( H g ) e is a maximal ©-connected subset of L. 

In view of the last lemma, we call subsets of the form ( H e f o r ©-connected 
subsets H of L Q-blocks of L. The ©-blocks are convex sublattices of L. They enjoy 
a useful property with respect to two natural preorderings on L. In order to prove 
it, we use the next trivial lemma. 

Lemma 6. For A,BQL, define 

AVB := {aVb; a£A, b£B} 
and 

AAB := {aNb\ a£A, b£B}. 

If A and B are G-connected, then so are AVB and AAB. 

Def in i t i on 1. For A,BQL we define the following three binary relations: 
(1) Ao^B:o For all b£B there is an a£A with a^b. 
(2) A^oB:o For all a£A there is a b£B with osfc. 
(3) A ^ B : o A o ^ B and A^oB. 
In general, the relations go and og are distinct. On convex subsets of L, 

the relation s is a partial ordering. For ©-blocks, the three relations coincide: 

Lemma 7. If A, B are 0-blocks of L, then AosB, A^oB, and AsB are 
equivalent. 

Proof . Assume that A^oB, i.e., for every a£A, there is a b£B with o s i . 
Hence, a=a/\b£AAB. Thus, AQAAB. Since AAB is ©-connected by Lemma6 
and A is a maximal ©-connected subset of L, we conclude that A—AAB. Hence, 
if b£B is given, then bAa£A for all a£A. Thus, Ao^B. The converse is anal-
ogous. 

Theorem 1 (see G . CZEDLI [ 1 ] ) . If 0 is a tolerance on the lattice L, then L/0, 
the set of 0-blocks, forms a lattice with respect to the ordering =. In addition, we 
have AVB=(AVB)0 and AAB=(AAB)6, for all A,B£L/0. 

Proof . We prove that AVB exists and equals (AVB)0; the second formula 
follows by duality. If C^A,B for a ©-block C, then trivially C^oAVB, hence 
C^o(AVB)0. Assuming that (AVB)0 has been shown to be a ©-block, we are 
finished, since then C^(AVB)0 and, hence, (AVB)e=A\JB. 

Since (AVB)0 is ©-connected, we only have to show that (AVB)0 is a maxi-
mal ©-connected set. Let D^(AVB)0 be a ©-connected subset of L. By Lemma 6, 
DAA and DAB are ©-connected sets. Since AVB QD, we obtain A^DAA 
and BQDAB and, hence, A=DAA, B=DAB. For d£D, a£A, b£B, we get 
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dhaiA, dhb£B and d^(dha)V(dAb)£AVB. Now d&D implies that d&(AVB), 
hence d£(AVB)9. Thus, D=(AVB)9, as claimed. 

The description of AVB and AAB in Theorem 1 can be generalized. 

R e m a r k to T h e o r e m 1. If Alt A2, •••,An are ©-blocks, then 

AVAV...VVA = (A1VA2V...VAn)9 

and 
ALAA2A...AA„ = (A1AAZA...AA„)0. 

P r o o f . By induction on n. For n=1, 2 we know the result. For « ^ 3 we obtain 

A1Y...VAN_1WAN = ((A1V...VAN_1)VAN)9 = 

((A1V...VAn_1)eVA„)e (by the induction hypothesis) £ (A1V...VAn_1VAn)e. 

The maximality of A1V...VA„ implies then that AIV ...VAn=(A1V...VAn)9. The 
second assertion follows by duality. 

We add a few observations. If H*=L is a non-empty, ©-connected subset 
of L, then both (H0)e and (He)e are ©-blocks containing H. As the next lemma 
shows, the first block is the smallest and the second block is the largest ©-block 
containing H. 

L e m m a 8. Let HQL be a non-empty, ©-connected set. 
(1) If D^H is a ©-connectedsubset of L, then H9VDQH9 and HEADQH0. 
(2) If D is a ©-block with D^H, then (HE)ESD^(H9)E. 

Proo f . (1) Let x£H9VD, i.e., x=z\/d for some z£H9 and d£D. Then 
we have x^z^y for some y£H and x©H (since z©H and d@H hold true). 
Thus, x£H9, and so H0VDQHE. The proof of HEADQHG is analogous. 

(2) DQDA(H9VD)QDAH9QDA(H9)E implies that D=DA{HE)E, i.e., 
Dis(H9)0. DQDV(HEAD)QDVHEQDV(HE)9 impl ies D=DV(HE)9, i.e., 
D = (Hef-

D e f i n i t i o n 2. IfZ, is a lattice and ©is a tolerance on L, then we call a ©-con-
nected subset H of L a ©-block fixing set if there exists exactly one ©-block D with 
HQD. 

Examples . 1. If A1,...,A„ are ©-blocks, then A1V...VA„ and A1A...AA„ 
are ©-block fixing sets. 

P r o o f . Let D^A1V...VAa be a ©-block, then D^A^...\/An=(A1V...VAn)9 

holds. If den, then dQ{AxV...VA^ and there are a£A, with Jso1V...Vfl„; 
thus,i/€(^iV...V^„)e . We obtain D<g(Ay...VAn)e and therefore D=AlV...VAn. 
A dual argument shows that Aj^A.-.AA,, is a ©-block fixing set. 
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2. If A, B, C are 0-blocks, then (AVB)AC is not, in general, a ©-block 
fixing set. The following example illustrates the claim: The 8-element-lattice L of 
diagram 3 has a tolerance 0 which is given by the five ©-blocks A, B, C, D, E. 
Obviously, ( A V B ) \ C = { y } , but {7} is not a ©-block fixing set. 

Diagram 3 

3. If HQL is a ©-connected set, then H6 and He are ©-block fixing sets. 

P roo f . If D^H9 is a ©-block, then (H0)0=((He)e)e^D^((Hef)0= 
=(H0)e, by Lemma 8; thus, D=(He)0, and H0 is a ©-block fixing set. Dually, 
H0 is a ©-block fixing set as well. 

Theorem 2. If HQL is a © -connected set, then the following two statements 
are equivalent: 

(1) H is a 0-block fixing set. 

(2) (H0)0=(H0)e. 

Proof . (1) clearly implies (2), and Lemma 8 shows that (2) implies (1). 

For HQL, let [H] denote the sublattice of L generated by H. 

Lemma 9. Let © be a tolerance on the lattice L. (1) X,YQL and X^oYQ[X] imply XeQYe. 
(2) If X, Y are ©-connected subsets of L with XeQY0, then (X0)e — (Y0)e. 

Proof . (1) Choose a£X0. Then a©X holds and there is some xdX with 
a^x. We choose y£Y with xSy, hence a^y. aQX implies a©[X]; thus, 
we have a©Y. We conclude a£Y0. 

(2) X0 and Y0 are ©-block fixing sets (see Example 3 preceeding Theorem 2). 
Because of XeQ(X0)e and XeQ(Y0)0 we conclude (X0)e=(Y0)e. 

Lemma 9 is the crux of the next theorem. 

Theorem 3 . Let L be a lattice and A R = { X 1 , . . . , xn}^L, M € N , a ©-connected 
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finite subset of L. Then (Ze)e=({x1V...Vx„}e)s. (In words: All finitely generated 
0-blocks are principal 0-blocks.) 

P roof . By Lemma 9, I g o foV... V*„}i[X] implies X ^ f a V ...V xn}9\ 
thus, (Are)e=({*iV...V*1I}e)®-

2. Quotients of tolerances and the Second Isomorphism Theorem 

Let L be a lattice, Con L the lattice of congruences on L and Tol L the lattice 
of tolerances on L. If 0 and <P are tolerances on L, then we define the binary rela-
tion 0/0 on L/i> as follows: A0/<PB holds if and only if there are a£A, b£B 
with a&b. If 0 and $ are congruences and then 0/<P is a congruence on 
Lj<P, and the well-known Second Isomorphism Theorem states that Lj& = 
s(£,/$)/(0/<P) holds. In general, 0/4> is only tolerance on L/<P. We will show 
that every tolerance on an arbitrary lattice L' is of the form 0 / $ for congruences 
0 and $ on a suitable lattice L. 

Thus, let L' be a lattice and let 0' be a tolerance relation on L'. We define the 
lattice L as sublattice of the direct product L'x(L'/&') on the carrier set 
L\={(a, A); A£L'/0' and a£A}. If T^: L - Z / and TC2: L - L ' / © ' are the restric-
tions of the two canonical projections from *L'x(L'/0') onto L' and L'/0', resp., 
then Tii and n2 are lattice epimorphisms. We define 0 :=kernel (n2) and 
$:=kernel (%). The homomorphism theorem yields L/<£=L', and the corre-
sponding isomorphism identifies a£L' with tcf Under this identification 
we get that L'=LI<P and 

Def in i t i on 3. Let L' be a lattice and 0' a tolerance on L'. The lattice L and 
the congruences 0 , <P just constructed are called the lattice, resp. the congruences 
associated with (L', 0'). 

We summarize: 

Theorem 4. Let L' be a lattice, 0' a tolerance on L'. Let L be the lattice and 
0, <P the congruences associated with (L\ 0'). The canonical identification makes 
the following two statements true: 
(i) L/<f> = L', (ii) 0\$ = ©'. 

In case of a congruence 0 ' , we get 4>=co, L—L', and 0 = 0' in Theorem 4. 
In case of a tolerance 0 ' we have no natural correspondence between L / 0 and 
(L/<P)/(0/$), but a suitable modification yields a generalized version of the Second 
Isomorphism Theorem. In order to derive the result, we find another way of inter-
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preting a tolerance 0 ' on a lattice L'. This interpretation associates 0 ' on L' with 
<Po0o<P on L. 

Lemma 10. Let L be a lattice and 6, $ tolerances on L. Then the following 
are true: 

$O0O$GTO1L, 0 g ( f o 0 o ( f , and <Po0o$/<P = 0/$£TolL/<P. 

Example . Quite different from situation for congruences, not every tolerance 
0 on a lattice L is of the form $o2o<f for suitable tolerances i>, S. E.g., the 
tolerance 0 on the lattice L of Diagram 3 is not of that kind. 

T h e o r e m 5 (The Second Isomorphism Theorem). Let Lbe a lattice, i>£Con L, 
and 0£Tol L. Then 

L/(Po0o(p s (LI<P)l(0l<P) = (L/<P)/(<Po0o<P/<P). 

Proo f . Define L':—L/4>, 0':=0[<P, and let n: Z,—L' be the natural projec-
tion. If we extend n to the respective powersets in the canonical way, then we obtain 
the mapping n: Pot (£.)—Pot (L') and, by restriction, n: L/<Po0o Pot (£')• 

(i) Claim. A£L/$o0o$ implies that n(A)eL'/0'. 

Some 6-block 

Assume that a $ o 0 o # , i.e., a<Px0y<Pb for suitable ye[b]<P (a, beL). 
By the definition of 0 ' , we get ([a] <£)©'([£>] Thus, it (A) is ©'-connected. To 
show the maximality of S(A) with respect to ©'-connectedness, let [x] <P£L' be an 
element with ([x] <P) ©'([«] <P) for all a£ A. Thus, for every ad A, there are ele-
ments, x,e[x]$, a'6 [a]<P with x'0a'. We conclude that x<Px'0a'<Pa, i.e., 
x$o0o$a, and, hence, x<Po0o <PA. We deduce that x£A and, hence, [x] 71(A). 
Thus, n(A) is a ©'-block. 1 

(ii) Claim. AdL'tQ' implies that n~1(A)eL/<Po0o<P. 
Let A:=7t_1(y4). Clearly, n(A)=A. Choose a, be A arbitrarily. Then 

[a]<P, [b]$eA implies that ([a] 4>) ©'([*>] <P); thus, a$x0y$b holds for suitable 
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[a] i>, y£[b] <t>, i.e., we have a&oQo <Pb. Thus, A is <Po0o (^-connected. We 
embed A in some <£o0o$-block A* and obtain fi(A)=AQn(A*). Since A and, 
by (i), n(A*) are ©'-blocks, we obtain A=n(A*) and, hence, A*gS - 1( /4)=A. 
Thus, A=A*. 

(i), (ii) and the surjectivity of n immediately imply (iii) and (iv) below. 
(iii) 7i_1(rc(A))=A holds for all $o0o<Z>-blocks A of L. 
(iv) n(n^(A^A holds for all ©'-blocks A of L'. 
(v) Statements (i) to (iv) prove that the restriction n: L/<Po0o 4>-~L'/&' is 

a bijection. Finally, we show that n is even a lattice-homomorphism: n~1(A') = 
= {a£L\ [a]$£A} holds for every AeL'/&'. If, therefore, A,B£L'/0' are arbi-
trarily chosen, then we get: 

n-^AWB) = {x£L\ [x]<i>iAVB) i 

=?{aV6; a,b£L and [a\d>iA, [b]$eB} = n^iA^n^iB). 

The last set is a $o0o$-block fixing set. Thus, there is exactly one <f>o 0o <f>-
block of L containing n~1(A)Vfi~1(B), namely ii~1(A)Vn~~1(B). Thus, we proved 
that n-1(A\/B) = n-1(A)Vn-1(B) holds.' Similarly, n-1(A/\B) = n-1(A)An-1(B) 
holds. 

3. Products of lattice varieties 

If V and W are two varieties of lattices, then the product VoW consists of 
all lattices L for which there is some congruence © satisfying the following two 
properties : 

(i) All ©-blocks of L are in V, 
(ii) L/06W. 

We combine these two conditions by saying that 0 establishes that L is in VoW. 
G . G R A T Z E R and D . K E L L Y [6] give an overview of these variety products. 

VoW is not, in general, a variety. However, one knows that the variety generated 
by VoW is H(VoW), the class of all holomorphic images of lattices in VoW. 
R. N. McKenzie conjectured that the variety H(VoW) can be characterized as 
follows: "A lattice L' is contained in H(VoW) if and only if there is a tolerance 
0 ' on L' such that all ©'-blocks of L? are in V and !//©'£W." The next theorem 
answers one direction of the conjecture in the affirmative. 

Theorem 6. Let V and W be varieties of lattices. Let L' be a lattice with a 
tolerance 0' that satisfies the following two properties: 

(i) All ©'-blocks are in V, 
(ii) L7©'€W. 

Then L'eH(VoW). 
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Proof . Let L be the lattice and let 0, <P be the congruences associated with 
(1/, ©'). Of course, 0C\d>=co and L /OsL ' /© ' . Thus, £,/©£W. If L-U 
and 7i2: L-*L'/0' are the projections yielding and 0, then the ©-blocks of L 
are of the form i t f o r fixed Ao£L'/0'. n^1(A0)= {(a, A0); a£A0}siA0 shows 
that n ' ^AoXV holds. Thus, 0 establishes that L€VoW. The projection n1 yields 
L '€H(L) iH(VoW). 

In order to tackle the opposite direction of the above conjecture, we begin 
with some fixed lattice L'CH(VoW). L'£H(Vo\V) means L's=L/<P for some 
L£VoW and a suitable congruence <P on L. Z.6 Vo W is established by some con-
gruence 0 on £ . Then © ' : = © / $ is a tolerance on L', and McKenzie's conjecture 
seems to be based on the hope that (i) all ©'-blocks of Li are in V and (ii) ! / /©'€ W 
is always true. The next and last theorem states that the first assertion is valid. 
An example will show that the second one is, in general, not true. This suggests 
that the answer to McKenzie's conjecture is in the negative. 

T h e o r e m 7. Let V, .W be lattice varieties and assume that L'£H(VoW). 
Then L'=L/<P for some LG Vo W and some congruence $ on L. Let 0 be a con-
gruence on L establishing L£VoW. If 0':=0/4>, then all ©'-blocks of L' are in V. 

P roo f . We will show that for every finite ©'-connected set {[a0]<P, ..., [an] 
of ^-blocks there is a ©-connected subset {«0, ..., u„) of L with «¡6[a,] <P. This 
suffices, since then every ©'-block satisfies every identity which is satisfied by every 
©-block. Since tolerance blocks are sublattices, we may assume that [a0] <£<[«,] <P 
holds for all z'=l, 2, ..., n. By the definition of ©', we find suitable ¿>¡£[<2,]<P and 
flie[a0]<f with aj,<£(- and ( /=1 ,2 , . . . ,« ) . Let a%M...Vcf0e{a0]<P. 
Due to ¿>¡©4 and a'o0a'o, we get ( b ^ a ) 0 a and ¿¡Vaela,]^ for / = 1 , 2 , . . . , n. 
With u0:=a and w,:=6;Va,/= 1, 2, ..., our claim has been proved. 

Example . We modify an example of G. CZEDLI[1] to show that, under the 
hypotheses of Theorem 7, we cannot, in general, conclude that L'/0'£ W. To do 
so, we describe a distributive lattice L and two congruences Q, <P on L (with 
0C\<p=<xi) such that I / $ o 0 o $ (^(L/$)/(0/<i>), by Theorem 5) is not distri-
butive. Let L5 be the 5-element lattice on {1,2,3,4,5} with 1 < 2 < 3 < 4 < 5 . 
Then L:=(L5XL5) \{(4, 1), (5, 1)}£D (variety of distributive lattices). On L5 we 
define the congruences <P2, 0 l 5 0 2 via the corresponding congruence blocks 
listed below: 

{{1,2}, {3,4}, {5}} 

<*>2: {{1}, {2,3}, {4}, {5}} 

©,: {{1}, {2}, {3}, {4,5}} 

©2: {{1, 2}, {3}, {4, 5}}. 
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Then ©^©¡¡(ECon (Z,5XL6), andwedefine i > : = # j X © ^ © j X © ^ . 
Diagram 5 shows the ©-blocks (indicated by bold border lines) and the ^-blocks 
(indicated by normal border lines) on L. 

Diagram 5 

Diagram 6 shows the <f>o ©o ^-blocks on L. We recognize that L/<Po0o&=z 
~iV6<E D. 
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Diagram 6 

Note. The conjecture referred to in this paper has in the meanwhile been an-
swered in the negative by E . F R I E D and G . G R Ä T Z E R [ 2 ] . 

Note added in proof (September 19, 1990) by G. Grätzer. The second author, 
my former student, friend, and colleague, tragically died last year. I shall miss him. 
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