١

A characterization of o-distributive semilattices

J. RACHŮNEK

The notion of a distributive ordered set which generalizes the notion of a distributive lattice is introduced in [3], where there are shown some properties of such ordered sets. In [2] there are described ordered sets having a similar importance for distributive ordered sets as the pentagon and the diamond have for distributive lattices, i.e. on certain conditions they are not included in a distributive ordered set (e.g. as its strong subset) and each non-distributive ordered set contains at least one of those sets as an LU-subset. (For the definitions of an LU-subset and a strong subset see below.)

The aim of this paper is to describe the semilattices which are distributive ordered sets.

Let $A = (A, \leq)$ be an ordered set. If $B \subseteq A$, then we denote

 $L_A(B) = \{x \in A; x \leq b, \text{ for all } b \in B\},\$ $U_A(B) = \{y \in A; y \geq b, \text{ for all } b \in B\}.$

If it is not a danger of misunderstanding, we write also L(B) and U(B) instead of $L_A(B)$ and $U_A(B)$. For $B = \{a_1, ..., a_n\}$ we use also the forms $L(B) = L(a_1, ..., a_n)$ and $U(B) = U(a_1, ..., a_n)$.

Definition 1. An ordered set A is called *distributive* if

$$L(U(L(a, c), L(b, c))) = L(U(a, b), c) \text{ for all } a, b, c \in A.$$

Remark 1. It is clear that in any ordered set A it holds $L(U(L(a, c), L(b, c))) \subseteq \subseteq L(U(a, b), c)$ for all $a, b, c \in A$. Hence for the distributivity of an ordered set it suffices to verify only the identity with the opposite inclusion.

Remark 2. A lattice A is distributive if and only if it is a distributive ordered set. (See [3].)

Received May 20, 1988 and in revised form June 27, 1989.

Recall that a semilattice $A = (A, \leq , \lor)$ is called distributive (see [1, p. 135]) if for any $a, b, x \in A$ it holds the following condition:

If $x \leq a \lor b$, then there exist $a_1, b_1 \in A, a_1 \leq a, b_1 \leq b$ such that $x = a_1 \lor b_1$.

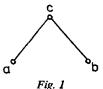
To distinguish two notions of distributivity, a semilattice which is simultaneously a distributive ordered set will be called an *o*-distributive semilattice.

We will show a connection between these notions.

Proposition 1. Every distributive semilattice is o-distributive.

Proof. If $A = (A, \forall)$ is a semilattice, $a, b, c \in A$, then $L(U(a, b), c) = L(a \lor b, c)$. Let A be a distributive semilattice, $a, b, c, x \in A, x \le c, x \le a \lor b$. Then there exist $a_1, b_1 \in A, a_1 \le a, b_1 \le b$ such that $x = a_1 \lor b_1$. Let $y \in U(L(a, c), L(b, c))$. Then $a_1 \le y, b_1 \le y$, hence $x = a_1 \lor b_1 \le y$, and therefore $L(a \lor b, c) \subseteq L(U(L(a, c), L(b, c)))$.

Remark 3. The converse implication is not true. For example, the semilattice $A = \{a, b, c\}$, where a < c, b < c (see Fig. 1), is *o*-distributive but it is not distributive.



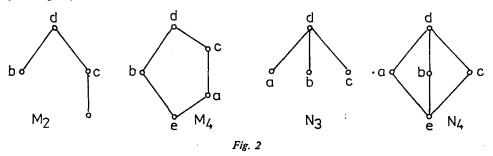
Definition 2. a) A subset M of an ordered set A is said to be an LU-subset of A, if for each $a, b \in M$:

(i) $L_{\mathcal{M}}(a, b) = \emptyset$ if and only if $L_{\mathcal{A}}(a, b) = \emptyset$;

(ii) $U_M(a, b) = \emptyset$ if and only if $U_A(a, b) = \emptyset$.

b) A subsemilattice M of a semilattice $A = (A, \vee)$ which is an LU-subset of A (i.e. M satisfies the condition (i)) is called an LU-subsemilattice of A.

Theorem 2. Let a semilattice $A=(A, \vee)$ do not be o-distributive. Then it contains an LU-subsemilattice isomorphic to one of the ordered sets M_2 , M_4 , N_3 , N_4 . (See Fig. 2.)



Proof. If a semilattice A is not o-distributive, then there exist $a, b, c \in A$ such that

$$L(U(L(a, c), L(b, c))) \subset L(a \lor b, c).$$

I. Let a < c. Then L(U(L(a, c), L(b, c))) = L(U(a, L(b, c))), and thus $L(U(a, L(b, c))) \subset L(a \lor b, c)$. Clearly $a \parallel b, b \parallel c$.

(a) Firstly let us suppose $L(b, c) = \emptyset$. Then there exists $x \in L(a \lor b, c)$ such that $x \not\equiv a$.

(a) Let x > a. Then $a \lor b = b \lor x$, $a \lor b > b$, $b \parallel x$. From that we also have $a \lor b > x$. Therefore the set $T_1 = \{a, b, x, a \lor b\}$ is a subsemilattice of A. Furthermore $L(a, b) \subseteq \subseteq L(b, x) \subseteq L(b, c) = \emptyset$, hence T_1 is an LU-subsemilattice of A isomorphic to M_2 .

(β) Let $x \parallel a$. Let us denote $T_2 = \{a, b, a \lor x, a \lor b\}$. We have $a \lor x \leq a \lor b$ and $a < a \lor x$. Furthermore $a \lor b \leq c$. In the case $c < a \lor b$, we obtain $a \lor b \geq a \lor x$, in the case $c \parallel a \lor b$, we have $a \lor x < c$, $a \lor x < a \lor b$. Therefore it always holds $a \lor x < a \lor b$. In addition, we have $b < a \lor b$. Let us show that $b \parallel a \lor x$. In fact, if $a \lor x \leq b$, then a < b, a contradiction, and if $b < a \lor x$, then $a \lor b \leq a \lor x$, a contradiction, too.

Therefore T_2 is a subsemilattice of A, and because $L(a, b) \subseteq L(b, a \lor x) \subseteq \subseteq L(b, c) = \emptyset$, T_2 is an LU-subsemilattice of A isomorphic to M_2 .

(b) Let now $L(b, c) \neq \emptyset$ and let $v \in L(b, c)$. Since $L(U(a, L(b, c))) \subset L(a \lor b, c)$, there exist $x \in L(a \lor b, c), y \in U(a, L(b, c))$ such that $x \neq y$.

(a) Let x > y. Let us denote $T_3 = \{b, x, y, v, a \lor b\}$. Then from a < x we obtain $a \lor b \le x \lor b$, and since evidently $x \lor b \le a \lor b$, we have $y \lor b = a \lor b$. Further it is clear that v < b and v < y. Since $c \parallel b$, we have $x < a \lor b$. If $b \ge x$, then b > a, and if $b \le x$, then $x = a \lor b$, hence it must hold $b \parallel x$. Analogously we can prove $b \parallel y$. But this means that T_3 is an LU-subsemilattice of A isomorphic to M_4 .

(β) Let $x \parallel y$. Let us denote $T_4 = \{b, a \lor v, x \lor a \lor v, v, a \lor b\}$. Since v < b, $x \le a \lor b$ and a < b, we have $x \lor a \lor v \le a \lor b$. Let us suppose $x \lor a \lor v = a \lor b$. Then $x \lor a \lor v > b$, hence $c \lor x \lor a \lor v \ge b \lor c$. But $c \lor x \lor a \lor v = c$, therefore $c \ge b$, a contradiction. Thus it must be $x \lor a \lor v < a \lor b$.

Since x || v, we obtain $x \leq a \lor v$, hence $x \lor a \lor v \neq a \lor v$, and so $a \lor v \prec x \lor a \lor v$. Further it is evident that $v \prec a \lor v$, $v \prec b$, $b \prec a \lor b$. At the same time, if $b \geq a \lor v$, then $b \geq a$, and if $b \leq a \lor v$, then $b \leq c$, a contradiction. Thus $b || a \lor v$. Similarly $x \lor a \lor v || b$.

Therefore T_4 is an LU-subsemilattice of A isomorphic to M_4 .

II. Now, we shall observe the case a||c. It is evident that then a||b and $c \neq b$. We can suppose b||c, otherwise we would obtain the same results as for the case I.

(a) First let us suppose $a \lor b < a \lor b \lor c$, $a \lor c < a \lor b \lor c$, $b \lor c < a \lor b \lor c$.

(a) Let $L(a, b) = L(a, c) = L(b, c) = \emptyset$. Then $L(U(L(a, c), L(b, c))) = \emptyset$, but

 $L(a \lor b, c) \neq \emptyset$. Let $x \in L(a \lor b, c)$. Then $R_1 = \{x, a \lor b, a \lor c, b \lor c, a \lor b \lor c\}$ is an *LU*-subsemilattice of *A* isomorphic to N_4 .

(β) If e.g. $L(a, b) \neq \emptyset$, $d \in L(a, b)$, then $R_2 = \{d, a \lor b, a \lor c, b \lor c, a \lor b \lor c\}$ is an LU-subsemilattice of A isomorphic to N_4 .

(b) Let $a \lor b = a \lor b \lor c$, $a \lor c < a \lor b$, $b \lor c < a \lor b$.

(a) Let $L(a, b) = L(a, c) = L(b, c) = \emptyset$. If $L(a \lor c, b) = \emptyset$, then $R_3 = \{a, b, a \lor c, a \lor b\}$ is an LU-subsemilattice of A isomorphic to M_2 .

If $L(a \lor c, b) \neq \emptyset$, $d \in L(a \lor c, b)$, then $R_4 = \{d, b, a \lor c, b \lor c, a \lor b\}$ is an LU-subsemilattice of A isomorphic to M_4 .

(β) If $L(a, b) \neq \emptyset$, $e \in L(a, b)$, then $R_5 = \{e, b, a \lor c, b \lor c, a \lor b\}$ is an LU-subsemilattice of A isomorphic to M_4 .

(y) If e.g. $L(a, c) \neq \emptyset$, $f \in L(a, c)$, then $R_6 = \{f, a, a \lor c, b \lor c, a \lor b\}$ is an LU-subsemilattice of A isomorphic to M_4 .

(c) Let us suppose $a \lor b = a \lor c = a \lor b \lor c$, $b \lor c < a \lor b$.

(a) Let $L(a, b) = L(a, c) = L(b, c) = \emptyset$. If $L(a, b \lor c) = \emptyset$, then $R_7 = \{a, b, b \lor c, a \lor b\}$ is an LU-subsemilattice of A isomorphic to M_2 .

Let $L(a, b \lor c) \neq \emptyset$, $g \in L(a, b \lor c)$. Then $L(b, g) = L(c, g) = \emptyset$. If $b \lor g = c \lor g = b \lor c$, then $R_g = \{b, g, c, b \lor c\}$ is an LU-subsemilattice of A isomorphic to N_3 . If $b \lor g < b \lor c$, then $R_g = \{g, b \lor g, b \lor c, a \lor b, a\}$ is an LU-subsemilattice of A isomorphic to M_4 .

(β) Let $L(a, b) \neq \emptyset$, $h \in L(a, b)$. Then $R_{10} = \{h, b, b \lor c, a \lor b, a\}$ is an LU-subsemilattice of A isomorphic to M_4 . (Similarly for $L(a, c) \neq \emptyset$.)

(y) Let $L(a, b) = L(a, c) = \emptyset$, $L(b, c) \neq \emptyset$. If $L(a, b \lor c) = \emptyset$, then R_7 is an *LU*-subsemilattice of *A*. Suppose $L(a, b \lor c) \neq \emptyset$, $g \in L(b, c)$, $h \in L(a, b \lor c)$. We have $h \lor g \not\equiv b$, $h \lor g \not\equiv c$, $h \lor g \not\equiv b \lor c$. Let $b < h \lor g$. If $h \lor g < b \lor c$, then $R_{11} = \{h, h \lor g, b \lor c, a \lor b, a\}$ is an *LU* subsemilattice of *A* isomorphic to M_4 . If $h \lor g = b \lor c$, then $R_{12} = \{g, h, b, b \lor c\}$ is an *LU*-subsemilattice of *A* isomorphic to M_2 . (For $c < h \lor g$, we can prove similarly.)

Let $b||h \lor g$, $c||h \lor g$. If $b \lor h \lor g = b \lor c$ and $c \lor h \lor g = b \lor c$, then $R_{13} = \{h, b, h \lor g, c, b \lor c\}$ is an LU-subsemilattice of A isomorphic to N_4 . If $b \lor h \lor g < b \lor c$ or $c \lor h \lor g < b \lor c$, respectively, then $R_{14} = \{h, c, b, b \lor h \lor g, b \lor c\}$ or $R_{15} = \{h, b, c, c \lor h \lor g, b \lor c\}$, respectively, is an LU-subsemilattice of A isomorphic to M_4 .

(d) The case $a \lor c = b \lor c = a \lor b \lor c$, $a \lor b < a \lor c$ can be proved analogously as the case (c).

(e) Let us suppose $a \lor b = a \lor c = b \lor c = a \lor b \lor c$.

(a) If $L(a, b) = L(a, c) = L(b, c) = \emptyset$, then $R_{16} = \{a, b, c, a \lor b \lor c\}$ is an LU-subsemilattice of A isomorphic to N_3 .

(β) Let e.g. $L(a, b) \neq \emptyset$, $d \in L(a, b)$. If $d \lor c < a \lor b \lor c$, then $R_{17} = \{d, a, b, d \lor c, a \lor b \lor c\}$ is an LU-subsemilattice of A isomorphic to N_4 .

i

Let $d \lor c = a \lor b \lor c$ and let $L(b, c) = \emptyset$ or $L(a, c) = \emptyset$, respectively. Then $R_{18} = \{d, b, c, a \lor b \lor c\}$ or $R'_{18} = \{d, a, c, a \lor b \lor c\}$, respectively, is an LU-subsemilattice of A isomorphic to M_2 .

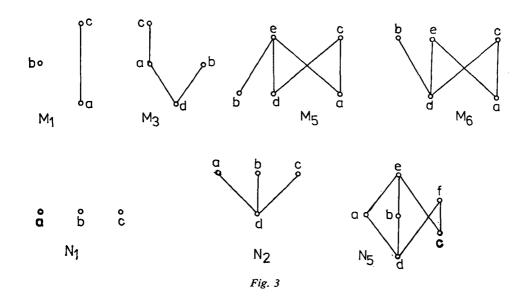
Finally, let us observe the case $L(a, b) \neq \emptyset$, $L(a, c) \neq \emptyset$, $L(b, c) \neq \emptyset$. Let $d \in L(a, b), e \in L(a, c), f \in L(b, c)$. If e.g. $L(e, f) \neq \emptyset$, $g \in L(e, f)$, then $R_{19} = \{g, a, b, c, a \lor b \lor c\}$ is an LU-subsemilattice of A isomorphic to N_4 . Hence, let $L(d, e) = L(d, f) = L(e, f) = \emptyset$. Since $L(a \lor b, c) = L(c)$, it exists (by the assumption) an element $x \in U(L(a, c), L(b, c))$ such that $c \not\equiv x$. For x we have $x \ge e, x \ge f$, thus it must be $c > e \lor f$. If now $a \lor f > c$, then $R_{20} = \{e, a, e \lor f, c, a \lor f\}$ is an LU-subsemilattice of A isomorphic to M_4 .

Let $a \lor f \parallel c$. If $a \lor f > a$, then $R_{21} = \{e, a, a \lor f, c, a \lor b \lor c\}$ is an LU-subsemilattice of A isomorphic to M_4 . If $a \lor f = a$, then $R_{22} = \{f, a, b, c, a \lor b \lor c\}$ is an LU-subsemilattice of A isomorphic to N_4 .

All remaining possibilities of the connections among a, b, c would lead to some variants of the preceding cases only.

Remark 4. In [2] it is proved for any ordered set A that if A is non-distributive, then it contains an LU-subset isomorphic to some of ordered sets M_1 , M_2 , M_3 , M_4 , M_5 , M_6 , N_1 , N_2 , N_3 , N_4 , N_5 . (See Fig. 2 and 3.)

But for the case of semilattices, the constructions of respective LU-subsets from [2] do not lead to subsemilattices.



Definition 3. A subset M of an ordered set A is called *strong* if for any $a, b \in M$ it holds:

- (i) $L_A(U_M(a, b)) = L_A(U_A(a, b));$
- (ii) $U_A(L_M(a, b)) = U_A(L_A(a, b)).$

In [2] it is shown that if M is a strong subset of A such that $U_A(a, b) \neq \{1\}$ and $L_A(a, b) \neq \{0\}$ (where 1 or 0 denotes the greatest or the least element of A, respectively — if they exist), then M is an *LU*-subset of A. Furthermore, any strong subset of an ordered set A which is a semilattice with respect to the induced order, is a subsemilattice of A.

Therefore, the following theorem is similar to the converse of Theorem 2.

Theorem 3. If a semilattice $A=(A, \vee)$ contains an LU-subsemilattice isomorphic to M_2 or to N_3 , respectively, or if it contains a strong subsemilattice isomorphic to M_4 or to N_4 , respectively, then A is non-o-distributive (and so non-distributive, too).

Proof. The assertion follows from [2, Theorems 4 and 7]. It is clear that the non-distributivity of A for the cases of the strong subsemilattices M_2 and M_3 also directly follows from the fact that A is not (in those cases) lower directed.

References

[1] GRÄTZER, General lattice theory (Russian ed.), Mir (Moscow, 1982).

- [2] I. CHAJDA and J. RACHŮNEK, Forbidden configurations for distributivite and modular ordered sets, Order, 5 (1989), 407-423.
- [3] J. LARMEROVÁ and J. RACHŮNEK, Translations of modular and distributive ordered sets, Acta Univ. Palack. Olom., Fac. Rer. Nat., Math., 91 (1988), 13-23.

DEPARTMENT OF ALGEBRA AND GEOMETRY PALACKY UNIVERSITY 771 46 OLOMOUC, CZECHOSLOVAKIA