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Non type-preserving automorphism groups of buildings 
and normalizing Tits systems 

BENEDICT G. SEIFERT 

0. Introduction 

It is known that a very important class of groups, including real and complex 
reductive Lie groups and algebraic groups [1], [4], [7], [11], [12], [13], finite simple 
groups other than the alternating or sporadic groups [12], and also some infinite 
dimensional groups associated to Kac—Moody Lie algebras [15], [16] and some 
infinite dimensional transformation groups [9], give rise to a Tits system (or BN 
pair) [2], [12] and hence act on some simplicial complex which satisfies very striking 
geometric and combinatorial properties, axiomatized in the theory of buildings 

. [2], [12]. 
A basic property of a building (for definitions, see Sec. 1) is that it admits 

"type mappings", the set of which is parametrized by the group of permutations 
of the vertices of a given chamber [12]. Furthermore, a group with Tits system 
acts on its building in a type preserving way [12]. By a Theorem of J. TITS ([12], 
3.11, p. 44), there is a certain converse to this situation: any group of type preserving 
automorphisms of the building which acts transitively on the set of pairs (C, A), 
where C is a chamber of given type and A an apartment containing it, is a group 
with Tits system, with respect to B and N the stabilizers of C and A, respectively. 

In this paper we consider groups of non-type preserving automorphisms of a 
building which satisfy the analogous condition for chambers and apartments whose 
type is not fixed. Non type-preserving elements of such groups (the "polarities") 
and their centralizers play an important role in the theory of simple groups (see 
for instance [14]). We show that such a group together with B and N as above, 
gives rise to a "normalizing Tits system", a notion which we have introduced in [9]. 
This means that G satisfies all the hypotheses of a Tits system except for the prop-
erty of groups with Tits system that all elements of any generating set S of the Weyl 
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group fail to normalize B. Under our hypotheses, the subgroup of G preserving 
the type still acts transitively on the set of pairs of oriented chambers and apart-
ments, as above and hence, by Tits' Theorem, gives rise to a Tits system. We use 
this fact in the proof that G has a normalizing Tits system. The subgroup of type 
preserving automorphisms is a normal subgroup of G. When the building is of 
finite rank, then it is of finite index in G. In [9] we had given these results in the 
special case where the building is a homogeneous tree. 

1. Basic definitions 

In this paragraph we establish some basic notation and briefly recall a few 
definitions and results concerning buildings, taken from [12]. 

Given any set X, we denote the group of all bijective maps of X by S(X). By 
a simplicial complex 7 we shall here mean a set M(I) together with a family of sub-
sets Sim (/), the simplices of 7, which is closed under taking subsets. Given a sim-
plex S, we denote the set of points of I(S) by M(S). I is completely determined 
by the set of maximal elements of Sim (/), which we shall denote by Ch (7). We 
shall write the action of the automorphism group of 7 on M(7) or Sim (7) on the 
right, m-*m-g, except when we wish to name the homomorphism a: Aut(7) — 
-*S(M(I)) or S(Sim (/)), in which case we shall write ct(g)(m), etc. 

De f in i t i on 1.1. A simplicial complex A—{M(A), Sim (A)) is said to be 
"thin" iff the following conditions are verified: 

(i) For any maximal simplices, C, C" there exists a chain of maximal simplices, 
y: C—C(0), ...,C(n)=C' such that the successive intersections C( / )nC( i '+ l ) are 
of codimension 1 in both C(i) and C(i+1). A maximal simplex is called a chamber. 
Two chambers whose intersection is of codimension 1 are called adjacent, an their 
intersection is called their wall, y is called a gallery between C and C'. 

(ii) If (C, C") and (D, D') are two pairs of adjacent chambers, such that 
CC\C'=DC\iy then the sets {C,C'} and (D, D'} coincide. 

One of the basic results about thin complexes is the following result on the set 
of chambers: Given a set X, a bijection from some ordinal o onto A'is called a tuple 
in X. By fixing a given tuple, we can identify the set of all tuples in X with S(X). 

Def in i t i on 1.2. Given a simplicial complex 7, and a simplex X of 7, we shall 
denote the set of ordered tuples in M(X) by (X); we can identify ( X ) with S(M(Xj). 
We denote by <Ch(7)> the set Ch(7)xTyp(7) (see Definitions 1.3. and 1.4.). 

De f in i t i on 1.3. A simplicial complex 7=(M(7), Sim (7)) together with a 
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family of subcomplexes Ap, called apartments, is called a building iff the following 
conditions are satisfied: 

i) Any subcomplex A in Ap is thin. 
ii) For any two chambers C, C' of I, there exists an apartment A which con-

tains both C and C". 
iii) If the intersection of . two apartments A, A' contains two chambers C and 

D, then there exists an isomorphism q: A —-A' which fixes C and D, as well as all 
their faces. 

For a chamber C in a building I, we shall let Sim (C) and M(C) denote the 
simplices and points of I contained in C, respectively. 

De f in i t i on 1.4. A type mapping (relative to a fixed chamber C) for a building 
is a mapping t: M(I)—M(C) which restricts to a bijection on M(C') for each 
chamber C". We shall denote the set of type mappings by Typ (I). 

The basic property of type mappings of a building is the following result ([12]' 
Ch. 3): 

Theorem 1.1. Any type mapping t is uniquely determined by the permutation 
a: M(C)—M(C) which t induces by restriction to M(C). 

One has an obvious action of S(M(C)) on the set of type mappings of I, given 
by the formula 
(1) <j(t)(m) = o(t(m)). 

By Theorem 1.1, this action is regular (i.e. free and transitive), and hence we 
can identify a type mapping with a permutation of M(C). Indeed, we shall identify 
the permutation a with the unique type mapping inducing a on M(C). Given a 
point m of / and a type map t, t(m) is called the type of m, and given a wall S be-
tween two chambers, the cotype of S is the unique element of M(C) which is not 
in the image t(S). 

The notion of a Tits system (or BN pair) was first defined in [11]. For some 
of its implications see also [1], [2], [3], [7], [12], [13], as well as the papers referred 
to in [12]. 

De f in i t i on 1.5. Let G be a group, N and B two subgroups, S a set. We say 
that a quadruple (G, B,N,S) is a Tits system if and only if 

(T. 1) the subgroups B and N generate G. 
(T. 2) BON is normal in N. 

Furthermore the group W=N/BC\N has a set S of generators of order 2 such that 
(T. 3) for each w in W, s in S, the inclusion B w-B sQB-w-s-BUB-w-B 

holds 
(T. 4) for each J in S, s-B• s^B. 
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Clearly, in (T.3) one can *also write Bw-Bs-B instead of Bw-Bs. The 
principal result of this paper is a generalization of the following result of J. T I T S 

[12, 3.11, p. 46]. 

Theorem 1.2. Let G be a group of type-preserving automorphisms of a building 
acting transitively on the set of pairs (C, A), where C is a chamber (of fixed type) 
and A an apartment containing it. Let B and N be the stabilizers in G of C and of A, 
respectively. Then BON is normal in N, and there exists a set of generators S in 
IV=N/NC\B such that the quadruple (G,B, N, S) forms a Tits system. 

2. Non-type preserving automorphisms 

We shall fix a building /. We consider the action of G=Aut(7) and certain sub-
groups of it (which we shall define later) on (CH (/)) (Definition 1.2). G will always 
denote a subgroup of Aut (I). We consider throughout this paper a fixed chamber 
C, and t the unique type map t, defined with respect to C which induces the identity 
on M(C). By means of it, we can identify <CH(/)> with Ch (OXS^A/XC)). By 
this identification a typed chamber (D) for which t ((D))=id is identified with 
the pair (D, id). The reader is warned that this contrasts with the usual terminology 
of buildings ([12] for instance), where the letters C, D, etc. refer to chambers with 
fixed type under a given type mapping, whereas here we use C, D to denote the 
"abstract" chambers.. Similar remarks apply to apartments and simplices of a 
building. When we wish to emphasize this point, we shall speak of abstract chambers, 
apartments, etc. 

G acts on Ch (/) in the obvious way. We shall denote this action by 
p: G-*S(Ch (/)) and shall sometimes abbreviate p(g)(D) by D g. G acts also 
onTyp(7): 

(2) q(g)(a)(m) = a(m-g), 

for any type map a and any m in M(I). 
As an immediate consequence of Theorem 1.1, one has 

Lemma 2.1. The stabilizer G(a) in G of any type mapping a is normal in G. 
G/G(a) acts freely on Typ (/). We denote the G-orbit of t by Typ (G). It forms a 
subgroup of S(M(Cj). 

Def in i t ion 2.1. An automorphisms g is called type preserving if and only if 
it lies in G(a), for some (and hence by the Lemma for all) type mappings. We denote 
by G(0) the subgroup of type preserving automorphisms in G. 
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Finally, there is an action of G on <Ch (7)>=Ch (/)XS(M(C)), which is 
simply the product action of G on Ch (7) and on Typ (7). 

<7)>• g = (D, a)-g = {p(g№, g(g)(a)). 

The action of G on Typ (/) defines a homomorphism of G into the set of 
bijections of Typ (7): 

(3) 1 — G(0) — G—* 77-»-1, 

with 77 contained in (Typ (7)). 
Furthermore, we had seen in Ch. 1 that one can identify the set Typ (7) with 

S(M(C)) by virtue of the regular action of that latter group, which we can hence 
identify with the left regular action of S(M(C)) on itself. Moreover one sees im-
mediately that the actions of G and of 5(M(C)) on Typ (7) commute. It is well 
known that the commutant of right regular action of a group on itself is left reg-
ular action of the same group. Hence we can regard the exact sequence (3) as follows-

(3') . 1 - G(0) - G-S-* Typ (G) - 1 

and we can identify Typ (G) with a subgroup of S(M(C)). 
We consider the G-equivariant projections 

7>:<Ch>-Ch, Q: (Ch) — Typ (7) 

defined by the decomposition of (Ch)=ChxTyp (7) on the two factors. In fact, 
they are "fibred extensions" in the sense of [8], in (3'), G acts on the fibres for the 
projection Q, and G(0) is the set of elements in G for which, for all chambers 7)' 
Q(g-((D)))=D=Q((D)), and similarly for the pair (P, p). 

Propos i t i on 2.1. G acts faithfully on Ch(7). 

We leave proof to the reader. 

Def in i t i on 2.2. Let A be an apartment of 7, and 77 a subgroup of S(M(Cj) 
(thought of as a set of type mappings of the building). Then let (Ch(A; 77)}= 
= {<C)|C is in A and /(<C>) is in 77}. The pair (M(A), <Ch (A;H))), will be 
called the typed apartment (A; 77), 77 its group of types, and A its underlying 
abstract apartment. Set-theoretically, (CH(A; 77)) is the product Ch (A)XH. 

We shall now fix a subgroup 77 of Typ (7). From now on we shall make the 
following assumption about our group G, which is the direct analogue of the hypoth-
eses of Theorem 1.2 for typed apartments and non type-preserving groups. 

(S) S t a n d a r d hypothes is . G acts transitively on the set of pairs 
((C), (A; Typ(G))), such that (C) is a typed chamber of type h contained in a 
typed apartment (A; Typ (G)) with h in Typ (G). ' 
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We shall fix (C ) contained in (Ch (A)), and denote by B and N the stabilizers 
of (C) and ( A ; H ) , respectively. We shall always denote Typ (G) by H. Given 
a pair of subgroups B, N, with B(~)N<iN, W=N/Nf)B, we shall write right, left 
and double cosets n • B, B n, B-n B unambiguously as w-B, B • if, etc. where 
w is the image of n in W under the natural projection. 

The formula (B) of the following Proposition 2.2 is an obvious generalization 
of the Bruhat decomposition (see [3.0] for the Bruhat decomposition in its original 
setting, and also the references on Tits systems). 

P r o p o s i t i o n 2.2. 
(i) BC\N<iN. 

(ii) G is the disjoint union of all double cosets B-w-B, w in W: 

(B) G=B-W-B. 

Proof . We first prove that BC\N<iN. As above, we let t be.the unique type 
mapping defined with respect to C which is the identity on M(C). Let T be the 
stabilizer of (C) in N. Then, by Lemma 2.1, T is contained in ker (q). We shall 
denote by o the homomorphism defining the action of N on Ch (A), i.e. the restric-
tion of the homomorphism p to N, restricted to the invariant subset Ch (A). T is 
in the kernel of that homomorphism. On the other hand, iVflker (^)flker (o) 
is obviously contained in T. Hence T is the intersection of two normal subgroups 
of N, hence is normal. 

We let W=N/NC\B. To show (B), it suffices to show that for any (D) in 
(Ch (/)), there exists b in B and n in N such that (D)—(C) •n-b. By Lemma 2.1, 
there exists a typed apartment (A') containing (C ) and (D). By hypothesis there 
exists an element b' in G which maps the pair ((C), (A')) into the pair ((C), (A)). 
By definition of B, b' is in B. Applying the hypothesis again, we see that there exists 
an element n in G which maps the pair ((C), (A)) to ((D)-b', (A)). By definition 
of N, n is in N. Putting b=(b')-\ (D)=(C)-n-b. 

Using the G-equivariant projections P and Q onto Ch (A) and Typ (G) re-
spectively, the disjointness of the decomposition (B) follows immediately from Bruhat 
decomposition of G(0), which follows from Tits' Theorem 1.2, and the fact that 
G/G(0) acts freely on Typ(G). This proves Bruhat decomposition. 

For any subgroup P of G, P(0) will denote the intersection of P with G(0). 
We note that T and B are both confined in G(0) by Lemma 2.1. Hence the ex-
tension 

1 - N ^ W - 1 
restricts to a subextension 

1 - N(0) - JV(0) - 1 
with W(0) contained in W. • 
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Lemma 2.4. W acts regularly on (CH (A, H)). 

The proof is routine and is left to the reader. 

Lemma 2.5. Assuming (S), the homomorphism q restricted to N and to 
(Ch (A, H)) defines an extension 

(4) 1 - W(0) 1. 

W= W(0) X\H. There exists a splitting from H into W which maps H onto the sta-
bilizer in W of C. 

Proof . By the Standard hypothesis (S), q restricts to a surjection from N 
onto H. Since we have seen that T is contained in the kernel of q, q defines a surjec-
tion, still denoted by q, from W onto H, with kernel W(0). We now restrict q to 
the stabilizer in W of C. Since, by the previous Lemma, W acts regularly on (Ch (A)), 
this restriction is still surjective. It is clearly injective. Inverting that restriction from 
H onto the stabilizer, we obtain the splitting. 

We note that the Standard hypothesis implies immediately that the 
hypotheses of Theorem 1.2 of [12] are satisfied, and hence that the quadruple of 
(G(0),B(0),fV(0),S), for some suitable S, constitute a Tits system, and hence 
that the following corollary is true. However, it also follows immediately from 
Proposition 2.2: 

P ropos i t i on 2.3. G(0)=B-W(0)-B. 

Proof . Writing an element in G(0), as g=b-n-b\ and keeping in mind the 
fact that B=B(0) is contained in G(0) = ker (q), we see that n also lies in ker (q), 
hence in N(0). The result follows. 

The following notion was introduced (in slightly different form) in [9]. 

De f in i t i on 2.3. Let G be a group, N and B two subgroups. We say that a 
triple (G, B, N) gives rise to a normalizing Tits system if and only if there exists a 
set S for which the axioms (T. 1), (T. 2), and (T. 3) of Definition 1.5 are verified 
but no such S for which (T. 4) is also verified. If S is such a set, one calls the quad-
ruple (G, B, N, S) a normalizing Tits system. 

Theorem 2.1. Let G satisfy the hypothesis (S), and let B, N, W, (C), (A; H> 
be as above. Let W=W(0)~x\H be the splitting of Lemma 2.5. Then there exists a 
set of generators S offV(0), such that, for any set of generators R of H, (G, B, N, R U S) 
form a normalizing Tits system. More precisely, all elements of R normalize B. There 
exists no set U of generators of W for which (T. 4) is also verified. 
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Proo f . As we have remarked, by [12], Theorem 1.2, there exists a set of gen-
erators of order 2 in fV(0), S for which (G(0), B(0), N(0), 5) forms a Tits system. 
We have seen that B(0)=B. 

We choose this set S of generators of W(0) and any set R of generators of H. 
We already know Bruhat decomposition. Hence we conclude immediately that the 
axioms (T. 1) and (T. 2) are satisfied. We need to verify (T. 3), i.e. we must show 
for each element in the generating set of W, R U S, that the condition B -w • B • t • B= 
=B•w • t • BUB • w • B is satisfied. In fact we shall prove that for all w in W, 
(T.3.H) B w-B-h-B = B-w h-B for any h in H 
(T.3.S) B-w-B s B c B-w-s-BUB w-B for any j in 5". 
We consider the splitting of the extension 

1 - W( 0) - W - H - 1 

t 

defined in Lemma 2.5: H acts regularly on the set of typed chambers (C is our 
fixed chamber) {(C)=(C, h)\h in H). It follows from Lemma 2.1 that B is the 
intersection of the stabilizers in G of each of these typed chambers. Hence H nor-
malizes B. Hence Bh=h-B, and B-W-B-h=B-W-h-B, which proves (T. 3. H). 

Let w=hw\ then 

B w-B s-B = B-h-w' -B s-B = h-B w' -B-s B=h-B w' s-BUh -B-w' B= 

= B-w - s • B(JB- w • B. 

This proves (T. 3. S). 
It remains to show that there exists no set U of generators of W for which 

(G, B, N, U) is a Tits system. This follows from the fact that B is not self-normalizing, 
violating a well-known property of groups with Tits system. 

Example 1. Let I be projective flag variety over any field of dimension n. 
It is immediate to verify that the conditions of our result hold, with Typ (Aut ( / ) )= 
=Z /2 -Z . Elements of the non-trivial coset of (7(0) in Aut( / ) are classically 
known as "polarities". They lie at the basis of the duality theorem of projective 
geometry. (Their analogues for buildings of type D(4), where Typ (Aut (/)) is the 
the symmetric group on 3 letters, have been extensively studied in [14].) 

A splitting of the extension of Aut (/)—Z/2 • Z, is given by the map associating 
to every subspace its orthogonal complement, with respect to some inner product 
in the underlying space. Typed apartments are defined by unordered orthogonal 
bases, and consist of all ascending or descending flags formed from this basis. Given a 
chamber (C) in such an apartment, for instance the increasing flag defined by an 
ordering of that orthonormal basis in the underlying linear space, e(l), ..:, e(n+1), 
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the splitting of the Weyl group of Lemma 2.5, would be given by the composition 
tos, where t is the orthogonal complement map and s the permutation i—n+1—/. 
It has the property that all terms of the flag are incident to their images under tos. 
In particular, the "polarity" tos has the points corresponding to the linear sub-
variety generated by {e(i)},i=l, ...,[(«+1)/2], for self-adjoint points. (For an 
extensive discussion of self-adjoint points for groups of type D(4), see [14].) The 
Theorem of this paper then says that the group Aut (I)=B- W • B, with B the 
stabilizer of the flag (e(0)>, ..., (e(0),..., e(i)), ...), and W the semi-direct product 
of the symmetric group on the basis e(i) and tos. 

Example 2. / is a homogeneous tree. Then the automorphism group of / 
satisfies our conditions, and we find the result of [9]. 

Acknowledgement. The author gratefully acknowledges several very useful com-
ments on an earlier version of this paper on the part of the referee. In particular, 
part of the proof given here of the proof of Theorem 2.1 is due to him. 
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