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Equivalence systems and generalized wreath products 

GERHARD BEHRENDT 

1. Introduction 

Wreath products of two groups have been constructed in various ways, and 
the different types of construction lead to different properties of the product (see, 
for example, [7]). Important types of construction are the complete and the restricted 
wreath product. If A is a group and B is a permutation group on a set X then the 
complete wreath product A Wr B is the semidirect product of Ax and B, where 
B acts on Ax by permuting the components. The restricted wreath product A wr B 
is the semidirect product of D= {a=(ax)x£X£Ax\ax= 1 for all but finitely many x} 
with the action as above. 

A generalization of the restricted wreath product to a set of permutation groups 
indexed by a totally ordered set was given by P. HALL [5], the same construction 
also works for a partially ordered index set (see, for example, [4], [8]). In the case 
of the complete wreath product there is more than one natural way to generalize it. 
One construction was given by W . CH. HOLLAND [ 6 ] , a different one by CH. WELLS [ 9 ] . 

An equivalence system (X, E) is a pair consisting of a set X and a set E of 
equivalence relations on X. The automorphism group Aut (X, E) is the group 
of all permutations of X which leave each relation in E invariant, that is, Aut (X, E)= 
= { g € S y m (X)\xey if and only if (xg)e(yg) for all x,y£X and e£E}. In [3], 
the author has shown that if (X, E) is an equivalence system with E totally ordered 
then Aut (X, E) is isomorphic to a generalized wreath product of full symmetric 
groups. In [2], the author considered equivalence systems where X is countable, 
E is totally ordered and Aut (X, E) is transitive on X. It should be possible to 
describe the automorphism groups which occur there as generalized wreath products 
(in a suitable sense) of full symmetric groups, however they can not be described 
as such products either in the sense of Holland or of Wells. This provides the motiva-
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tion to give a construction of a generalization of the complete wreath product which 
includes all the constructions above, and to investigate the properties of such wreath 
products. 

2. Systematic subsets 

If A is a partially ordered set (short: poset) and G, is a permutation group 
on a set X) for X£A then the generalized wreath product will be a permutation 
group on a subset of X= [J Xx. The constructions of Holland and Wells use 

different subsets of X, and in this paper we shall see that there is a still greater choice 
of suitable subsets. It is, however, sensible to demand that all constructions should 
give the same group if the index set A is finite, and also that an associative law 
like Theorem 3.8 in [6] holds. This gives a certain restriction on the kind of subset 
of X which we shall consider. 

A subset 2 of a poset A is called an ideal if whenever a£2 and l£A such 
that A=o~ then The dual concept is called a filter. Note that the complement 
of any ideal is a filter and vice versa. In the rest of this section, let A be a poset, let 
X) be a non-empty set for A, and let X= [J Xx. A non-empty subset S of 

X is called systematic if the following two conditions hold. (1) For every ideal 2 
of A and for all x, y£S if z£X is defined by zx=xx if and zx=yx if A^Z1 

then z£iS\ (2) For all A and all r£Xx there exists x£S such that xx=r. 
A systematic subset S of X is called strongly systematic if (1) holds for any subset 
2 of A. 

A subset # of A is called convex if whenever q>t, and ÁdA such that 
then /.d <P. A non-empty subset $ of A is called an order block if for 

all A£ A\0 we have either Axp for all q>£4> or A<<p for all 4> or A and 
<p are incomparable for all <£. It is easy to see that ideals, filters and order blocks 
are convex. We now show that in the definition of a systematic set we could replace 
(1) by a stronger condition. 

Lemma 2.1. Let SQX be systematic, <PQA convex, and let x,y£S. If 
z£X is defined by zx=xx for A£ <P and zx=yx for A^ <P then z£S. 

Proof . Let r1={A€/l|there exists <p£<P such that and let r2=¿Y\<P. 
We claim that 2X, I2 are ideals. This is trivial for 2X. So let <T£I2, A such that 
A S c . Clearly and there exists cp£<P such that <rs<p. Suppose that Ac <P. 
Then we have A s a ^ i p , and as is convex it follows that <r£<i>, giving a con-
tradiction. Hence Á£21\<I>=22, which proves the claim. Now let z'dX be defined 
by zx=xx if A and zx=yx if A(f2\. Then z'£S. Now note that zx=yx if 
k£22 and zx=z'x if A(£I2. Therefore zdS. 
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L e m m a 2.2. Let SQX be systematic, and let x£S. Then if x'^X is such 
that x'x=xx for all but finitely many At A then x'£S. 

This follows easily from Lemma 2.1 and condition (2) in the definition. As a 
consequence of Lemma 2.2 we immediately get 

L e m m a 2.3. Let xdX. Then S(x):= {x'^X\x'x =xx for all but finitely many 
1 ( 1 / 1 } • is strongly systematic, and it is the unique minimal systematic subset of X 
containing x. 

L e m m a 2.4. An intersection of systematic subsets is either empty or systematic. 

The proof of this shall be. left to the reader. Note that we can define the join 
of any collection of systematic subsets as the intersection of all systematic subsets 
which contain all members of the collection (this is well defined as obviously X 
itself is systematic). Then the set of all systematic subsets together with the empty set 
forms a complete lattice under set-theoretic intersection and the join as defined. 

If <P is any subset of the poset A and Xx are non-empty sets for A then 
there exists a canonic projection p0 from X—]J Xx onto ]J X, where p®{x) = 

—(xx)xt<i>- Note that if P is a partition of A then we get a natural bijection 
X J ] ]J Xk by xi~-(p0(x))0iP. With this notation we can see that a subset 
S of X is systematic if and only if the set 5 is mapped onto p0(S)XpA\0(S) for 
every convex subset <PQA under the natural bijection X-~p0 (X) XpA\® (X) and 
P{A)(S)~X>. f ° r all Ad A. -Also S is strongly systematic if and only if the above 
holds for every subset <&QA and p^(S)=Xx for all l£A. 

3. Definition and elementary properties of the wreath product 

Let A be a poset, let Gx be a permutation group on a non-empty set X, for 
<l£ A, and let S be a systematic subset of X= JJ Xx. For all A we define 

XZA 
equivalence relations e(l) and eL(X) on S in the following way. Whenever x,y£S 
we have xe(X)y if and only if for all and x eL(A)y if and only if 
xn=y ti f ° r aH We let E= {e(A), eL(l)\A£A}. Then we define the wreath 
product S — W R A € / 1 G ; by S 1 — W R A 6 A GX= Aut ( S , is) | For all x£S and l£A 
there exists gx,x£Gx such that (x'g)x=x'gx x for all x'£S with x'e(A)x}. 

Note that it is easy to see that S - W R K / 1 is, in fact, a group, and that 
( g ' ^ x ^ i z . x B - O ' 1 , and (gh)x_x=gx<xhxixg. Also note that Aut (S, £ ) = . 
I S — W R A G Y L S y m ( A - ; ) . 

We say that a subset <P of a poset A satisfies the maximal condition if every 
non-empty subset of i> has a maximal element. If Xx is a non-empty set for /.£ A 



260 Gerhard Behrendt 

and x&X= ]J Xx then let H(x)={y^X\{X^A\y)7ix)\ satisfies the maximal con-

dition}. It is not hard to see that H(x) is strongly systematic. Then Holland's wreath 
products [6] are just the products H ( x ) — G X . Wells's wreath products [9] 
are the products GX, and the groups studied by the author in [2] are 
of the form S(x)—'WRx€a Sym (XX). Therefore the construction we have given 
generalizes all those wreath products. Note that if A is finite then by Lemma 2.3 
we get S(x)=X for all x£X, thus there is only one systematic subset, and hence 
only one wreath product. In particular, if A = {1, 2} with the natural order, we get 
the ordinary complete wreath product. 

4. The associative law 

We shall now investigate in which way wreath products over large index sets 
A can be put together from products over certain subsets of A. In order to do this 
we need more properties of systematic subsets. 

L e m m a 4.1. Let S be a systematic subset of X, and let $ be a subset of A. 
Then p®(S) is a systematic subset of p0(X) = JJ Xx. 

P r o o f . Let I be an ideal of <P, and let x, ydp^{S), let z£p0(X) be defined 
by zx=xx if A f l and zx=yx if Now let 5c,y£S such that x=p0(x), 
y=p 0 (y ) , and let 1 = {A£/l|there exists a ^ I such that A^o) . Clearly I is an 
ideal of A. Now let z£X be defined by zx=xx if A^X and zx=yx if Then 
z£S. It remains to prove that p0(z)=z. Let Ag <P. First suppose that X^I. Then 
also and we have zx=yx=yx=zx. Now suppose that X^I. Then there 
exists such that A S c . But Ad <P and I is an ideal of hence AgX. But 
then zx=xx=xx—zx. Therefore we have z=p0(z), and p0(S) is systematic, as 
condition (2) is trivially fulfilled. 

L e m m a 4.2. Let P be a partition of a poset A into order blocks. Let i»l5 <£2£P. 
Then the following are equivalent: 

(i) There exist such that 
(ii) Either or for all (p2Z we have (pi<(p2. 

The proof of this is easy. As a consequence, we can define a partial order on 
P in the following way. If <J>2^P then <P2 if and only if there exist (p} £ <PX, 

2 such that cpx^tpz. 

L e m m a 4.3. Let P be a partition of A into order blocks, and let S be a sys-
tematic subset of X. Then S:={(/><p(x))ai€p|x€5'} is a systematic subset of 
X:= IlPoiS). 
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Proof . Let I be an ideal of P, let x, y£S, and let z£X be defined by 
for and z0=yc for Now let x / , S such that x0=p0{x') and 
y*=P®(y') for all <E>^P. Note that £:={A|there exists <P£l such that is 
an ideal of A, and if zf^X is defined by z'x=x'x if A(iZ and z'x =yx if then 
z'dS. But then clearly z9=p^(z/) for all <t>£P, and hence z£S, thus we have 
condition (1). Condition (2) is satisfied by definition. 

Theorem 4.4. Let P be a partition of a poset A into order blocks. For A{A 
let Gx be a permutation group on a non-empty set Xx, and let S be a systematic sub-
set of X= Jl Xx. Let S={(/>0(x))3l(;p[x£1S}. Then S-WRxiAGx is permuta-

A € /1 
tionally isomorphic to S—WR^p —WRjet 

P roo f . We have a partial order on P by Lemma4.2. The set p$(S) is a sys-
tematic subset of 77 by Lemma 4.1, and S is a systematic subset of X= [J p0(S) 

xi<ti _ _ «>ep 
by Lemma 4.3. Therefore the group G=S-WRll,ep(pti(S)-WRxei,Gx) is well-
defined. Let /?: X-+ JJ ]] Xx be the natural bijection, note that P(S)=S, and 

X£{P _ 
denote G—S—WRAg/1 Gx. We define a mapping <p: G—Sym(S) by y(gq>)= 
=yP~1gP. Clearly q> is a monomorphism and G is permutationally isomorphic to 
its image under (p. Thus it remains to prove that cp(G)=G. 

It is easy to see that gcp leaves the relations e(<P) and eL(4>) invariant for <P£P 
and g£G. Note that if x£S, g£G then (x/3)(gcp)=xgp. 

Let p(x)£S, and let <P<=P. We claim that there exists ^ ^ ^ ( S j - W R ^ , , , Gx 

such that p0(x'g) = p0(x')x for all x'ZS with p9(xf)e($)p9(x). We define 
g9tX in the following way. Let ydp®(S), and let y£S be such that y=p<t>(y)-
Then from Lemma 2.1 it follows that if zx(y)£X is defined by zx(y)x=yx for 

and zx(y)x=xx for then zx(y)£S and p^{zx(y))—y. Also note that 
zx(y) is uniquely defined with respect to this property and independent of the choice 
of y. Then let yg<j>,x=Po(zx(y)g). Now let /L£4> and y'€p<t>(S) such that y'e(A)y 
(where the relation e(X) is taken in Pc(S)). Then let §x,y:=8x,zxw We then note 
that we get ( /g0, x)=y '£x,y Hence we have & , ^ ( i , ( S ) - W R J i 4 ) G;., and we 
have Poixfg)=pt>(xf)gi, x, which establishes the claim. 

Therefore <p maps G into G, and it remains to prove that q> is surjective. Let 
g£G. If x£X then we define g by xg:=x/?g/?-1. Then clearly g£Sym (X). Now 
let A£A and x, x'eS'. Let be such that A^<t>. Then {p£A\n>A} = 
= {/i€/l|there exists <P'£P, and By definition of 
G, it follows that xM=x^ is equivalent to (xg)/t=(x'g)/i for all fid A such that 
there exists 4>'£P, with But then by definition of ^ ( S j - W R ; ^ 
Gx we get that is equivalent to (xg)tl=(x'g)fl for all with 
Therefore g leaves e(A) invariant. Similarly, it also leaves eL(X) invariant. Now 
let x£S, A£A. We finally have to show that there exists gkiX£Gx such that 

3 
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(x,g)x=x,gxx for all x'ts with x' <?(A) x. We know that if <P£P such that 
then there exists g0>x£p0(S)—WRxioGx such that (x'gP)0=p0(xr)g0>x for 

all x/P e($) xfi (note that x' e(l) x implies x/ ft e($) xfi). But then we know that 
there exists gx,x£Gx such that (y'g0,x)x=y'xgx,x for all y'€p<t(S) with 
y' e(X)p®(x) (where e(A) is the relation in p0(S)). But note that if xfe(k)x (with 
e(X) in S) then also p<j>(x!) e(X)p0(x) (with e(X) in p0(S)). Together we get 
that if x'e(X)x then (x/g)x=p<p(x')xgxtx=xxgx>x, which proves the theorem. 

5. Embeddings and transitivity 

We now want to see which wreath products are transitive. We first consider 
products of full symmetric groups. 

T h e o r e m 5.1. Let Л be a partially ordered set, let Xx be a non-empty set for 
I f A, and let S be a strongly systematic subset of X= ]J Xx. Then Aut (S, E) is 

transitive on S. 

Proo f . Let x,y£S. Define g: S-*X in the following way. If z£S then 

Ух. if = Хд 
(Zg)x= Xx if zx = yx 

zx otherwise. 

First note that g maps S into S, as S is strongly systematic. Next, clearly g2 is the 
identity on S, and hence g^Sym ( s ) . Finally, it is obvious that g leaves the equiv-
alence relations e(X) and eL(X) invariant, hence Aut (S, E). As xg—y, we get 
the transitivity of Aut (S, E) . 

Clearly for the transitivity of the wreath product of groups Gx it is necessary 
that all Gx are transitive. This, however, is not a sufficient condition. 

P r o p o s i t i o n 5.2. There exist a poset A and transitive permutation groups Gx 

on sets X, (A£ A), and a strongly systematic subset S of X= JJ Xx such that 

G:=S—WRxiAGx is not transitive on S. 

Proo f . Let A=Z with the trivial order (i.e. any two distinct elements are 
incomparable), let Xx = {0,1, 2} and let Gx be generated by the cyclic permutation 
(012) for Я6 A. Let S={x£ П Xx\xx?±2 for all but finitely many A}. Let u, v£S 

дел 
be defined by ux—0 and vx = l for all AC A. Suppose that G is transitive on S. 
Then there exists g£G such that ug—v. Now note that (xg)x-xxgxu for all 
x£S with хе(А)и. In particular, we have l=vx=(ug)x=uxgxu=0gx „. But then 
we must have ^ ,„=(012) for all A£ A. Now we also have ve(X) и for all Аб A. 
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Hence it follows that (vg)x=vxgxi„= 1(012)=2 for all AÇA. But then vg$S, 
which is a contradiction. Therefore G is not transitive. 

In contrast to this result, for some systematic subsets S the wreath product 
is always transitive whenever all groups Gx are transitive. This is trivial for S=X, 
it holds for S=H(x) (Thm. 3.9 in [6]), and also for S=S(x) (as then the restricted 
wreath product is a subgroup which is already transitive). If S and T are systematic 
subsets with SQT then it is natural to ask if the wreath product constructed on 
S can be embedded in a natural way into the wreath product constructed on T. 
However, this does not need to be the case in general. 

P r o p o s i t i o n 5.3. There exists a poset A, non-empty sets Xx for AÇA and 
systematic subsets S, TQX= JJ Xx with SQT such that there does not exist 

XÇA 
a monomorphism (p: Aut (S, E) Aut (T, E) such that x(gcp)=xg for all x£S, 
g€Aut (S,E) . 

P r o o f : Let A=Z with its natural order, let Xz={0, 1, 2} for zÇZ. Let 
X=]JXZ, and let S= {*€ Adhere exist zv, z^ÇZ such that xz=xz for. z=zv 

Z€Z U 

and xz=xzfor z S z J , and r={xÇZ|there exist zv,zLÇZ such that xz=xZa 

for zSzj, and xz=2 for zSz L or x2d {0,1} for zSzj,}, Clearly, the sets S 
and T are both systematic. Let G=Aut (5 ' ,£ ) and # = A u t (T, E). Let g£G 
be defined by (xg)z=xz(012) for all xÇS, zÇZ. First note that, in fact, we 
have g£G. 

Suppose there exists a monomorphism (p: G—H such that x(g<p)=xg for 
all XÇ.S, g€G. Now let x£X be defined in the following way. Let xz=l if z < 0 
and z = l (mod 2) and let x,=0 otherwise. Note that x£T. For mÇZ define 
y(m)£X in the following way. Let y{m)z=xz if z ë m and y(m)z=0 if z<m. 
Then clearly y(m)ZS for all mÇZ. Now y(m)e(m—l)x. Next note that with 
g defined as above we have (y(m)g)m—y (rn)m(0l2). Hence we must have (x(g(p))m= 
=(y(m)(g(p))m=(y(m)g)m =y(rn)m(012) for all m£Z. But then (x(g<p))m=2 if 

0 and fflsl (mod 2) and (x(gq>))m=1 otherwise. But then x(gq>)^T, which 
is a contradiction. 

6. Some wreath products of full symmetric groups 

In this section we shall show how some wreath products of full symmetric 
groups can be decomposed into simpler products. 

Lemma 6.1. Let A be a poset, let Xx be a non-empty set for A ÇA, and let 
xÇX= IJXx. Let M(x) = {yÇX\{or all AÇA there exists p.ÇA with fi^A. such 

that yY=xy for all y > . Then M(x) is a systematic subset of X. 

3» 
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The proof of this is similar to some proofs already given and shall therefore 
be omitted. Clearly, if y^M(x) then M(y)=M(x), hence these sets M(x) form a 
partition of X. We recall that a poset A is called upper directed if for k, A there 
exists ii£A such that / i ^k and /xSA'. 

Theorem 6.2. Let A be an upper directed poset and Xx a non-empty set for k£A. 
Let S be a strongly systematic subset of X= JJ Xx, let C={M(y)\y£S) and x£S. 

A 6/1 
Then Aut (S, E) is permutationally isomorphic to Aut (Sf]M(x), E) Wr Sym (C). 

P roof . For y£S we define M s O ) = M O O n S . Choose a subset R of S with 
x£R and such that C={M{r)\r£R) and | i ? r W ( » | = l for all y£S. For each 
r£R we define a mapping aM ( r ): Ms(x)-~Ms(r) in the following way. Let 
z(iMs{x). Then 

r;l if ZX = XX 

(zaM(r))A = xx if zx = rx 

zx otherwise. 

We first have to show that aM(r) maps Ms(x) indeed into Ms(r). It is clear that 
zaM(r)£S as S is strongly systematic. So let k£A. As z£M(x) there exists ¡i£A 
with fi^k such that zy=zy for all But then we have (zaM(r))y=ry for all 

and hence zaM(r)£M(r), and also zaM(r)^Ms(r). We now claim that a M W 

is a bijection. It is easy to see that it is injective. Let s(iMs(r). Define s£X by 

rx if sA = 
if sx = rx 

sx otherwise. 

Then, as above, it follows that s£Ms(x), and it is clear that saU(ry=s, which 
establishes the claim. 

Let S=Ms(x)xC. We define a mapping a: S-~S by (z, M(y))a=zaM(y) 

for zÇMs(x),M(y)ÇC. Wenotethataisbijective. Let XZ:=C and let A=AU{z} 
where r for all k ÇA. Then S is a strongly systematic subset of X:= JJ Xxt 

Let E be the set of relations induced by E on Ms(x) together with e(t) and eL(t). 
Then by Theorem 4.4 it follows that Aut (S, E) is permutationally isomorphic to 
Aut (Ms(x)) Wr Sym (C). So it remains to prove that Aut (S, E) and Aut (S , E) 
are permutationally isomorphic. 

We define a mapping a: Aut (S, £)—Sym (S) in the following way. If 
<7£Aut(S,£), (z, then {z,M(y))(pa)={z,M(y))ocaa"1. Note that it is 
clear that a is a monomorphism and that Aut (S, E) is permutationally isomorphic 
to its image under a. Thus all we have to prove now is that Aut (S, E) is equal to 
the image of Aut (S, E) under a. 
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First we want to show that <ra£Aut (S,E) for all (T^Aut (S, E). Let AeA 
and let (z, M(y)) e(X) (z', M(y'j). It follows that M(y)=M(y') and also z e ( l ) / . 
Therefore we get (zaMW) e(X) (z'aM(y)) and (zaM(y)(r) e(X) (z'aM(y)a). As A is 
upper directed, it follows that M(zaM(y)a)=M(z'aM(y)a), and hence we also get 
(zcc^aoc^^) e(X) ( z ' a ^ r a ^ , ^ ^ ) , and hence 

((z, M(y))(aa)) e(X) ((z', M(y')){aa)). 

The converse, and the result for eL(X) follow similarly. Note that e(t) is the uni-
versal relation. Let (z, M(y)) eL(z) (z', M(/)). This means that M(y)=M(y'), 
and as above we get M(zaM(j0 a)=M(z'a.M(y) a), and hence 

((z, M{y))(adj) eL(t) ((z', M(y'))(aa)). 

Again, the converse follows similarly, and hence aa£Aut(S, E). 
Finally we have to show that a is surjective. Let g£Aut (S, £). Then we have 

to prove that a^pagAut(5" ,E) . Let z,z'dS, X£A with ze(A)z /. As A is 
upper directed, we have M(z)=M(z/), and as za _ 1 =(za^ z ) , M(z)), we have 
za _ 1 e(X) z ' a - 1 , and therefore zx~1q e(X) z'o.~xq. Then again it follows that 
za~1Qtx e(X) z'a~1Qot. The converse follows similarly, and so does the result for 
eL(X). Therefore a is surjective, which concludes the proof of the theorem. 

7. The normal structure of wreath products 

We recall that the set of all ideals of a poset A is a complete distributive lattice 
with respect to set-theoretic intersection and union. If S is a systematic subset of 
X= ]J Xx and Z is an ideal of A then we can define an equivalence relation e(Z) 

xeA 
o n S b y xe(Z)x/ i fandonlyif xx=x'x for all X$Z. Note that e(Z) is the infimum 
over all the relations eL (A) with X$Z. 

Propos i t i on 7.1. Let Abe a poset and Gx a permutation group on a non-empty 
set Xxfor X£A. Let S be a systematic subset of X= ]J Xx, and let G—S—WRA €/1 Gx. 

For every ideal Z of A let D(Z)={g£G\x e(Z) xg for all x£S}. Then D(Z) is a 
normal subgroup of G and the mapping Z>-—D (Z) is a monomorphism from the lattice 
of ideals of A into the normal subgroup lattice of G preserving arbitrary meets and 
finite joins. 

Proof . Trivially, D(Z) is a subgroup of G. Let hZG, g£D(Z). Note that 
h leaves all relations eL(X) invariant, and hence also the relation e(Z). So if x(iS 
then (xh'1) e(Z) (xh'^g, and hence also (xh'^h e(Z) ((xh-^gjh, therefore 
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x e(Z) xih^gh), and h'^gh^DiZ). Note that it is also trivial that if ZQZ' then 
D(Z)^D(Z'). 

Let Zi (/€/) be a set of ideals. Then we have D(C\Z,)^D(Zj) for all 
iZI 

and hence £>(f| f l £>(£.)• Conversely, let g^P\D(Z^. Then for all /67, 
• €/ «6/ '£/ 

x€-S" and all we have = ( x g ) x . Hence, for all x£S and all A$Zi we 
have x,=(xg),, therefore xe(f]Z^xg for all x£S, and g£D(C\ I,). 

¡(.I ¡€1 
Let Zx, I 2 be ideals and g^DiZ^Z^. We define h,h': S-X in the fol-

lowing way. If x£S, then (xh)x=xxgx>x if X^.Z1\Z2 and (xh)x=xx other-
wise. Also (xh')x—xxgx x l i f A£Z2 and (xh')x=xx otherwise. First we claim 
that hdSym (S). Note that (xh)x=(xg)x if Agiyxlg and (xh)x=xx otherwise, 
hence xh£S, as S is systematic. Also h is clearly injective. Let y£S, and let y'£X 
be defined by y'^iyg-1)^ if A^Z^Zz and yx=yx otherwise. Then y'£S, and 
y'h=y. Thus /igSym (S). Furthermore, it is not hard to see that h^D(Zj). Note 
that hx x = 1 if 2 i \ r 2 and hxx=gx>x if A e ^ X ^ -

Next we show that h'^Sym(S). For this, we observe that (xh')x—(xh~1g)x 

if A£Z2 and (xh')x=xx otherwise, hence we have xh'ZS. As above, it follows 
that and note that h'X x=1 if HZ2 and h'Xx=g'Xxh^ if A£Z2. 

Finally, we show that g=hh'. Let x£S, A£A. If A ^ ' U l ^ then (xhh%= 
=(xh)x=xx=(xg)x. If A£Z,\Z2 then (xhh')x=(xh)x=xxgKx = {xg)x, and if A£Z2 

then (xhh')x=(xhxgx ixm.1=xxgxtx=(xg)x. Therefore g=hh', which proves the 
proposition. 

We shall finally show that the normal subgroups constructed in Proposition 7.1 
are themselves generalized wreath products. We remark that a similar result holds 
for generalized restricted wreath products (Thm. 4.2 in [1]). Let A be a poset, Gx 

a permutation group on the non-empty set XxTor A£A, let S be a systematic subset 
of X= ]] Xx, and let Z be an ideal of A and D(Z) defined as in Proposition 7.1. 

XZA _ 
For o-el define F(<J)={A^A\A>(T and 1$!}. Let Z={(<J,Y)\O£Z, YEPFM(S)}. 
We partially order Z by (ff1? j>i)<(ff2> y2) if and only if a1<a2 and (yi)x=(y^)x 

for all Let G(a>y)=Ga and X((,iy)=X„ for all y£pF(ai(S) and o£Z. 
Note that if and T{w)={{o,y)£Z\yx=wx for all A£F(A)} then the 
mapping (cr,y)>—(T is an order-isomorphism T(w)^Z. Also note that this order-
isomorphism induces a canonical bijection JJ X(a w)— 77 X„. Let 
x = n and S= {x€X| for all w £ p A ^ ( S ) it follows that Pw{pnw)(x))€pAS)}. 

(a.y)€S 
Theorem 7.2. Given the notations and assumptions of the preceding paragraph, 

the set 3 is a systematic subset of X, and D(Z) is isomorphic to S—WR(lT>)0eJ G(rT>y). 
Proof . We first show that S is systematic. Note that if x£S we can define 

x£X by x(a>yy=xa for all o£Z, y€pFM(S). Then clearly x£S. So we easily get 
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condition (2). We now show (1). Let A be an ideal of I , let x,y£S and define z£X 
by 

z(">»)~x(o,») ^ ( f , v)£A and z(aiV)—yiatV) otherwise. Now let wdp^iS), 
and_ consider Pw(pT(w)(z)). We have Pw(pTiw)(x)), Pw{pTM(y))iPi(S). Note that 
if A = {a£S\(o, v)£A where vx=wx for all AgF(er)} then clearly A is an ideal of I , 
and hence also of A. Also note that we have (Pw(pT(w)(z)))a—(Pw(Рт(к)(х)У}а if 
ciA and (pw(pnw)(z)))a={pw(pnw)(y)))a if o£Z\3. Now let x,y£S such that 
РЛрт(К)(хУ)=рЛх) and Pw(pT(w)(y))=px(y)- Define z by zx=xx if АеЛ and 
2х=Ух otherwise. Then clearly z£S, and we have (pT(w)(z)) = p£(z)f Л : ( S ) , 
hence 5 is systematic. 

Let W = S - W R M £ j G ( t J , J , ) I and define q>: D(I)-*H as follows. If g£D(Z), 
x£S, (a,y)e£ then (x(g<p))(<T>y)=x(irry)gaiZ where z£S is such that pF(a)(z)=y 
and pz(z)=(PT(Pa\^Z)) (x))- We are going to prove that cp is the desired 
isomorphism. 

First of all, we remark that (g(p): S-+X is a well-defined mapping. For this, 
note that such an element z£S exists, and that the definition is independent of 
the choice of z. Namely, if z' is another element with the same properties then zx=z'x 

for all and hence ga>z=ga<z<. 
Next, we want to show that (gcp)(S)QS. Let x£S, and let w£pASsl(S). 

We have to prove that Pw{pnw)(x(g<p)))€pAS)- Define u£S by 
and рАи)=Р*{Рт(»)(х))- We claim that Pw (pT(w) (x(gq>))) =pz (ug). Let (a, y)£T(w). 
Then note that и has the property that pFM(u)=y and as pA\I(u)=w, we also 
have P E (u)=P P / I X s W (p n P A ^ i ( u ) ) (x)) , hence we get (x(g(p)\ a y )=x l a i y )g a i U . On 
the other hand, we have (ug)a=uagau=x(„ty)xgt,iu, which establishes the claim. 

We are now going to show that g(p is bijective. For this, it is enough to prove 
that (g<p)(g~V) is the identity on S. We recall that if z£S, then (g_ 1)A l X= 
—(Sx.xg-i)-1- Now let x£S, and let x=x(gcp). Then if (<r,y)£Z and z£S is 
such that pF(a)(z)=y and pi(z)=PPaSj(Z){PT(PaKiW)(x)) then we have X(A_Y)= 
==x(.a,n8a,z- Now consider z—zgdS. Note that zx=zx if HZ, and hence 
Pf(a)(z)=y. Also note that p1 (z)=PP/l^z)(Pt<.Pa^s))(*))• Hence we get 
(x(g-1fl>))((r> ,>=*(». y)(g~%z- Therefore 
=*(<r,»)(f~1)<,,i=*{f.»)(f(,,ze-i)~1=(*(<,.j.)^>z)(fa,zOT-0_1=*(<,,»). Hence (g<p)(g_V) 
is the identity on S. 

In the same way, we can show that (gh)(p=(gcp)(h(p), hence cp is a homo-
morphism cp: D(Z)-»Sym(S). We then have to prove that g<p£H. Let x , x ' £S 
with x e ( o , y ) x'. Then we have x(ai,yl)=xl<,„y,) whenever (ox,j>i)>(c,y). Let 
z£S be such that pFM(z)=y and рх(г)=РРл^(г)(рПРл^(г))(х)). We then also 
have p1 (z)=РРл^м(рПРлХ^))OO). hence we get {x'{g(p)\a,y)=x[ay)gaiZ. From 
this it follows easily that g(p£H. 

It now remains to prove that <p is bijective. We first want to show that it is 
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injective, that is, if 1 ?*g€D(Z) then g<p?z 1. Let 1 ¿¿g£D(Z). Then there exists 
x£S such that xg^x, hence there exists g£Z such that (xg^^x,,, that is, xaga ¡¡^ 
9^xa. Define x£S by x^g^—x9 for all (<x, y)£Z. As S is systematic we have 
xeS. Let y=pF(a)(x). We then have (x(g<p))(ff,y)=x(rT-y)ga: .^xa=x^y), as we 
have pF(a)(x)=y and also pI(x)=(PT^^X»00)• Therefore gqtjtl, 
and hence <p is injective. 

Finally, we show that q> is surjective. Let h£H. Then for (a, x£S, we 
have/J((J J,) s such that (x"h)(aty)=x^ y}h(a_ y X i for all x"£S such that x" e (a, y)x. 
We define g£D(Z) in the following way. If x£S then (xg)x=x)i whenever 
and (xg)l=xihlx,y),q where y=pF(x)(x) and q£S is defined by q(aty)=xa for all 
(a,y)£l if AgZ. Using the same techniques as above, it follows that g£D(Z), 
and that gq>=h. This proves the theorem. 
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