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Equivalence systems and generalized wreath products

GERHARD BEHRENDT

1. Introduction

Wreath products of two groups have been constructed in various ways, and
the different types of construction lead to different properties of the product (see,
for example, [7]). Important types of construction are the complete and the restricted
wreath product. If 4 is a group and B is a permutation group on a set X then the
complete wreath product 4 Wr B is the semidirect product of 4% and B, where
B acts on 4* by permuting the components. The restricted wreath product 4 wr B
is the semidirect product of D={a=(a,),¢x€A*|a.=1 for all but finitely many x}
with the action as above.

A generalization of the restricted wreath product to a set of permutation groups
indexed by a totally ordered set was given by P. HALL [5], the same construction
also works for a partially ordered index set (see, for example, [4], [8]). In the case
of the complete wreath product there is more than one natural way to generalize it.
One construction was given by W. CH. HOLLAND [6], a different one by CH. WELLS [9].

An equivalence system (X, E) is a pair consisting of a set X and a set E of
equivalence relations on X. The automorphism group Aut(X, E) is the group
of all permutations of X which leave each relation in E invariant, that is, Aut (X, E)=
={geSym (X)|x ey if and only if (xg)e(yg) for all x,ycX and e€E}. In [3],
the author has shown that if (X, E) is an equivalence system with E totally ordered
then Aut (X, E) is isomorphic to a generalized wreath product of full symmetric
groups. In [2], the author considered equivalence systems where X is countable,
E is totally ordered and Aut (X, E) is transitive on X. It should be possible to
describe the automorphism groups which occur there as generalized wreath products
(in a suitable sense) of full symmetric groups, however they can not be described
as such products either in the sense of Holland or of Wells, This provides the'motiva-
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tion to give a construction of a generalization of the complete wreath product which
includes all the constructions above, and to investigate the properties of such wreath
products.

-

2. Systematic subsets

If A is a partially ordered set (short: poset) and G, is a permutation group
on a set X, for 1A€A then the generalized wreath product will be a permutation

group on a subset of X= ] X;. The constructions of Holland and Wells use
A€A

different subsets of X, and in this paper we shall see that there is a still greater choice
of suitable subsets. It is, however, sensible to demand that all constructions should
give the same group if the index set A is finite, and also that an associative law
like Theorem 3.8 in {6] holds. This gives a certain restriction on the kind of subset
of X which we shall consider.

A subset X of a poset A is called an ideal if whenever g€ and A€A such
that A=¢ then A€X. The dual concept is called a filter. Note that the complement
of any ideal is a filter and vice versa. In the rest of this section, let A be a poset, let
X, be a non-empty set for €A, and let X =Ag1 X,;. A non-empty subset § of

X is called systematic if the following two conditions hold. (1) For every ideal X
of A and for all x,ycS if z€X is defined by z,=x; if 2¢X and z;=y, if 242
then z€S. (2) For all €A and all reX, there exists x€S such that x,=r.
A systematic subset S of X is called strongly systematic if (1) holds for any subset
Z of A. )

A subset @ of A is called convex if whenever ¢,, ,€® and €A such that
@p,=A=¢, then AcP. A non-empty subset ¢ of A is called an order block if for
all A6 AN\ @ we have either A=¢ for all p€® or A<¢ for all o€ or 1 and
¢ are incomparable for all @€ @. It is easy to see that ideals, filters and order blocks
are convex. We now show that in the definition of a systematic set we could replace
(1) by a stronger condition.

Lemma 2.1. Let SEX be systematicc @S A convex, and let x,ycS. If
z€X is defined by z,=x, for Ac® and z,=y, for A4 P then z¢S.

Proof. Let Z,={AcAlthere exists ¢ P such that 1=¢}, and let Z,=Z,\&.
We claim that Z,, X, are ideals. This is trivial for Z;. So let ¢¢Z,, A€ A such that
A=c. Clearly A<ZX,, and there exists ¢€® such that o=¢. Suppose that Ac &,
Then we have A=o=¢, and as @ is convex it follows that o€ ®, giving a con-
tradiction. Hence A€ X\ ®P=2Z,, which proves the claim. Now let z’¢ X be defined
by z;=x; if A€Z, and z;=y, if A¢Z,. Then Z’¢S. Now note that z,=y, if
A€Z, and z;=2z} if A¢Z,. Therefore z¢S. ’
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Lemma 2.2. Let SEX be systematic, and let x€S. Then if x’€X is such
that xi=x, for all but finitely many A€A then X'€S.

This follows easily from Lemma 2.1 and condition (2) in the definition. As a
consequence of Lemma 2.2 we immediately get

Lemma 2.3. Let x€X. Then S(x):={x'€X|x;=x, for all but finitely many
e A} is strongly systematic, and it is the unique minimal systematic subset of X
containing Xx.

Lemma 24. An intersection of systematic subsets is either empty or systematic,

The proof of this shall be left to the reader. Note that we can define the join
of any collection of systematic subsets as the intersection of all systematic subsets
which contain all members of the collection (this is well defined as obviously X
itself is systematic). Then the set of all systematic subsets together with the empty set
forms a complete lattice under set-theoretic intersection and the join as defined.

If & is any subset of the poset A and X, are non-empty sets for A€ A then
there exists a canonic projection pg from X =;L]z1 X, onto , ]Z) X, where pgy(x)=

¢ €

=(X;);¢0- Note that if P is a partition of A then we get a natural bijection

X-JI [I X, by xo—»(pq,(x)),,,e p. With this notation we can see that a subset
PP Lcd

S of X is systematic if and only if the set S is mapped onto ps(S) XPso(S) for
every convex subset @& A under the natural bijection X—pg(X)Xpn o(X) and
Py (S)=X, for all AcA. -Also S is strongly systematic if and only if the above
holds for every subset #S A and p(,,(S)=X, for all e 4.

3. Definition and elementary properties of the wreath product

Let A be a poset, let G, be a permutation group on a non-empty set X, for
A€, and let S be a systematic subset of X= [JJ X,. For all ¢4 we define
AcA

equivalence relations e(1) and e,(4) on § in the following way. Whenever x, y€S
we have xe(l)y if and only if x,=y, forall uy>21 and xe,(1)y if and only if
x,=y, for all pu=i. We let E={e(A), e (A)|A€ 4}. Then we define the wreath
product S—WR,¢, G, by S—WR;¢,G,={gcAut (S, E)|For all x¢§ and icA
there exists g, .€G, such that (x'g),=x"g, , for all x’¢S with x"e(l)x}.

Note that it is easy to see that S—WR;.,G; is, in fact, a group, and that
(8™13,x=(81,x,-1)"% and (gh); .=g; h, 5. Also note that Aut(S,E)=
S—WR ;¢  Sym (X;).

We say that a subset @ of a poset A satisfies the maximal condition if every
non-empty subset of ¢ has a maximal element. If X is a non-empty set for A€ A
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and x€X= [[ X, thenlet H (x)={yEX |[{A€ Aly,>=x,} satisfies the maximal con-
i€A

dition}. It is not hard to see that H(x) is strongly systematic. Then Holland’s wreath
products [6] are just the products H(x)—WR;¢, G,. Wells’s wreath products [9]
are the products X—WR,¢, G,, and the groups studied by the author in [2] are
of the form S(x)—WR,¢,Sym (X;). Therefore the construction we have given
generalizes all those wreath products. Note that if A is finite then by Lemma 2.3
we get S(x)=X for all xcX, thus there is only one systematic subset, and hence
only one wreath product. In particular, if A={1,2} with the natural order, we get
the ordinary complete wreath product. '

4. The associative law

We shall now investigate in which way wreath products over large index sets
A can be put together from products over certain subsets of A. In order to do this
we need more properties of systematic subsets.

Lemma 4.1. Let S be a systematic subset of X, and let & be a subset of A.
Then ps(S) is a systematic subset of pe(X)= [] X,.
YT

Proof. Let Z be an ideal of &, and let x, yeps(S), let zE€py(X) be defined
by z;=x, if A€¥ and z;=y, if 14XZ. Now let Xx,y€S such that x=pg(X),
y=po(y), and let Z={A€ A|there exists 6€Z such that A=¢}. Clearly ¥ is an
ideal of A. Now let z¢ X be defined by z,=X, if A¢¥ and z,=p, if A¢Z. Then
Z€S. It remains to prove that p,(Z)=z. Let A€ @. First suppose that A¢X. Then
also A¢Z, and we have Z,=j,=y,=z,. Now suppose that A¢Z. Then there
exists 6€ZX such that A=¢. But A¢ @ and X is an ideal of &, hence A€X. But
then Z,=X,=x,=z,. Therefore we have z=p4(Z), and ps(S) is systematic, as
condition (2) is trivially fulfilled.

Lemma 4.2. Let P be a partition of a poset A into order blocks. Let ®,, ®,€P.
Then the following are equivalent:

(1) There exist @,€D,, @€ P, such that ¢,=¢,.

(ii) Either ®,=®, or for all ¢,€ P;, € D, we have ¢, <o,.

The proof of this is easy. As a consequence, we can define a partial order on
P in the following way. If &,, ®,€ P then &,=®, if and only if there exist @,€ ®,,
@2€ P, such that ¢, =¢,.

Lemma 4.3. Let P be a partiiion of A into order blocks, and let S be a sys-
tematic subset of X. .Then §Z={(RG(X))¢E plxe S} is a systematic subset of
X :=°]€Z, Po(S).
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Proof. Let I be an ideal of P, let x, €S, and let z€X be defined by z,=x,
for ®cI and zg=yy, for ®¢I Now let x’,y’€S such that x,=ps(x") and
Yo=Do(y’) for all d€P. Note that Z:={Althere exists P€I such that AP} is
an ideal of 4, and if Z€X is defined by z;=x; if 2€Z and z;=y; if A¢Z then
Z€S. But then clearly zy=pgs(z’) for all d¢P, and hence z€S, thus we have
condition (1). Condition (2) is satisfied by definition.

Theorem 4.4. Let P be a partition of a poset A into order blocks. For AcA
let G, be a permutation group on a non-empty set X,, and let S be a systematic sub-
set of X= [[ X;. Let S={(po(x))ocplx€S}. Then S—WR,c,G, is permuta-

AcA

tionally isomorphic to S—WRgep (po(S)—WR ;¢ G,).

Proof. We have a partial order on P by Lemma 4.2. The set py(S) is a sys-
tematic subset of ]] X, by Lemma 4.1, and § is a systematic subset of X= ]] 2o(S)

by Lemma 4.3. Therefore the group G=5—WR4¢p (pd,(S) WR o G,.) 1s well-
defined. Let B: X— JI ][ X, be the natural bijection, note that f(S)=S, and

DEP icP
denote G=S—WR,1;1 G;. We define a mapping ¢: G—=Sym(S) by y(gp)=
=yBp~1gp. Clearly ¢ is a monomorphism and G is permutationally isomorphic to
its image under ¢@. Thus it remains to prove that ¢(G)=G.

It is easy to see that g¢ leaves the relations e(®) and e, () invariant for PP
and gcG. Note that if x€8, g€G then (xB)(go)=xgp.

Let B(x)€S, andlet d¢P. We claim that there exists go, €Po(S)—WR¢0 G,
such that pe(X'g)=pe(x)gs,, for all x’€S with pe(x)e(P)py(x). We define
8o, in the following way. Let y€po(S), and let 3€S be such that y=ps(7).
Then from Lemma 2.1 it follows that if z.(y)€X is defined by z.(y),=y, for
2€® and z.(y),=x; for A4 @ then z.(y)€S and pe(z.(y))=y. Also note that
z,() is uniquely defined with respect to this property and independent of the choice
of y. Then let ygq,,=po(z:(¥)g). Nowlet A€ ® and y’€py(S) such that y e(d)y
(where the relation e(2) is taken in py(S)). Then let g 4,y =8&1,z,0)- We then note
that we get ()'go,,)=V'8:,,. Hence we have go €pPo(S)—WR;¢oG;, and we
have py(x’8)=pe(x’)ge,x» Which establishes the claim.

Therefore ¢ maps G into G, and it remains to prove that ¢ is surjective. Let
g€G. If xcX then we define g by xg:=xBgB~2. Then clearly gcSym (X). Now
let AcA and x,x’€S. Let ®€P be such that A€P. Then {ucAjp=1}=
={u€ A|there exists &'€P, &> and puc P}V {ucPju>A1}. By definition of
G, it follows that x,=x is equivalent to (xg),=(x'g), for all u€A such that
there exists ¢€P, &'>& with uc d’. But then by definition of pgy(S)—WR;¢q
G, we get that xp=x,’, is equivalent to (xg),=(x'g), for all ucd® with u=>A.
Therefore g leaves e(A) invariant. Similarly, it also leaves e,(4) invariant. Now
let x€S, A€A. We finally have to show that there exists g, ,€G, such that

3
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(¥'8)=x"g;,, for all X¥¢S with x"e(d)x. We know that if &€P such that
€@ then there exists gq €P,(S)—WR, ¢ G, such that (X'gf)e=ps(x)ge,. for
all x’Be(®)xp (note that x’ e(1) x implies x’B e(P) xf). But then we know that
there exists g, ,€G, such that ()'ge,)a=y18.. for all y'€ps(S) with
¥’ (1) po(x) (where e(2) is the relation in pe(S)). But note that if x’e(A)x (with
e(1) in S) then also po(x’) e(A) po(x) (with e(2) in pe(S)). Together we get
that if x"e(1) x then (x’g),=po(x");8, x=X381, x> Which proves the theorem.

5. Embeddings and transitivity

We now want to see which wreath products are transitive. We first consider
products of full symmetric groups.

Theorem 5.1. Let A be a partially ordered set, let X, be a non-empty set for
A€ A, and let S be a strongly systematic subset of X= J] X,. Then Aut(S,E) is
X€a

transitive on S.

Proof. Let x,y€S. Define g: S—~X in the following way. If z€S then

v i z3=x;
(zg)i=x, if z;=y;
z; otherwise.
First note that g maps S into S, as § is strongly systematic. Next, clearly g is the
identity on S, and hence g€Sym (S). Finally, it is obvious that g leaves the equiv-
alence relations e(4) and e, (1) invariant, hence g€Aut (S, E). As xg=y, we get
the transitivity of Aut (S, E). '
Clearly for the transitivity of the wreath product of groups G, it is necessary
that all G, are transitive. This, however, is not a sufficient condition.

Proposition 5.2. There exist a poset A and transitive permutation groups G,
on sets X, (A€ A), and a strongly systematic subset S of X= [[ X, such that
) A€4

G:=S—-WR;, G, is not transitive on S.

Proof. Let A=Z with the trivial order (i.e. any two distinct elements are
incomparable), let X,={0, 1,2} and let G, be generated by the cyclic permutation
(012) for A€A. Let S={x€ J[ X,|x;2 for all but finitely many 1}. Let u, v€S

. A€A

be defined by ;=0 and v,=1 for all A€ A. Suppose that G is transitive on S.
Then there exists g€G such that ug=v. Now note that (xg),=x,g;, for all
x€S with xe(A)u. In particular, we have 1=v,=(ug),=u,g, ,=0g, ,. But then
we must have g, ,=(012) for all 1€ 4. Now we also have ve(d)u for all AcA.
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Hence it follows that (vg),=v,g,,=1(012)=2 for all 1€A. But then vg¢sS,
which is a contradiction. Therefore G is not transitive.

In contrast to this result, for some systematic subsets S the wreath product
is always transitive whenever all groups G, are transitive. This is trivial for S=X,
it holds for S=H(x) (Thm. 3.9 in [6]), and also for S=S(x) (as then the restricted
wreath product is a subgroup which is already transitive). If S and T are systematic
subsets with S&7T then it is natural to ask if the wreath product constructed on
S can be embedded in a natural way into the wreath product constructed on 7.
However, this does not need to be the case in general.

Proposition 5.3. There exists a poset A, non-empty sets X, for A€A and
systematic subsets S,TSX= J[ X, with SET such that there does not exist
2

€Aa
a monomorphism @: Aut(S, E)—~Aut (T, E) such that x(gp)=xg for all x€S,
geAut (S, E).

Proof. Let A=Z with its natural order, let X,={0,1,2} for z¢Z. Let

X= ]J] X,, and let S={xcX]|there exist zy, z;€Z such that x,=x, for zzz,
Z€Z
and x,=x, for z=z]}, and T= {xEXlthere exist zy,z €Z such that x,=x,

for z=z, and x,=2 for z=z; or x,{0,1} for zSzL} Clearly, the sets S
and T are both systematic. Let G=Aut(S,E) and H=Aut(T,E). Let gcG
be defined by (xg),=x,(012) for all x€S, z€Z. First note that, in fact, we
have g€gq. _

Suppose there exists a monomorphism ¢: G—-~H such that x(ge)=xg for
all x€8, g€G. Now let x€ X be defined in the following way. Let x,=1 if z<0
and z=1 (mod 2) and let x,=0 otherwise. Note that x€7T. For m€Z define
y(m)eX in the following way. Let y(m),=x, if z=m and y(m),=0 if z<m.
Then clearly y(m)eS for all meZ. Now y(m)e(m—1)x. Next note that with
g defined as above we have (y(m)g),=y(m),(012). Hence we must have (x(g¢)),,=
=(y(m)(80))m=(y(M)&)m=y(m),(012) for all mcZ. But then (x(gp)),=2 if
m<0 and m=1 (mod 2) and (x(g¢)),=1 otherwise. But then x(gg)¢ T, which
is a contradiction.

Zy

6. Some wreath products of full symmetric groups
In this section we shall show how some wreath products of full symmetric
groups can be decomposed into simpler products. '

Lemma 6.1. Let A be a poset, let X, be a non-empty set for L €A, and let
x€X= [[ X,. Let M(x)={ycX|for all 1€ A there exists uc¢A with p=2. such
A€A

that y,=x, for all y>u}. Then M(X) is a systematic subset of X.

3*
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The proof of this is similar to some proofs already given and shall therefore
be omitted. Clearly, if ye M(x) then M(y)=M(x), hence these sets M(x) form a
partition of X. We recall that a poset A is called upper directed if for 4, A’€ A4 there
exists pu€A such that y=21 and pu=4".

Theorem 6.2, Let A be an upper directed poset and X, a non-empty set for A€ A.
Let S be a strongly systematic subset of X= [ X;, let C={M(y)|y€S} and xcS.
i€4

Then Aut (S, E) is permutationally isomorphic to Aut (SNM(x), E) Wr Sym (C).

Proof. For y¢S we define M (y)=M(y)NS. Choose a subset R of S with
x€R and such that C={M(r)lréR} and |[RNM(y)|=1 for all y¢S. For each
réR we define a mapping oyy: Ms(x)—~Ms(r) in the following way. Let
z€ Mg(x). Then

r, f z;=x,
(zay)s =yx, if z; =71,
z, otherwise.

We first have to show that a,,,, maps Mg(x) indeed into Mg(r). It is clear that
ZapmiH€S as § is strongly systematic. So let A€ 4. As z€M(x) there exists p€A
with p=1 such that z,=z, for all y>pu. But then we have (zap,),=r, for all
y>u, and hence zoy,€M(r), and also zap, )€ Ms(r). We now claim that oy,
is a bijection. It is easy to see that it is injective. Let s€ Mg(r). Define 5¢X by

r, if s;=x,
§5,=4ix, if s5=r;
s, otherwise.

Then, as above, it follows that 5€Mj(x), and it is clear that Swy,=s, which
establishes the claim.

Let S=Ms(x)XC. We define a mapping a: S-S by (z, M(p))a=zoy,,
for z€ Ms(x), M(y)€C. We note that « is bijective. Let X,:=C and let A=AU {t}

where t>A for all A€A4. Then S is a strongly systematic subset of X:= [J X,
_ i€a
Let E be the set of relations induced by E on Mg(x) together with e(t) and e, (7).

Then by Theorem 4.4 it follows that Aut (S, E) is permutationally isomorphic to
Aut (M(x)) Wr Sym (C). So it remains to prove that Aut (S, E) and Aut(S, E)
are permutationally isomorphic.

We define a mapping a: Aut (S, E)~Sym(S) in the following way. If
o€Aut (S, E), (z, M())€S then (z, M(y))(ca)=(z, M(y))asa~?. Note that it is
clear that @ is a monomorphism and that Aut (S, E) is permutationally isomorphic
to its image under a. Thus all we have to prove now is that Aut (S, E) is equal to
the image of Aut (S, E) under a.
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First we want to show that cacAut(S,E) for all occAut(S,E). Let ¢4
and let (z, M(y)) e(3) (z/, M(y’)). It follows that M(y)=M(y’) and also ze(d) z'.
Therefore we get (zapyy)) €(A) (Zoy(y)) and (zayy,y0) e(R) (Zayy0). As A is
upper directed, it follows that M (zay)0)=M (Z'ay,0), and hence we also get
(2%01(5) T lanyg 1) €(A) (2 Xre(5) 0%g vy ) @D hemce

((z. M(»)(0a)) e(D) (', M(y))(oa)).

The converse, and the result for e, (1) follow similarly. Note that e(z) is the uni-
versal relation. Let (z, M(y))eL(z)(z’, M(y)). This means that M(y)=M(y'),
and as above we get M (zotp(,y0) =M (Z'0p(yy0), and hence ' .

(@ M(»))(0a) e(7) (', M(¥))(0a)).

Again, the converse follows similarly, and hence cacAut (S, E).

Finally we have to show that a is surjective. Let p€Aut (S, E). Then we have
to prove that a~lpacAut(S,E). Let z,z'€¢S, €A with ze(A)z/. As A is
upper directed, we have M(2)=M(Z), and as za=—'=(zayy,, M(z)), we have
ze~le(l) 27a™, and therefore za=lp e(l)z’a~'p. Then again it follows that
za"lpa e(A) Za~tpa. The converse follows similarly, and so does the result for
e, (2). Therefore a is surjective, which concludes the proof of the theorem.

’

7. The normal structure of wreath products

We recall that the set of all ideals of a poset A is a complete distributive lattice
with respect to set-theoretic intersection and union. If S is a systematic subset of
X= ]] X, and Z is an ideal of A then we can define an equivalence relation e(Z)

on S by xe(Z)x’ ifand only if x,=x) for all A¢Z. Note that e(Z) is the infimum
over all the relations e (1) with A¢X. '

Proposition 7.1. Let A be a poset and G, a permutation group on a non-empty
set X, for A€ A. Let S be a systematic subset of X= ]] X;,andlet G=S—WR,, G,.

For every ideal ¥ of A let D(Z)={g€G|xe(Z) xg for all x€S}. Then D(%) is a
normal subgroup of G and the mapping X—D(Z) is a monomorphism from the lattice
of ideals of A into the normal subgroup lattice of G preserving arbitrary meets and
finite joins.

Proof. Trivially, D(Z) is a subgroup of G. Let hcG, geD(Z). Note that
h leaves all relations e, (1) invariant, and hence also the relation e(X). So if x¢S
then (xh~Y)e(Z) (xh~)g, and hence also (xh~Yhe(Z)((xh~Y)g)h, therefore
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xe(X) x(h—1gh), and h~'ghcD(Z). Note that it is also trivial that if XSX” then
D(X)y=D(2).
Let %, (icI) be a set of ideals. Then we have D(() Z)=D(Z)) for all jeI,
iel

and hence D(() Z;)= () D(Z). Conversely, let g€ N D(Z). Then for all i€,
iel iel icr

x€S and all A¢ZX; we have x,=(xg);. Hence, for all x€S and all 2¢Z; we
have x,=(xg),, therefore xe(( Z,)xg for all x€S, and gED(iﬂ Z).
iel €I

Let X,, X, be ideals and geD(2,UZ,). We define h,#’: S—+X in the fol-
lowing way. If x€S, 2€A then (xh);=x,g, . if A€Z\Z; and (xh),=Xx, other-
wise. Also (xh'),=x,;8; -1+ if A€Z; and (xh');=Xx, otherwise. First we claim
that h¢Sym (S). Note that (xh),=(xg), if 1€X,\Z, and (xh),=x,; otherwise,
hence xhe€S, as S is systematic. Also h is clearly injective. Let y€S, and let y'c X
be defined by y;=(yg~Y, if A€Z\Z; and y;=y, otherwise. Then y’€S, and
¥y’ h=y. Thus heSym (S). Furthermore, it is not hard to see that h€ D(Z,). Note
that h; =1 if M{Z,\2, and h; ,=g, , if A€Z\2,.

Next we show that h’¢Sym (S). For this, we observe that (xh"),=(xh~1g),
if A¢Z, and (xh'),=x,; otherwise, hence we have xh’€S. As above, it follows
that W'€D(Zy), and note that h; =1 if 242, and h] =g ,,-. if A€Z,.

Finally, we show that g=hh". Let x€S, AcA. If 24Z,UZ, then (xhh'),=
=(xh);=x,=(xg);. If 2eZ,\2; then (xhh'),=(xh),=x,g, ,=(xg);, and if A€Z,
then (xhh’) l—(xh 282, eiph-1 = X281, x=(xg);- Therefore g=hh’, which proves the
proposition. '

We shall finally show that the normal subgroups constructed in Proposition 7.1
are themselves generalized wreath products. We remark that a similar result holds
for generalized restricted wreath products (Thm. 4.2 in [1]). Let A be a poset, G,
a permutation group on the non-empty set X, for A€ 4, let S bea systematic subset
of X= ]] X,, and let X be an ideal of 4 and D(ZX) defined as in Proposition 7.1.

For aEZ deﬁne F(o)={i€Ali>0c and 24ZX}. Let Z={(0, y)Io€Z, y€pr(S)}
We partially order £ by (o,, y,)<(0s, y») if and only if o,<0, and (yy),=(y.);
for all A€F(s,). Let G, ,,=G, and X, =X, for all y€pr,\(S) and ¢€Z.
Note that if wep ;(S) and Tw)={(o, y)Z|y,=w, forall 1€F(c)} then the
mapping (g, y)—0c is an order-isomorphism 7T'(w)—Z. Also note that this order-
isomorphism induces a canonical bijection fB,: - ][] X(, W)~ ]] X,. Let

(o, w)eT(w)

X= JI Xe@y and § = {x€ X| for all prA\x(S) it follows that ﬁw(pT(w)(x))Ep,_-(S)}
(a,p)EX

Theorem 7.2. Given the notations and assumptions of the preceding paragraph,
the set § is a systematic subset of X, and D(Z) is isomorphic to S—WR, ;s G5, )

Proof. We first show that S is systematic. Note that if x¢.S we can define
x€X by X,,5=%, for all 6€Z, y€ppe)(S).. Then clearly X€S. So we easily get
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condition (2). We now show (1). Let 4 be an ideal of Z, let x, y¢S and define z¢X
by Z,0=X@, if (0,2)€4 and zq, )=y, otherwise. Now let wep ;(S),
and consider B,,(prc.)(z)). We have B, (Prw) (X)), Bw(Prowm(»))Eps(S). Note that
if A={0cZ|(o,v)€A where v,=w, for all Ac F(s)} then clearly 4 is an ideal of Z,
and hence also of A. Also note that we have (B,,(Pruw)(2))s=(Bw(Pren(X)))s if
o€d and (B.(Prew(@))e=Bw(Pru(»)), if 66Z\4. Now let %, €S such that
ﬁw(I’T(w)(x))=Px(5‘) and ﬁw(PT(w)(}’))=P£(J7)o Define Z by =%, if i€4 and
Z;=7, otherwise. Then clearly Z¢S, and we have B, (prq.,(2))=p;(2)Eps(S),
hence § is systematic.

Let H=8— —WR, es G,y and deﬁne Q: D(X)-—H as follows. If geD(Z),
x€S, (0,y)€Z then (x(80))w,;y=X(0,8s = Where z€S is such that pp.,(z)=y
and p;(2)= BPA\Z(Z)(pT(pA\E(z))(x))' We are going to prove that ¢ is the desired
isomorphism.

First of all, we remark that (gp): S—X is a well-defined mapping. For this,
note that such an element z€S exists, and that the definition is independent of
the choice of z. Namely, if z’ is another element with the same properties then z,=z]
for all A>0, and hence g, .=g,, .-

Next, we want to show that (g@)(S)SS. Let x€S, and let wep . (S).
We have to prove that B, (pr,(x(g90)))€ps(S). Define ueS by p ac@=w
and ps(u)=P.,(Pron(x). Weclaimthat B, (prw,((e)))=ps(ue). Let (5, DET(w).
Then note that u has the property that pr,(¥)=y and as p,\ ;()=w, we also
have p},‘(u) ﬂpA\E(u)(pT(pA\E(u))(x)) hence we get (x(gq’))(a y)_x(a y)gd ue On
the other hand, we have (ug),=u,8, ,=X(,y)X8&su» Which establishes the claim.

We are now going to show that go is bijective. For this, it is enough to prove
that (ge)(g~'e) is the identity on S. We recall that if z¢ S, A€4 then (g7, .=
=(8),4g-0"% Now let x¢€§, and let X=x(go). Then if (o,y)€Z and z€S is
such that pr.,\(z2)=y and p;(z)=ﬁpA\x(z)(pT(pA\x(z))(x)) then we have X, ,,=
=X(;,n8s,z- NOW consider Z=zg€S. Note that Z,=z, if A¢X, and hence
Pr(@)=y. Also note that py(z)= ﬁpa\z(f) (Pr(p,‘\,(i))(f))- Hence we get
(%(27'0))(0,)=%(0,5)(8 W,z  Therefore (X(g(p)(g “20)) 0,1 =(F(&720)) (0, 5y=

-i(ﬂ'»)')(g_ ) x(q,}')(gtr,zg") —(x(d }’)gd, )(ga,zgy'l) x(a,y)' HenCe (g(p)(g_l(p)
is the 1dent1ty on S.

In the same way, we can show that (gh)p=(ge¢)(h¢), hence ¢ is a homo-
morphism ¢: D(Z)—~Sym (S5). We thén have to prove that gocH. Let x,x’c¢§
with xe(o,y) x’. Then we have x(vun)=x('apy,) whenever (oy, y;)>(0,y). Let
z€S be such that ppy,(z)=y and px(z)=ﬁp4\z(,)(pr(p A\Z(z»(x)). We then also
have p;(2)= ﬁpd\z(,)(pT(pA\z(,))(x’)), hence we get (x'(80))e,5)=%(s, 5 &s,z- From
this it follows easily that ge€H.

It now remains to prove that ¢ is bijective. We first want to show that it is
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injective, that is, if 12g€D(Z) then go=1. Let 1¢g€D(Z). Then there exists
X€S suchthat Xg#X, hence there exists ¢€Z suchthat (Xg),#%,, thatis, %,g, >
#%,. Define x€§ by x; ,=%; for all (5,y)€Z. As § is systematic we have
x€8. Let y=prey(®). We then have (x(290)),5)=%(,)8s 2% % =X(s,;> aS We
have prey()=y and also py(¥)=8, ~ ;(f)(pT(pA\ z(f»(x)). Therefore g1,
and hence ¢ is injective.

Finally, we show that ¢ is surjective Let hecH. Then for (o, y)€Z, €8, we
have h, ,, . such that (x"h),, ,,=x, y)h(,r nx for all x”€S such that x”e(s, y) %.
We define g€D(Z) in the followmg way. If x€S then (xg),=x,; whenever 14X,
and (xg),=x;h;,5). Where y=pp)(x) and g€S is defined by g, ,,=x, for all
(0,y)€Z if A€X. Using the same techniques as above, it follows that geD(X),
and that go=h. This proves the theorem.
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