Uniform boundedness theorems for k-triangular set functions

EMMA GUARIGLIA*)

In a recent paper, we have obtained a generalization of the classical boundedness Dieudonné theorem ([9], Prop. 9), in the setting of finitely additive group valued-functions ([14], (3.2)).

The purpose of this paper is to obtain an analogous result ((3.3)), in the setting of semigroup valued k-triangular functions. For this, firstly we establish that Nikodym's boundedness theorem holds for k-triangular exhaustive functions on a ring with the Subsequential Interpolation Property ((1.6)). This proposition yields some recent results of E. Pap as special cases (see [21], [23], [24]). We apply (3.3) to obtain again a Dieudonné type theorem for finitely additive group-valued functions (Corollary (3.8), see also [14], (4.2)).

1. Let X be a commutative semigroup with neutral element 0; let p be a semi-invariant pseudometric on X, namely a pseudometric satisfying the inequality

$$p(x+z, y+z) \leq p(x, y) \quad \forall x, y, z \in X,$$

or, equivalenty, the inequality

$$p(x+x',y+y') \leq p(x,y)+p(x',y') \quad \forall x,x',y,y' \in X.$$

Let $\mathbf{R}^+ = [0, +\infty[, \overline{\mathbf{R}}^+ = [0, +\infty]]$. To p there corresponds the function

$$| |: x \in X \rightarrow p(x, 0) \in \mathbb{R}^+$$

for which

$$|0| = 0$$

$$||x|-|y|| \le |x+y| \le |x|+|y| \quad \forall x, y \in X,$$

([22], [23]).

^{*)} This research was partially supported by Ministero Publica Istruzione (Italy). Received November 13, 1987.

We will denote by (X, | |) the uniform semigroup (X, \mathcal{U}_p) , where \mathcal{U}_p is the uniformity of X generated by the pseudometric p ([11], [27]). We say that a subset Y of X is bounded if $\sup |y| < +\infty$.

Let \mathcal{R} be a ring of subsets of a set S and φ a function from \mathcal{R} to (X, | |). We say that φ is bounded if the set $\varphi(\mathcal{R})$ is a bounded subset of X.

Let $k \in \mathbb{R}^+$. We say that φ is k-triangular if $\varphi(\emptyset) = 0$ and for any disjoint sets A and B from \mathcal{R} ,

$$|\varphi(A)| - k |\varphi(B)| \le |\varphi(A \cup B)| \le |\varphi(A)| + k |\varphi(B)|.$$

It is easy to see that φ is k-triangular if and only if

$$\varphi(\emptyset) = 0$$

and, for any sets C, D from \mathcal{R} , we have

$$||\varphi(C)| - |\varphi(D)|| \le k |\varphi(C \setminus D)| + k |\varphi(D \setminus C)|$$

([16]).

Moreover, a function φ k'-triangular is k-triangular for each $k \ge k'$ and φ k-triangular for $k \in]0, 1[$ implies $|\varphi(X)| = 0$ for each $X \in \mathcal{R}$. Hence below we will consider k-triangular functions with $k \ge 1$.

Let \mathscr{G} be a lattice contained in \mathscr{R} ; we say that a function φ from \mathscr{R} to (X, | |) is \mathscr{G} -exhaustive if, for every disjoint sequence $(G_n)_{n \in \mathbb{N}}$ in \mathscr{G} , we have

$$\lim \varphi(G_n)=0;$$

an *R*-exhaustive function is called exhaustive.

We say that a function φ from \mathscr{R} to (X, | |) is order continuous if for every decreasing sequence $(A_n)_{n\in\mathbb{N}}$ in \mathscr{R} such that $\bigcap_{n\in\mathbb{N}}A_n=\emptyset$

$$\lim_{n} \varphi(A_{n}) = 0.$$

We write, for every $\mathcal{H} \subseteq \mathcal{R}$ and $A \in \mathcal{R}$,

$$\mathcal{H}_{A} = \{H \in \mathcal{H} \colon H \subseteq A\}$$

$$\mathcal{H} \cap A = \{H \cap A, H \in \mathcal{H}\}.$$

Let φ be a function from \mathcal{R} to (X, | |); its semivariation (supremitation or supremacy in [15], [16]) is the function

$$\tilde{\varphi} \colon A \in \mathcal{R} \to \sup_{B \in \mathcal{A}_A} |\varphi(B)| \in \overline{\mathbb{R}}^+$$

([11], [12], [19]).

We have

$$\tilde{\varphi}(\emptyset) = 0 \quad \text{if} \quad |\varphi(\emptyset)| = 0,$$

$$|\varphi(A)| \leq \tilde{\varphi}(A) \quad \forall A \in \mathcal{R},$$

$$A \subseteq B \Rightarrow \tilde{\varphi}(A) \leq \tilde{\varphi}(B).$$

Moreover $\tilde{\varphi}$ is k-subadditive if the function

$$A \in \mathcal{R} \rightarrow |\varphi(A)| \in \mathbb{R}^+$$

is k-subadditive 1); $\tilde{\varphi}$ is exhaustive iff φ is exhaustive ([12], Lemma (2.2)). Now, we give the proof of:

(1.1). Let \mathcal{R} be a ring of subsets of S and φ a k-triangular and exhaustive function from \mathcal{R} to (X, | |). Then φ (and therefore $\tilde{\varphi}$) is bounded²).

Suppose the contrary. Then by Lemma (2.1) of [19] we can find $A_0 \in \mathcal{R}$ such that for every $A \in \mathcal{R}$

$$|\varphi(A \setminus A_0)| \leq 1.$$

Therefore the set $\varphi(\mathcal{R}_{A_0})$ is not bounded³) and we can find $B_1 \in \mathcal{R}_{A_0}$ such that

$$|\varphi(B_1)| > k + |\varphi(A_0)|.$$

Hence we have also

$$|\varphi(A_0 \setminus B_1)| \ge \frac{1}{k} ||\varphi(B_1)| - |\varphi(A_0)|| > 1$$

and or $\varphi(\mathcal{R}_{B_1})$ or $\varphi(\mathcal{R}_{A_0 \setminus B_1})$ is not bounded.

Then we write $A_1 = B_1$ and $C_1 = A_0 \setminus B_1$ if $\varphi(\mathcal{R}_{B_1})$ is not bounded; on the contrary, we write $A_1 = A_0 \setminus B_1$ and $C_1 = B_1$.

It is clear now that we can obtain, as in [19], Theorem (2.2), a sequence $(C_n)_{n\in\mathbb{N}}$ of mutually disjoint sets of \mathcal{R} such that

$$|\varphi(C_n)| > 1 \quad \forall n \in \mathbb{N},$$

a contradiction with the assumption that φ is exhaustive.

(1.2). Let \mathcal{R} be a ring of subsets of S and let φ an order continuous function from \mathcal{R} to $(X, |\cdot|)$. If the function

$$A \in \mathcal{R} \to |\varphi(A)|$$

is k-subadditive, this function and the semivariation of φ , $\tilde{\varphi}$, are also countably k-subadditive⁴).

Let $(A_n)_{n\in\mathbb{N}}$ be a disjoint sequence of elements of \mathscr{R} such that $\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{R}$. Then, for every $n\in\mathbb{N}$ $(n\geq 2)$ and for every $A\in\mathscr{R}$,

$$\begin{aligned} & \left| \varphi \left(\bigcup_{n \in \mathbb{N}} A_n \cap A \right) \right| \leq \left| \varphi \left(\bigcup_{i \leq n} A_i \cap A \right) \right| + k \left| \varphi \left(\bigcup_{i > n} A_i \cap A \right) \right| \leq \\ & \leq \varphi \left(A_1 \cap A \right) + k \sum_{1 \leq i \leq n} \left| \varphi \left(A_i \cap A \right) \right| + k \left| \varphi \left(\bigcup_{i > n} A_i \cap A \right) \right|. \end{aligned}$$

Taking limits in the above inequality, we obtain, for each $A \in \mathcal{R}$,

$$\left|\varphi\left(\bigcup_{n\in\mathbb{N}}A_n\cap A\right)\right|\leq \left|\varphi(A_1\cap A)\right|+k\sum_{n\geq 2}\left|\varphi(A_n\cap A)\right|,$$

and also

$$\tilde{\varphi}\left(\bigcup_{n\in\mathbb{N}}A_n\right) \leq \tilde{\varphi}(A_1) + k\sum_{n\geq 2}\tilde{\varphi}(A_n);$$

this completes the proof.

Corollary (1.2). If φ is an order continuous k-subadditive function defined on the ring \mathcal{R} with values in \mathbf{R}^+ , then φ and its semivariation $\tilde{\varphi}$ are also countably k-subadditive.

(1.3). Let \mathcal{R} be a quasi σ -ring of subsets of S and let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence of exhaustive functions from \mathcal{R} to $(X, | \cdot|)$. Then, for each disjoint sequence $(A_n)_{n\in\mathbb{N}}$ in \mathcal{R} , there exist a subsequence $(A_n)_{r\in\mathbb{N}}$ of $(A_n)_{n\in\mathbb{N}}$ and a quasi σ -ring \mathcal{L} contained in \mathcal{R} such that $A_n \in \mathcal{L}$ for each $r\in\mathbb{N}$, such that for every $n\in\mathbb{N}$ the restriction of φ_n to \mathcal{L} is order continuous⁵).

Let, for each $n \in \mathbb{N}$, $\tilde{\varphi}_n$ be the semivariation of φ_n and let

$$\eta: A \in \mathcal{R} \to \sum_{n \in \mathbb{N}} \frac{1}{2^n} \inf \{1, \tilde{\varphi}_n(A)\} \in \mathbb{R}^+;$$

it is easy to see that η is an exhaustive function such that

$$\eta(A) \leq \eta(B) \text{ if } A \subseteq B, A, B \in \mathcal{R}^6).$$

Let $(A_n)_{n\in\mathbb{N}}$ be a disjoint sequence of sets of \mathscr{R} ; then we can find a subsequence $(A_n)_{n\in\mathbb{N}}$ of $(A_n)_{n\in\mathbb{N}}$ and a quasi σ -ring \mathscr{S} contained in \mathscr{R} such that $A_n\in\mathscr{S}$, for each $r\in\mathbb{N}$, and the restriction of η to \mathscr{S} is order continuous⁷).

Hence, if $(B_p)_{p \in \mathbb{N}}$ is a decreasing sequence of sets of \mathscr{S} such that $\bigcap_{p \in \mathbb{N}} B_p = \emptyset$, we have, for each $n \in \mathbb{N}$,

$$\lim_{n} \varphi_n(B_p \cap B) = 0,$$

uniformly with respect to $B \in \mathcal{S}$; namely, for each $n \in \mathbb{N}$, the restriction of φ_n to \mathcal{S} is order continuous.

- (1.4). Let \mathcal{R} be a ring of subsets of S and let Φ be a set of k-triangular functions from \mathcal{R} to $(X, | \cdot|)$, such that
 - a) $\Phi(A)$ is bounded for every $A \in \mathcal{R}$,
- b) for every sequence $(\varphi_n)_{n\in\mathbb{N}}$ of elements of Φ and for every disjoint sequence $(A_n)_{n\in\mathbb{N}}$ of sets of \mathcal{R} there exists an infinite subset M of \mathbb{N} such that $\bigcup_{n\in M} \{\varphi_n(A_n)\}$ is bounded.

Then $\Phi(\mathcal{R})$ is bounded.⁸)

Suppose the contrary. Then there are two possibilities.

Case I: There exists $A \in \mathcal{R}$ such that $\Phi(\mathcal{R}_A)$ is not bounded. In this case, firstly we prove:

c) for every $A \in \mathcal{R}$ such that $\Phi(\mathcal{R}_A)$ is not bounded and for every $n \in \mathbb{N}$, there exists $(\varphi, B) \in \Phi \times \mathcal{R}_A$ such that

$$|\varphi(B)| > n$$
 and $\Phi(\mathcal{R}_B)$ is not bounded.

In fact, suppose that there exist $n_0 \in \mathbb{N}$ and $A_0 \in \mathcal{R}$ such that $\Phi(\mathcal{R}_{A_0})$ is not bounded such that for every $(\varphi, B) \in \Phi \times \mathcal{R}_{A_0}$, $|\varphi(B)| > n_0$ implies that $\Phi(\mathcal{R}_B)$ is bounded. Let $(\overline{\varphi}, B) \in \Phi \times \mathcal{R}_{A_0}$ such that $|\overline{\varphi}(B)| > 2kn_0$; therefore

$$|\bar{\varphi}(B)| > n_0$$
 and $|\bar{\varphi}(A_0 \setminus B)| > n_0$.

Hence, $\Phi(\mathcal{R}_B)$ and $\Phi(\mathcal{R}_{A_0 \setminus B})$ being bounded, $\Phi(\mathcal{R}_{A_0})$ is bounded, a contradiction.

Let now $A_1 \in \mathcal{R}$ such that $\Phi(\mathcal{R}_{A_1})$ is not bounded and r(1) such that

$$|\varphi(A_1)| \leq r(1) \quad \forall \varphi \in \Phi;$$

by c) there exists $(\varphi_1, A_2) \in \Phi \times \mathcal{R}_{A_1}$ such that

$$|\varphi_1(A_2)| > k + r(1)$$
 and $\Phi(\mathcal{R}_{A_2})$ is not bounded.

Continuing by induction, we can find a decreasing sequence $(A_n)_{n\in\mathbb{N}}$ of sets of \mathcal{R}_n , a sequence $(\varphi_n)_{n\in\mathbb{N}}$ of functions of Φ and a sequence $(r(n))_{n\in\mathbb{N}}$ of natural numbers such that for every $n\in\mathbb{N}$,

.
$$|\varphi_n(A_n)| \le r(n)$$
, $|\varphi_n(A_{n+1})| > kn + r(n)$, $\Phi(\mathcal{R}_{A_n})$ are not bounded.

Finally, if we write $C_n = A_n \setminus A_{n+1}$ for each $n \in \mathbb{N}$, $(C_n)_{n \in \mathbb{N}}$ is a disjoint sequence of sets of \mathcal{R} such that

$$|\varphi_n(C_n)| > n \quad \forall n \in \mathbb{N},$$

a contradiction with b).

Case II: For every $A \in \mathcal{R}$ the set $\Phi(\mathcal{R}_A)$ is bounded.

In this case, if we denote by \mathscr{R}'_A the ring of sets of \mathscr{R} disjoint from A, we have that $\Phi(\mathscr{R}'_A)$ is not bounded, for each $A \in \mathscr{R}$. Then, we put $A_0 = \emptyset$ and we choose $\varphi_2 \in \Phi$ and $A_1 \in \mathscr{R}$ such that $|\varphi_1(A_1)| \ge 1$. Continuing by induction, we find for every $n \in \mathbb{N}$, $\varphi_n \in \Phi$ and $A_n \in \mathscr{R}' \bigcup_{1 \le i \le n-1} A_i$ such that $|\varphi_n(A_n)| > n$, a contradiction with b). This completes the proof.

(1.5). Let \mathcal{R} be a quasi σ -ring of subsets of S and let Φ be a set of k-triangular and exhaustive functions from \mathcal{R} to (X, | |). If for every $A \in \mathcal{R}$ the set $\Phi(A)$ is bounded, then $\Phi(\mathcal{R})$ is bounded.

Suppose that $\Phi(\mathcal{R})$ is not bounded. Then, by (1.4), there exist a sequence $(\varphi_n)_{n\in\mathbb{N}}$ of functions of Φ and a disjoint sequence $(A_n)_{n\in\mathbb{N}}$ of sets of \mathcal{R} such that for every infinite subset M of \mathbb{N} the set $\bigcup_{n\in M} \{\varphi_n(A_n)\}$ is not bounded.

Let now, by (1.3), $(A_{n_i})_{i\in\mathbb{N}}$ be a subsequence of $(A_n)_{n\in\mathbb{N}}$ and \mathscr{S} a quasi σ -ring contained in \mathscr{R} such that $A_{n_i}\in\mathscr{S}$ $(\forall i\in\mathbb{N})$ and the restriction of φ_n to \mathscr{S} is order continuous, for each $n\in\mathbb{N}$.

Let p_1 be a positive real number and let $i_1 \in \mathbb{N}$ such that

$$|\varphi_{n_{i_1}}(A_{n_{i_1}})| > 2p_1;$$

 φ_{n_i} being exhaustive, we can find $h_1 > i_1$ such that

$$|\varphi_{n_{i_1}}(A_{n_m})| < p_1/2k^3 \quad \forall \, m > h_1.$$

We write, $\forall i \in \mathbb{N}$, $\alpha_i = k^2 \sup_{\varphi \in \Phi} |\varphi(A_{n_i})| < +\infty$ and we put $p_2 = \max\{2p_1, \alpha_{i_1}\}$. Then there exist $i_2 > h_1$ and $h_2 > i_2$ such that

$$|\varphi_{n_{i_2}}(A_{n_{i_2}})| > 3p_2$$

and

$$|\varphi_{n_{i_1}}(A_{n_m})| \leq p_1/2^2 k^3, \quad |\varphi_{n_{i_2}}(A_{n_m})| \leq p_1/2^2 k^3 \quad \forall m \geq h_2.$$

Similarly, if we write $p_s = \max\{sp_{s-1}, \alpha_{i_{s-1}}\}$ for each $s \in \mathbb{N}$, (s > 1) we can find $h_{s-1} < i_s < h_s$ such that

$$|\varphi_{n_{i_s}}(A_{n_{i_s}})| \ge (s+1)p_s$$

and, for each $r \in \{1, ..., s\}$,

$$|\varphi_{n_i}(A_{n_m})| < p_1/2^s k^3 \quad \forall \, m \geq h_s.$$

Let now $(A_{n_{i_s}})_{q \in \mathbb{N}}$ be a subsequence of $(A_{n_{i_s}})_{s \in \mathbb{N}}$ such that $A_0 = \bigcup_{q \in \mathbb{N}} A_{n_{i_{s_q}}} \in \mathcal{S}$; we obtain $(\forall q > 1)$ from (1.2)

$$\begin{split} |\varphi_{n_{i_{s_{q}}}}(A_{0})| & \geq |\varphi_{n_{i_{s_{q}}}}(A_{n_{i_{s_{q}}}})| - k^{2} \sum_{l < q} |\varphi_{n_{i_{s_{q}}}}(A_{n_{i_{s_{l}}}})| - k^{3} \sum_{l > q} |\varphi_{n_{i_{s_{q}}}}(A_{n_{i_{s_{l}}}})| \geq \\ & \geq (s_{q}+1) \, p_{s_{q}} - \sum_{l < q} \alpha_{i_{s_{l}}} - \sum_{l > q} p_{1}/2^{s_{l}-1} \geq (s_{q}+1) \, p_{s_{q}} - \sum_{l < q} p_{s_{l}+1} - p_{1} \geq \\ & \geq s_{q} \, p_{s_{q}} - (q-1) \, p_{s_{q-1}} \geq q p_{1}, \end{split}$$

a contradiction with the boundedness of $\Phi(A_0)$.

(1.6). Let \mathcal{R} be a ring of subsets of S with the Subsequential Interpolation Property⁸) and let Φ be a set of k-triangular and exhaustive functions from \mathcal{R} to (X, | |). If for every $A \in \mathcal{R}$ the set $\Phi(A)$ is bounded, then $\Phi(\mathcal{R})$ is bounded.

We have to prove that b) of (1.4) is verified. Let $(\varphi_n)_{n \in \mathbb{N}}$ be a sequence of functions of Φ and $(A_n)_{n \in \mathbb{N}}$ a disjoint sequence of sets of Φ .

It is easy to prove that $\mathcal{N} = \{A \in \mathcal{R}: \tilde{\varphi}_n(A) = 0 \ \forall n \in \mathbb{N}\}$ is an ideal of \mathcal{R}^{10}) and \mathcal{R}/\mathcal{N} satisfies the countable chain condition¹¹); therefore by the (7.1.1) of [28] \mathcal{R}/\mathcal{N} is a quasi σ -ring.

Now, we denote for each $n \in \mathbb{N}$ by $\hat{\varphi}_n$ the function

$$[A] \in \mathcal{R}/\mathcal{N} \to |\varphi_n(A)|$$

and we note that, $\forall n \in \mathbb{N}$, $\hat{\varphi}_n$ is a k-triangular and exhaustive function from \mathcal{R}/\mathcal{N} to \mathbb{R}^{+12}).

Therefore, by (1.5) the set $\bigcup_{n\in\mathbb{N}} \{\varphi_n(A_n)\} \subseteq \bigcup_{n\in\mathbb{N}} \hat{\varphi}_n(\mathcal{R}/\mathcal{N})$ is bounded. The proof is complete.

Remark 1. We remark that (1.4) contains Theorem 1, p. 30 of [16] and (1.6) contains the Nikodym's boundedness Theorem of [20], Theorem N of [18], Corollaries 4, 5, 6 p. 29 of [16].

We remark also that from (1.6) we obtain Corollary (Nikodym) of [1] and Theorem 2 of [21]¹³).

2. We shall denote below by \mathscr{A} a field of subsets of S and by \mathscr{F} and \mathscr{G} two lattices contained in \mathscr{A} such that $S \setminus F \in \mathscr{G}$, for each $F \in \mathscr{F}$.

Let φ be a function from \mathscr{A} to (X, | |); we say that φ is inner regular (with respect to \mathscr{F}) in A, $A \in \mathscr{A}$, if for every $\varepsilon > 0$ there exists $F \in \mathscr{F}$ such that $F \subseteq A$ and $\widetilde{\varphi}(A \setminus F) < \varepsilon$.

We say that φ is inner regular (with respect to \mathscr{F}) on \mathscr{H} , $\mathscr{H} \subseteq \mathscr{A}$, if φ is inner regular (with respect to \mathscr{F}) in each $A \in \mathscr{H}$; φ is said inner regular if it is inner regular on \mathscr{A} .

We note that:

(2.1). Let φ be a function from \mathscr{A} to $(X, | \cdot|)$ such that the function

$$A \in \mathcal{R} \to |\varphi(A)|$$

is k-subadditive. Then φ is inner regular if and only if it satisfies the condition

(°) For every $A \in \mathcal{A}$ and for every $\varepsilon > 0$ there exist $F \in \mathcal{F}$ and $G \in \mathcal{G}$ such that $F \subseteq A \subseteq G$ and $\tilde{\varphi}(G \setminus F) < \varepsilon^{14}$).

It follows easily from the properties of $\tilde{\varphi}^{15}$).

Remark 2. This proposition is valid, in particular, for an inner regular k-subadditive function defined on \mathcal{A} with values in \mathbb{R}^+ .

If S is a Hausdorff locally compact topological space, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets of S, \mathscr{A} is a field containing \mathscr{G} , a function φ from \mathscr{A} to $(X, | \cdot|)$, such that the function

$$A \in \mathcal{A} \to |\varphi(A)|$$

is k-subadditive, is inner regular (with respect to \mathcal{F}) iff the function

$$A \in \mathcal{A} \to |\varphi(A)|$$

is regular (R), in the sense of [8].

- (2.2). Let F be a semicompact lattice, so a lattice with the property:
- (*) For every sequence $(F_n)_{n\in\mathbb{N}}$ in \mathscr{F} such that $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$, there exists $n_0 \in \mathbb{N}$ such that $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$.

Let φ be an inner regular (with respect to \mathcal{F}) function from \mathcal{A} to (X, | |); then, 1) if the function

$$A \in \mathscr{A} \to |\varphi(A)|$$

is k-subadditive, ϕ is order continuous and therefore the function

$$A \in \mathcal{A} \to |\varphi(A)|$$

and the semivariation of φ , $\tilde{\varphi}$, are also countably k-subadditive;

2) if φ is a k-triangular function, φ is \mathcal{H} -exhaustive, for every lattice $\mathcal{H} \subseteq \mathcal{A}$ such that for every disjoint sequence $(H_n)_{n \in \mathbb{N}}$ in \mathcal{H} the σ -ring generated by $\{H_n, n \in \mathbb{N}\}$ is contained in \mathcal{A} .

To prove 1), by (1.2), it suffices to prove that φ is order continuous. For this, if $(A_n)_{n\in\mathbb{N}}$ is a decreasing sequence of sets of ' such that $\bigcap_{n\in\mathbb{N}} A_n = \emptyset$, for any $\varepsilon > 0$ and $n\in\mathbb{N}$, let $F_n\in\mathscr{F}$ such that

$$F_n \subseteq A_n$$
 and $\tilde{\varphi}(A_n \setminus F_n) < \varepsilon/2^n k$.

Then by (*) there exists $m_0 \in \mathbb{N}$ such that

$$\bigcap_{i\leq m}F_i=\emptyset\quad\forall\,m\geq m_0;$$

hence for each $m \ge m_0$,

$$|\varphi(A_m)| \leq \tilde{\varphi}(A_m) = \tilde{\varphi}(A_m \setminus \bigcap_{i \leq m} F_i) = \tilde{\varphi}(\bigcup_{i \leq m} (A_i \setminus F_i)) \leq$$

$$\leq \tilde{\varphi}(A_1 \backslash F_1) + k \sum_{1 < i \leq m} \tilde{\varphi}(A_i \backslash F_i) \leq k \sum_{n \in \mathbb{N}} \varepsilon / 2^n k = \varepsilon.$$

To prove 2), it suffices to remark that, by 1), φ is order continuous and, if $(H_n)_{n\in\mathbb{N}}$ is a disjoint sequence in \mathscr{H} , for every $n\in\mathbb{N}$,

$$|\varphi(H_n)| \leq |\varphi(\bigcup_{i \geq n} H_i)| + k |\varphi(\bigcup_{i \geq n+1} H_i)|.$$

This completes the proof.

- (2.3). Let F and G satisfy the property:
- (**) For each $F \in \mathcal{F}$ and for each sequence $(G_n)_{n \in \mathbb{N}}$ in \mathcal{G} such that $F \subseteq \bigcup_{n \in \mathbb{N}} G_n$ there exists $n_0 \in \mathbb{N}$ such that $F \subseteq \bigcup_{n \leq n_0} G_n^{-16}$, and let \mathcal{G} be closed under the countable union of mutually disjoint sets.

If φ is a function from \mathscr{A} to $(X, | \cdot|)$ inner regular (with respect to \mathscr{F}) on \mathscr{G} , the semivariation of φ , $\tilde{\varphi}$, (and therefore φ) is \mathscr{G} -exhaustive.

Let $(G_n)_{n\in\mathbb{N}}$ be a disjoint sequence in \mathscr{G} . For every $\varepsilon>0$, let $F\in\mathscr{F}$ such that

$$F \subseteq \bigcup_{n \in \mathbb{N}} G_n$$
 and $\tilde{\varphi}(\bigcup_{n \in \mathbb{N}} G_n \setminus F) < \varepsilon$;

hence, if $n_0 \in \mathbb{N}$ is such that

$$F \subseteq \bigcup_{n \leq n_0} G_n$$

for every $m \ge n_0 + 1$

$$|\varphi(G_m)| \leq \tilde{\varphi}(G_m) \leq \tilde{\varphi}(\bigcup_{m \in \mathbb{N}} G \setminus F) < \varepsilon;$$

the proof is complete.

We remark also:

- (2.4). Let φ be a k-triangular function inner regular (with respect to \mathcal{F}) defined on \mathcal{A} with values in $(X, |\cdot|)$. Then φ satisfies the condition
- (°°) For every $A \in \mathcal{A}$ and for every $\varepsilon > 0$, there exist $F \in \mathcal{F}$ and $G \in \mathcal{G}$ such that $F \subseteq A \subseteq G$ and for every $A' \in \mathcal{A}$ such that $F \subseteq A' \subseteq G$ we have

$$||\varphi(A)|-|\varphi(A')|<\varepsilon.$$

Let $A \in \mathcal{A}$ and let $\varepsilon > 0$. Then, by (2.1), we can find $F \in \mathcal{F}$ and $G \in \mathcal{G}$ such that

$$F \subseteq A \subseteq G$$
 and $|\varphi(B)| < \varepsilon/2k \quad \forall B \subseteq G \setminus F$.

If $A' \in \mathcal{A}$ and $F \subseteq A' \subseteq G$, then obviously

$$(A \setminus A') \cup (A' \setminus A) \subseteq G \setminus F$$

and therefore

$$||\varphi(A)| - |\varphi(A')|| \le k |\varphi(A \setminus A')| + k |\varphi(A' \setminus A)| < \varepsilon.$$

In particular, we have:

Corollary (2.4). Let φ be a k-triangular function defined on $\mathscr A$ with values in $\mathbb R^+$. If φ is inner regular, φ satisfies the condition

(°°) For every $A \in \mathcal{A}$ and for every $\varepsilon > 0$, there exist $F \in \mathcal{F}_A$ and $A \subseteq G \in \mathcal{G}$ such that for every $A \in \mathcal{A}$ such that $F \subseteq A' \subseteq G$ we have

$$|\varphi(A) - \varphi(A')| < \varepsilon$$
.

Remark 3. If S is a Hausdorff locally compact topological space, \mathscr{A} is the σ -field of the Borel sets of S, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets of S, from (2.4) (resp. from Corollary (2.4)) we obtain that, if φ is an inner regular k-triangular function from \mathscr{A} to (X, | |) (resp. to \mathbb{R}^+), the function

$$A \in \mathcal{A} \to |\varphi(A)| \in \mathbb{R}^+$$

(resp. φ) is regular on $\mathscr A$ in the sense of [7], p. 303; see also Remark 2.

(2.5). Let $(\Gamma, | \cdot|)$ be a quasi-normed abelian group and let φ a finitely additive function from $\mathscr A$ to $(\Gamma, | \cdot|)$. Then φ is inner regular if and only if, for every $A \in \mathscr A$ and for every $\varepsilon > 0$ there exist $F \in \mathscr F$ and $G \in \mathscr G$ such that $F \subseteq A \subseteq G$ and for every $A' \in \mathscr A$ with $F \subseteq A' \subseteq G$ we have

$$|\varphi(A)-\varphi(A')|<\varepsilon.$$

Obviously we can use the same arguments of the proof of Prop. 1, p. 304 of [7]. We say that a function φ from $\mathscr A$ to (X, | |) is regular if

- (a) φ is inner regular,
- (b) for every $F \in \mathscr{F}$ and for every $\varepsilon > 0$ there exist $E \in \mathscr{G}$, $H \in \mathscr{F}$, $G \in \mathscr{G}$ such that $F \subseteq E \subseteq H \subseteq G$ and $\tilde{\varphi}(G \setminus F) < \varepsilon^{17}$.

Remark 4. If we suppose that \mathcal{F} and \mathcal{G} have the property:

(•) for every $F \in \mathscr{F}$ and for every $G \in \mathscr{G}$ such that $F \subseteq G$, there exist $E \in \mathscr{G}$, $H \in \mathscr{F}$, such that $F \subseteq E \subseteq H \subseteq G$, clearly a function φ from \mathscr{A} to (X, | |) such that the function

$$A \in \mathcal{A} \rightarrow |\varphi(A)|$$

is k-subadditive (in particular a k-triangular function) is regular iff it is inner regular (see (2.1)).

In particular, if S is a Hausdorff locally compact (resp. normal) topological space, \mathscr{F} is the lattice of the compact (resp. closed) sets of S, \mathscr{G} is the lattice of the open sets of S, \mathscr{A} is a field containing \mathscr{G} , a k-triangular function is regular iff it is inner regular.

We remark also that in the case S Hausdorff locally compact topological space, \mathscr{A} the σ -field of the Borel sets of S, \mathscr{F} the lattice of the compact sets, \mathscr{G} the lattice of the open sets of S, a k-triangular function φ from \mathscr{A} to (X, | |) with regular variation¹⁸) (regular in the sense of [7], p. 303) satisfies the condition (\bullet) of the (2.1) and therefore it is regular (see also [24], Theorem 1 and Corollary 1).

3. (3.1) Let Φ be a set of k-triangular inner regular functions from \mathcal{A} to $(X, | \cdot|)$. Then, for every $A \in \mathcal{A}$ such that $\Phi(\mathcal{A}_A)$ is not bounded and for every $n \in \mathbb{N}$ there exists $(\varphi, B) \in \Phi \times ((\mathcal{F} \cup \mathcal{G}) \cap A)$ such that

$$|\varphi(B)| > n$$
 and $\Phi(\mathcal{A}_B)$ is not bounded.

Assume that there exist $A_0 \in \mathscr{A}$ such that $\Phi(\mathscr{A}_{A_0})$ is not bounded and $n_0 \in \mathbb{N}$ such that for every $(\varphi, B) \in \Phi \times ((\mathscr{F} \cup \mathscr{G}) \cap A_0)$

$$|\varphi(B)| > n_0$$
 implies that $\Phi(\mathscr{A}_B)$ is bounded.

Let now $F \in \mathscr{F}_{A_0}$ and $\bar{\varphi} \in \Phi$ such that $|\bar{\varphi}(F)| > (1+k)n_0$; therefore we have

$$F \in \mathscr{F}_{A_0}, A_0 \setminus F \in \mathscr{G} \cap A_0, \overline{\varphi}(F) > n_0, \overline{\varphi}(A_0 \setminus F) > n_0.$$

Then, both $\Phi(\mathscr{A}_F)$ and $\Phi(\mathscr{A}_{A_0 \setminus F})$ are bounded, a contradiction with the assumption that $\Phi(\mathscr{A}_{A_0})$ is not bounded.

Now we can give the proof of:

- (3.2). Let Φ be a set of k-triangular and regular functions from $\mathscr A$ to (X, | |) such that
 - a) for every $G \in \mathcal{G}$, $\Phi(G)$ is bounded,
- β) for every sequence $(\varphi_n)_{n\in\mathbb{N}}$ of functions of Φ and for every disjoint sequence $(G_n)_{n\in\mathbb{N}}$ of sets of \mathcal{G} , there exists an infinite subset M of \mathbb{N} such that $\bigcup_{n\in\mathbb{M}} \{\varphi_n(G_n)\}$ is bounded.

Then $\Phi(\mathcal{A})$ is bounded.

Assume that $\Phi(\mathscr{A})$ is not bounded.

We will show firstly that Φ satisfies the following property:

 γ) For every $A \in \mathcal{G}$ such that $\Phi(\mathcal{A}_A)$ is not bounded and for every $n \in \mathbb{N}$ there exists $(\overline{\varphi}, G, A') \in \Phi \times \mathcal{G}_A \times \mathcal{G}_A$ such that

$$(***)$$
 $|\bar{\varphi}(G)| > n$, $G \cap A' = \emptyset$, $\Phi(\mathscr{A}_{A'})$ is not bounded.

Let $A \in \mathcal{G}$ such that $\Phi(\mathcal{A}_A)$ is not bounded and let $n \in \mathbb{N}$; let $h \in \mathbb{N}$ such that $|\varphi(A)| \leq h$, for every $\varphi \in \Phi$.

There are two possibilities.

Case I: There exists $(\varphi_*, H) \in \Phi \times (\mathcal{F} \cap A)$ such that

$$|\varphi_*(H)| > 2(h+kn)$$
 and $\Phi(\mathscr{A}_H)$ is not bounded.

In this case, let $G' \in \mathcal{G}$, $F' \in \mathcal{F}$, $G'' \in \mathcal{G}$ such that

$$H \subseteq G' \cap A \subseteq F' \cap A \subseteq G'' \cap A$$
 and $\tilde{\varphi}_{\star}(G'' \cap A \setminus H) < (k+hn)/k$,

so $|\varphi_{\star}(F'\cap A)| > h + kn$. Then, if we put

$$G = A \setminus F' \cap A$$
, $A' = G' \cap A$

it is easy to see that $(\varphi_*, G, A') \in \Phi \times \mathcal{G}_A \times \mathcal{G}_A$ verifies (* * *).

Case II: For every $(\varphi, H) \in \Phi \times (\mathcal{F} \cap A)$, $|\varphi(H)| > 2(h+kn)$ implies that $\Phi(\mathcal{A}_H)$ is bounded.

In this case, let $F \in \mathcal{F}_A$ and $\varphi_* \in \Phi$ such that $|\varphi_*(F)| > 4(h+kn)$; let $G' \in \mathcal{G}$, $F' \in \mathcal{F}$, $G'' \in \mathcal{G}$ such that

$$F \subseteq G' \subseteq F' \subseteq G''$$
 and $\tilde{\varphi}_*(G' \setminus F) < (h+kn)/k$,

so

$$|\varphi_*(F' \cap A)| > 2(h+kn)$$
 and $|\varphi_*(G' \cap A)| > 2(h+kn)$.

Finally, if we put

$$G = G' \cap A$$
, $A' = A \setminus F' \cap A$,

obviously (ϕ_*, G, A') verifies the (***).

It is clear now that, by the same argument as that of (3.2) of [14], we obtain a sequence $(\varphi_n)_{n\in\mathbb{N}}$ of functions of Φ and a disjoint sequence $(G_n)_{n\in\mathbb{N}}$ in $\mathscr G$ such that $|\varphi_n(G_n)| > n$, for every $n \in \mathbb{N}$; a contradiction with β).

(3.3) Let \mathcal{G} be a SIP-lattice¹⁹) and let Φ be a set of k-triangular functions from \mathcal{A} to $(X, | \cdot|)$, \mathcal{G} -exhaustive and regular, such that for every $G \in \mathcal{G}$, $\Phi(G)$ is bounded; then $\Phi(\mathcal{A})$ is bounded.

It suffices to prove that Φ satisfies contion β) of (2.2).

For this, let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence of functions of Φ and let $(G_n)_{n\in\mathbb{N}}$ be a disjoint sequence of sets of \mathscr{G} . We denote respectively by $(G_{n_i})_{i\in\mathbb{N}}$ and by \mathscr{S} a subsequence of $(G_n)_{n\in\mathbb{N}}$ and a ring with the Subsequential Interpolation Property contained in \mathscr{G} , such that $G_{n_i} \in \mathscr{S}$ for every $i \in \mathbb{N}$.

Clearly the restriction of φ_n to $\mathscr S$ is exhaustive for each $n \in \mathbb N$, and the set $\bigcup_{n \in \mathbb N} \{\varphi_n(G)\}$ is bounded for each $G \in \mathscr G$; therefore, by the (1.6) the set $\bigcup_{i \in \mathbb N} \varphi_{n_i}(G_{n_i}) \subseteq \bigcup_{n \in \mathbb N} \varphi_n(\mathscr S)$ is bounded.

The proof is complete.

Corollary (3.4). Let \mathcal{G} be a SIP-lattice and suppose that \mathcal{F} and \mathcal{G} have the property:

(•) for every $F \in \mathcal{F}$ and every $G \in \mathcal{G}$ such that $F \subseteq G$, there exist $E \in \mathcal{G}$, $H \in \mathcal{F}$ such that $F \subseteq E \subseteq H \subseteq G$.

If Φ is a set of k-triangular, G-exhaustive and inner regular functions from $\mathscr A$ to $(X, | \cdot|)$ such that for every $G \in \mathscr G$ $\Phi(G)$ is bounded, then $\Phi(\mathscr A)$ is bounded.

It follows immediately from (3.3) (see Remark 4). In particular we have:

Corollary (3.5). Let S be a normal topological space, \mathcal{G} the lattice of the open sets, \mathcal{F} the lattice of the closed sets of S, \mathcal{A} a field containing \mathcal{G} . If Φ is a set of k-triangular, \mathcal{G} -exhaustive and inner regular functions from \mathcal{A} to $(X, | \cdot|)$ such that for every $G \in \mathcal{G}$ $\Phi(G)$ is bounded, then $\Phi(\mathcal{A})$ is bounded.

Corollary (3.6). Let S be a Hausdorff locally compact topological space, \mathscr{F} the lattice of the compact sets, \mathscr{G} the lattice of the open sets, \mathscr{A} a field containing \mathscr{G} . If Φ is a set of k-triangular and inner regular functions from \mathscr{A} to $(X, | \cdot|)$, such that, for every $G \in \mathscr{G}$, $\Phi(G)$ is bounded, then $\Phi(\mathscr{A})$ is bounded.

It follows immediately from Corollary (3.4) and (2.2).

Corollary (3.7). Let S be a Hausdorff topological space, \mathcal{G} the lattice of the open sets, \mathcal{F} the lattice of the compact sets of S, \mathcal{A} a field containing \mathcal{G} . If Φ is a set of k-triangular and regular functions from \mathcal{A} to (X, | |) such that for every $G \in \mathcal{G}$ $\Phi(G)$ is bounded, then $\Phi(\mathcal{A})$ is bounded.

It follows immediately from (3.3) and (2.2).

Remark 5. Clearly (see (2.1) and Remark 4), Corollary (3.6) contains Theorem 2 and Theorem 3 of [24] (see also [23], [6] Proposition 9, [2] Remark 2, p. 168).

We note that, if we put $\mathscr{F}=\mathscr{G}=\mathscr{A}$, (3.3) yields a Nikodym's boundedness theorem for k-triangular functions defined in a field which is a SIP-lattice. Moreover, from (3.3) we can obtain a Dieudonné boundedness type theorem for finitely additive functions from \mathscr{A} with values in a topological commutative group Γ (see [14]). In fact, if Γ is a topological commutative group with neutral element 0, a finitely additive function φ from \mathscr{A} to Γ is \mathscr{G} -exhaustive (resp. inner regular, regular (in the sense of [14])) iff, for every continuous real-valued quasi-norm ϱ on Γ , the \mathbb{R}^+ -valued 1-triangular function $\varrho \circ \varphi$ is \mathscr{G} -exhaustive (resp. inner regular, regular)²⁰).

Therefore:

Corollary (3.8). Let Γ be a topological commutative group and let $\mathcal G$ be a

SIP-lattice. If Φ is a set of finitely additive and G-exhaustive regular functions from \mathcal{A} to Γ , such that for every $G \in \mathcal{G}$, $\Phi(G)$ is \mathcal{U} -bounded, then $\Phi(\mathcal{A})$ is \mathcal{U} -bounded.

For every continuous real-valued quasi-norm ϱ on Γ , apply (3.3) to the set $\bigcup_{\varphi \in \Phi} (\varrho \circ \varphi)$.

Notes

- 1) A function ψ from \mathcal{R} to \overline{R}^+ is said k-subadditive (resp. countably k-subadditive) if, for any disjoint sets A, B from \mathcal{R} , $\psi(A \cup B) \leq \psi(A) + k\psi(B)$ (resp. for any disjoint sequence $(A_n)_{n \in \mathbb{N}}$ in \mathcal{R} such that $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{R}$, $\psi(\bigcup_{n \in \mathbb{N}} A_n) \leq \psi(A_1) + k \sum_{n>1} \psi(A_n)$ (see [15], [16]).
- ²) See [15], Corollary 1 for the case φ k-triangular with values in an abelian quasi-normed group and [19], Corollary (2.3) for the case φ finitely additive.
 - 3) In fact, for each $A \in \mathcal{R}$,

$$|\varphi(A)| \leq |\varphi(A \cap A_0)| + k |\varphi(A \setminus A_0)|$$
;

therefore $\varphi(\mathcal{R}_{A_0})$ bounded implies $\varphi(\mathcal{R})$ bounded.

- 4) See [15], Lemma 2, for the case φ k-triangular function with values in an abelian quasi-normed group.
 - ⁵) For the definition of quasi σ -ring see [3], [9], [13], [28]; see also [25], Lemma 1.
- ⁶) We note that function a φ from \mathcal{R} to (X, | |) is exhaustive iff for every disjoint sequence $(A_n)_{n \in \mathbb{N}}$ of set of \mathcal{R}

$$\lim_{n} \varphi(A_n \cap A) = 0,$$

uniformly with respect to $A \in \mathcal{R}$ (see the proof of (1.1), Ch. II of [4]) see also note 10, p. 134 of [4].

7) It follows from (1.1) of [13]; in fact, it is easy to see that it is true also for an exhaustive function η from \mathcal{R} to \mathbb{R}^+ such that

$$\eta(X) \leq \eta(Y)$$
 if $X, Y \in \mathcal{R}: X \subseteq Y$.

- *) We refer to [16], remark p. 29, for an example of a set Φ of (real) 1-triangular exhaustive functions verifying a), for which the set $\Phi(\mathcal{R})$ is not bounded. We write $\Phi(A) = \bigcup_{\varphi \in \Phi} \varphi(A)$ $\forall A \in \mathcal{R}$ and $\Phi(\mathcal{H}) = \bigcup_{A \in \mathcal{A}} \Phi(A) \ \forall \mathcal{H} \subseteq \mathcal{R}$.
- *) See [10], [5] for the definition of rings with the Subsequential Intersolation Property (rings with the (P2) property in [28], satisfying condition (E_2) in [9]).
 - 10) We note that, for each $n \in \mathbb{N}$, $\{A \in \mathcal{R}: \tilde{\varphi}_n(A) = 0\}$ is an ideal of \mathcal{R} ; see also [17], [27].
- 11) In fact, let \mathscr{A} be a disjoint set of non-zero elements of \mathscr{R}/\mathscr{N} ; we write, $\forall (n, k) \in \mathbb{N} \times \mathbb{N}$, $\mathscr{A}_k^{(n)} = \{[A] \in \mathscr{R}/\mathscr{N} : \tilde{\varphi}_n(A) > 1/k\}$. Then $\mathscr{A} = \bigcup_{\substack{(n, k) \in \mathbb{N} \times \mathbb{N} \\ k}} \mathscr{A}_k^{(n)}$ and, φ_n being exhaustive $\forall n \in \mathbb{N}$, $\mathscr{A}_k^{(n)}$ is or empty or finite set, $\forall (n, k) \leq \mathbb{N} \times \mathbb{N}$.

12) In fact, $\forall n \in \mathbb{N}$, we have $|\varphi_n(A)| = |\varphi_n(B)|$ if [A] = [B], $\hat{\varphi}_n([\emptyset]) = 0$, $|\hat{\varphi}_n([A]) - \hat{\varphi}_n([B])| \leq k\varphi_n(A \setminus B) + k\varphi_n(B \setminus A) = k\hat{\varphi}_n([A] \setminus [B]) + k\hat{\varphi}_n([B] - [A]) \ \forall [A], \ [B] \in \mathcal{R}/\mathcal{N};$ for every disjoint sequence $([A_p])_{p \in \mathbb{N}}$ we put $A_1' = A_1$ and, $\forall p > 1, A_p' = A_p - \bigcup_{i < p} A_p \cap A_i$ and we have

$$\lim_{p} \hat{\varphi}_{n}([A_{p}]) = \lim_{p} |\varphi_{n}(A'_{p})| = 0.$$

13) We note that, if \mathcal{R} is a σ -ring, a k-triangular and order continuous function is exhaustive. Moreover, if X is a commutative semigroup with a family F of non-negative real valued functions f which have the property

$$f(x)-f(y) \le f(x+y) \le f(x)+f(y)$$
, for each $x, y \in X$,

for every triangle set function ([21]) order continuous μ from \mathcal{R} to (X, | |) the function

$$v: A \in \mathcal{R} \to f(\mu(A)) \in [0, +\infty[$$

is, for every $f \in F$, a 1-triangular and order continuous function.

- ¹⁴) If S is a Hausdorff locally compact topological space, \mathscr{A} is the σ -field of the Borel sets of S, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets of S, the (°) is the condition (R) of [23], [24].
- 15) For every $A \in \mathcal{A}$ and for every $\varepsilon > 0$, let $F \in \mathcal{F}_A$ and $H \in \mathcal{F}_{S \setminus A}$ such that $\widetilde{\varphi}(A \setminus F) < \varepsilon/2$ and $\widetilde{\varphi}(S \setminus A \setminus H) < \varepsilon/2$ and put $G = S \setminus H$.
- ¹⁶) For instance, if S is a Hausdorff topological space, \mathscr{A} is the σ -field of the Borel sets of S, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets, \mathscr{F} and \mathscr{G} satisfy the property (* *) (and therefore \mathscr{F} has the (*)).
- ¹⁷) If (X, | |) is a quasi-normed group and φ is a finitely additive function from \mathscr{A} to (X, | |), this is the definition of regular finitely additive function of [14].
 - ¹⁸) The variation $|\varphi|$ of φ is defined in the usual way;

$$|\varphi|(A) = \sup_{\Pi} \sum_{B \in \Pi} |\varphi(B)| \quad A \in \mathcal{A},$$

where the supremum is taken over all partitions of A into a finite number of disjoint sets in \mathcal{A} .

- 19) We say that a lattice \mathcal{G} is a SIP-lattice if for each disjoint sequence $(G_n)_{n\in\mathbb{N}}$ of sets of \mathcal{G} there exist a subsequence $(G_{n_i})_{i\in\mathbb{N}}$ of $(G_n)_{n\in\mathbb{N}}$ and a ring \mathcal{G} with the SIP contained in \mathcal{G} , such that $G_{n_i}\in\mathcal{G}$, for each $i\in\mathbb{N}$ ([14]).
- ²⁰) See [14] for the definitions of finitely additive inner regular and regular functions from \mathscr{A} to Γ . Recall that for every neighbourhood U of 0, there exist an $\varepsilon > 0$ and a continuous (real-valued) quasi-norm ϱ on Γ such that $\{x \in \Gamma : \varrho(x) < \varepsilon\} \subseteq U$.
- ²¹⁾ See [14] for the definition of \mathcal{U} -bounded subset of Γ ; recall that a subset Y of Γ is \mathcal{U} -bounded iff, for every continuous real-valued quasi-norm on Γ , $\sup_{y \in Y} \varrho(y) < +\infty$ ([28], Th. (6.8) (a)). See [14], (3.2).

References

- L. V. AGAFONOVA and V. M. KLIMKIN, A Nikodym theorem for triangular set functions, Sib. Math. J., 15 (1974), 1, 477—481.
- [2] J. K. Brooks, On a Theorem of Dieudonné, Adv. in Math., 36 (1980), 165—168.
- [3] C. Constantinescu, On Nikodym's boundedness theorem, Libertas Math., 1 (1981), 51-73.
- [4] P. DE LUCIA, Funzioni finitamente additive a valori in un gruppo topologico, Pitagora Editrice (Bologna, 1985).
- [5] P. DE LUCIA and P. Morales, Equivalence of Brooks—Jewett, Vitali—Hahn—Saks and Nikodym convergence theorems for uniform semigroup-valued additive functions on a Boolean ring, Ricerche Mat., 35 (1986), 75—87.
- [6] J. DIEUDONNÉ, Sur la convergence des suites de measures de Radon, An. Acad. Brasil. Ci., 23 (1951), 21—38; 277—282.
- [7] N. DINCULEANU, Vector measures, Pergamon Press (New York, 1967).
- [8] N. DINCULEANU and I. KLUVANEK, On vector measures, Proc. London Math. Soc. (3) 17 (1967), 505—512.
- [9] I. FLEISCHER and T. TRAYNOR, Equicontinuity and uniform boundedness for homomorphism and measures, Windsor Math. Report, 83—16 (1983), 1—7.
- [10] F. J. Freniche, The Vitali—Hahn—Saks theorem for Boolean algebras with the subsequential interpolation property, Proc. Amer. Math. Soc., 92 (1984), 362—366.
- [11] G. Fox and P. Morales, Uniform semigroup valued measures. I, Rapport de recherche no. 80—17, Université de Montreal (1980), pp. 1—20.
- [12] G. Fox and P. Morales, Théorèmes de Nikodym et de Vitali—Hahn—Saks pour les mesures à valeurs dans un semigroupe uniforme, *Proc. Conf. on Measure Theory and Its Applications*, Sherbrooke 1982, Lect. Notes in Math. 1033, Springer-Verlag (Berlin, 1983), pp. 199—208.
- [13] E. Guariglia, Su un teorema di Nikodym per funzioni a valori nei gruppi topologici, Le Matematiche, 37 (1982), 328—342.
- [14] E. GUARIGLIA, On Dieudonné's Boundedness Theorem, J. Math. Anal. and Appl., 145 (1990), 447—454.
- [15] N. S. Gusel'nikov, Extension of quasi-Lipschitz set functions, Math. Notes, 17 (1975), 14—19.
- [16] N. S. Gusel'nikov, Triangular set functions and Nikodym's theorem on the uniform boundedness of a family of measures, *Math. USSR Sbornik*, 35 (1979), 19—33.
- [17] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand (New York, 1963).
- [18] J. MIKUSINSKI, On a theorem of Nikodym on bounded measures, Bull. Acad. Pol. Sci. Sér. Math. Astronom. et Phys., 19 (1971), 441—444.
- [19] P. Morales, Boundedness for uniform semigroup valued set functions, in: Proc. Conf. on Measure Theory, Oberwolfach 1983, Lect. Notes in Math. 1089, Springer-Verlag (Berlin, 1984), pp. 153—164.
- [20] O. NIKODYM, Sur les familles bornées de functions parfaitement additives d'ensemble abstrait, Monatsh. Math. Phys., 40 (1933), 418—426.
- [21] E. PAP, Uniform boundedness of a family of triangle semigroup valued set functions, Zbornik radova PMF u Novom Sadu, 10 (1980), 77—83.
- [22] E. PAP, Funkcionalna analiza, Institute of Mathematics (Novi Sad, 1982).
- [23] E. PAP, A generalization of a Dieudonné theorem for a non-additive set functions, Zbornik radova PMF u Novom Sadu, 13 (1983), 113—123.
- [24] E. PAP, A generalization of a theorem of Dieudonné for k-triangular set functions, Acta Sci. Math., 50 (1986), 159—167.

- [25] E. PAP, The Vitali—Hahn—Saks theorems for k-triangular set functions, Atti. Sem. Mat. Fis. Univ. Modena, 25 (1987), 21—32.
- [26] R. Sikorski, Boolean Algebras, Springer-Verlag (Berlin, 1960).
- [27] M. Sion, A theory of semigroup valued measures, Lect. Notes in Math. 355, Springer-Verlag (Berlin, 1973).
- [28] H. Weber, Compactness in spaces of group-valued contents, the Vitali—Hahn—Saks theorem and Nikodym boundedness theorem, Rocky Mountain J. Math., 16 (2), (1986), 253—275.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI "R. CACCIOPPOLI" UNIV. DI NAPOLI "FEDERICO II" VIA MEZZOCANNONE, 8 80134 NAPOLI ITALIA