Uniform boundedness theorems for k-triangular set functions

EMMA GUARIGLIA*)

In a recent paper, we have obtained a generalization of the classical boundedness Dieudonné theorem ([9], Prop.9), in the setting of finitely additive group valued-functions ([14], (3.2)).

The purpose of this paper is to obtain an analogous result ((3.3)), in the setting of semigroup valued k-triangular functions. For this, firstly we establish that Nikodym's boundedness theorem holds for k-triangular exhaustive functions on a ring with the Subsequential Interpolation Property ((1.6)). This proposition yields some recent results of E. Pap as special cases (see [21], [23], [24]). We apply (3.3) to obtain again a Dieudonné type theorem for finitely additive group-valued functions (Corollary (3.8), see also [14], (4.2)).

1. Let X be a commutative semigroup with neutral element 0 ; let p be a semiinvariant pseudometric on X, namely a pseudometric satisfying the inequality

$$
p(x+z, y+z) \leqq p(x, y) \quad \forall x, y, z \in X
$$

or, equivalenty, the inequality

$$
p\left(x+x^{\prime}, y+y^{\prime}\right) \leqq p(x ; y)+p\left(x^{\prime}, y^{\prime}\right) \quad \forall x, x^{\prime}, y, y^{\prime} \in X .
$$

Let $\mathbf{R}^{+}=\left[0,+\infty\left[, \widetilde{\mathbf{R}}^{+}=[0,+\infty]\right.\right.$. To p there corresponds the function
for which

$$
\begin{gathered}
|0|=0 \\
||x|-|y|| \leqq|x+y| \leqq|x|+|y| \quad \forall x, y \in X,
\end{gathered}
$$

([22], [23]).

[^0]We will denote by $(X,| |)$ the uniform semigroup $\left(X, \mathscr{U}_{p}\right)$, where \mathscr{U}_{p} is the uniformity of X generated by the pseudometric p ([11], [27]). We say that a subset Y of X is bounded if $\sup _{y \in Y}|y|<+\infty$.

Let \mathscr{R} be a ring of subsets of a set S and φ a function from \mathscr{R} to $(X,| |)$. We say that φ is bounded if the set $\varphi(\mathscr{R})$ is a bounded subset of X.

Let $k \in \mathbf{R}^{+}$. We say that φ is k-triangular if $\varphi(\emptyset)=0$ and for any disjoint sets A and B from \mathscr{R},

$$
|\varphi(A)|-k|\varphi(B)| \leqq|\varphi(A \cup B)| \leqq|\varphi(A)|+k|\varphi(B)|
$$

It is easy to see that φ is k-triangular if and only if

$$
\varphi(\emptyset)=0
$$

and, for any sets C, D from \mathscr{R}, we have

$$
\begin{equation*}
||\varphi(C)|-|\varphi(D)|| \leqq k|\varphi(C \backslash D)|+k|\varphi(D \backslash C)| \tag{16}
\end{equation*}
$$

Moreover, a function φk^{\prime}-triangular is k-triangular for each $k \geqq k^{\prime}$ and φk-triangular for $k \in] 0,1[$ implies $|\varphi(X)|=0$ for each $X \in \mathscr{R}$. Hence below we will consider k-triangular functions with $k \geqq 1$.

Let \mathscr{G} be a lattice contained in \mathscr{R}; we say that a function φ from \mathscr{R} to $(X,| |)$ is \mathscr{G}-exhaustive if, for every disjoint sequence $\left(G_{n}\right)_{n \in N}$ in \mathscr{G}, we have

$$
\lim _{n} \varphi\left(G_{n}\right)=0
$$

an \mathscr{R}-exhaustive function is called exhaustive.
We say that a function φ from \mathscr{R} to $(X,| |)$ is order continuous if for every decreasing sequence $\left(A_{n}\right)_{n \in N}$ in \mathscr{R} such that $\bigcap_{n \in N} A_{n}=\emptyset$

$$
\lim _{n} \varphi\left(A_{n}\right)=0 .
$$

We write, for every $\mathscr{H} \subseteq \mathscr{R}$ and $A \in \mathscr{R}$,

$$
\begin{gathered}
\mathscr{H}_{A}=\{H \in \mathscr{H}: H \subseteq A\} \\
\mathscr{H} \cap A=\{H \cap A, H \in \mathscr{H}\}
\end{gathered}
$$

Let φ be a function from \mathscr{R} to $(X,| |)$; its semivariation (supremitation or supremacy in [15], [16]) is the function

$$
\tilde{\varphi}: A \in \mathscr{R} \rightarrow \sup _{B \in \mathscr{R}_{A}}|\varphi(B)| \in \overline{\mathbf{R}}^{+}
$$

([11], [12], [19]).

We have

$$
\begin{gathered}
\tilde{\varphi}(\emptyset)=0 \quad \text { if } \quad|\varphi(\emptyset)|=0, \\
|\varphi(A)| \leqq \tilde{\varphi}(A) \quad \forall A \in \mathscr{R}, \\
A \cong B \Rightarrow \tilde{\varphi}(A) \leqq \tilde{\varphi}(B) .
\end{gathered}
$$

Moreover $\tilde{\varphi}$ is k-subadditive if the function

$$
A \in \mathscr{R} \rightarrow|\varphi(A)| \in \mathbf{R}^{+}
$$

is k-subadditive ${ }^{1}$); $\tilde{\varphi}$ is exhaustive $\operatorname{iff} \varphi$ is exhaustive ([12], Lemma (2.2)).
Now, we give the proof of:
(1.1). Let \mathscr{R} be a ring of subsets of S and φ a k-triangular and exhaustive function from \mathscr{R} to $(X,| |)$. Then φ (and therefore $\tilde{\varphi}$) is bounded ${ }^{2}$).

Suppose the contrary. Then by Lemma (2.1) of [19] we can find $A_{0} \in \mathscr{R}$ such that for every $A \in \mathscr{R}$

$$
\left|\varphi\left(A \backslash A_{0}\right)\right| \leqq 1
$$

Therefore the set $\varphi\left(\mathscr{R}_{A_{0}}\right)$ is not bounded $\left.{ }^{3}\right)$ and we can find $B_{1} \in \mathscr{R}_{A_{0}}$ such that

$$
\left|\varphi\left(B_{1}\right)\right|>k+\left|\varphi\left(A_{0}\right)\right|
$$

Hence we have also

$$
\left|\varphi\left(A_{0} \backslash B_{1}\right)\right| \geqq \frac{1}{k}| | \varphi\left(B_{1}\right)\left|-\left|\varphi\left(A_{0}\right)\right|\right|>1
$$

and or $\varphi\left(\mathscr{R}_{B_{1}}\right)$ or $\varphi\left(\mathscr{R}_{A_{0} \backslash B_{1}}\right)$ is not bounded.
Then we write $A_{1}=B_{1}$ and $C_{1}=A_{0} \backslash B_{1}$ if $\varphi\left(\mathscr{R}_{B_{1}}\right)$ is not bounded; on the contrary, we write $A_{1}=A_{0} \backslash B_{1}$ and $C_{1}=B_{1}$.

It is clear now that we can obtain, as in [19], Theorem (2.2), a sequence $\left(C_{n}\right)_{n \in N}$ of mutually disjoint sets of \mathscr{R} such that

$$
\left|\varphi\left(C_{n}\right)\right|>1 \quad \forall n \in \mathbf{N}
$$

a contradiction with the assumption that φ is exhaustive.
(1.2). Let \mathscr{R} be a ring of subsets of S and let φ an order continuous function from \mathscr{R} to $(X,| |)$. If the function

$$
A \in \mathscr{R} \rightarrow|\varphi(A)|
$$

is k-subadditive, this function and the semivariation of $\varphi, \tilde{\varphi}$, are also countably k-subadditive ${ }^{4}$).

Let $\left(A_{n}\right)_{n \in N}$ be a disjoint sequence of elements of \mathscr{R} such that $\bigcup_{n \in \mathcal{N}} A_{n} \in \mathscr{R}$: Then, for every $n \in N(n \geqq 2)$ and for every $A \in \mathscr{R}$,

$$
\begin{aligned}
& \left|\varphi\left(\bigcup_{n \in \mathbb{N}} A_{n} \cap A\right)\right| \leqq\left|\varphi\left(\bigcup_{i \leqq n} A_{i} \cap A\right)\right|+k\left|\varphi\left(\bigcup_{i>n} A_{i} \cap A\right)\right| \leqq \\
& \leqq \varphi\left(A_{1} \cap A\right)+k \sum_{1<i \leqq n}\left|\varphi\left(A_{i} \cap A\right)\right|+k\left|\varphi\left(\bigcup_{i>n} A_{i} \cap A\right)\right| .
\end{aligned}
$$

Taking limits in the above inequality, we obtain, for each $A \in \mathscr{R}$,

$$
\left|\varphi\left(\bigcup_{n \in \mathbb{N}} A_{n} \cap A\right)\right| \leqq\left|\varphi\left(A_{1} \cap A\right)\right|+k \sum_{n \leqq 2}\left|\varphi\left(A_{n} \cap A\right)\right|
$$

and also

$$
\tilde{\varphi}\left(\bigcup_{n \in \mathrm{~N}} A_{n}\right) \leqq \tilde{\varphi}\left(A_{1}\right)+k \sum_{n \geqq 2} \tilde{\varphi}\left(A_{n}\right)
$$

this completes the proof.
Corollary (1.2). If φ is an order continuous k-subadditive function defined on the ring \mathscr{R} with values in \mathbf{R}^{+}, then φ and its semivariation $\tilde{\varphi}$ are also countably k-subadditive.
(1.3). Let \mathscr{R} be a quasi σ-ring of subsets of S and let $\left(\varphi_{n}\right)_{n \in \mathrm{~N}}$ be a sequence of exhaustive functions from \mathscr{R} to $(X,| |)$. Then, for each disjoint sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{R}, there exist a subsequence $\left(A_{n_{r}}\right)_{r \in \mathrm{~N}}$ of $\left(A_{n}\right)_{n \in \mathrm{~N}}$ and a quasi σ-ring \mathscr{S} contained in \mathscr{R} such that $A_{n_{r}} \in \mathscr{S}$ for each $r \in \mathbf{N}$, such that for every $n \in \mathbf{N}$ the restriction of φ_{n} to \mathscr{S} is order continuous ${ }^{5}$).

Let, for each $n \in \mathbf{N}, \tilde{\varphi}_{n}$ be the semivariation of φ_{n} and let

$$
\eta: A \in \mathscr{R} \rightarrow \sum_{n \in \mathbb{N}} \frac{1}{2^{n}} \inf \left\{1, \tilde{\varphi}_{n}(A)\right\} \in \mathbf{R}^{+}
$$

it is easy to see that η is an exhaustive function such that

$$
\left.\eta(A) \leqq \eta(B) \quad \text { if } \quad A \subseteq B, \quad A, B \in \mathscr{R}^{6}\right)
$$

Let $\left(A_{n}\right)_{n \in \mathrm{~N}}$ be a disjoint sequence of sets of \mathscr{R}; then we can find a subsequence $\left(A_{n_{r}}\right)_{r \in \mathcal{N}}$ of $\left(A_{n}\right)_{n \in \mathrm{~N}}$ and a quasi σ-ring \mathscr{S} contained in \mathscr{R} such that $A_{n_{r}} \in \mathscr{S}$, for each $r \in \mathbf{N}$, and the restriction of η to \mathscr{S} is order continuous ${ }^{7}$).

Hence, if $\left(B_{p}\right)_{p \in \mathrm{~N}}$ is a decreasing sequence of sets of \mathscr{S} such that $\bigcap_{p \in \mathrm{~N}} B_{p}=\emptyset$, we have, for each $n \in \mathbf{N}$,

$$
\lim _{p} \varphi_{n}\left(B_{p} \cap B\right)=0
$$

uniformly with respect to $B \in \mathscr{S}$; namely, for each $n \in N$, the restriction of φ_{n} to \mathscr{S} is order continuous.
(1.4). Let \mathscr{R} be a ring of subsets of S and let Φ be a set of k-triangular functions from \mathscr{R} to (X, \mid), such that
a) $\Phi(A)$ is bounded for every $A \in \mathscr{R}$,
b) for every sequence $\left(\varphi_{n}\right)_{n \in \mathcal{N}}$ of elements of Φ and for every disjoint sequence $\left(A_{n}\right)_{n \in \mathbf{N}}$ of sets of \mathscr{R} there exists an infinite subset M of \mathbf{N} such that $\bigcup_{n \in M}\left\{\varphi_{n}\left(A_{n}\right)\right\}$ is bounded.

Then $\Phi(\mathscr{R})$ is bounded. ${ }^{8}$)
Suppose the contrary. Then there are two possibilities.
Case I: There exists $A \in \mathscr{R}$ such that $\Phi\left(\mathscr{R}_{A}\right)$ is not bounded.
In this case, firstly we prove:
c) for every $A \in \mathscr{R}$ such that $\Phi\left(\mathscr{R}_{A}\right)$ is not bounded and for every $n \in \mathbf{N}$, there exists $(\varphi, B) \in \Phi \times \mathscr{R}_{A}$ such that

$$
|\varphi(B)|>n \quad \text { and } \quad \Phi\left(\mathscr{R}_{B}\right) \text { is not bounded. }
$$

In fact, suppose that there exist $n_{0} \in \mathbf{N}$ and $A_{0} \in \mathscr{R}$ such that $\Phi\left(\mathscr{R}_{A_{0}}\right)$ is not bounded such that for every $(\varphi, B) \in \Phi \times \mathscr{R}_{A_{0}},|\varphi(B)|>n_{0}$ implies that $\Phi\left(\mathscr{R}_{B}\right)$ is bounded. Let $(\bar{\varphi}, B) \in \Phi \times \mathscr{R}_{A_{0}}$ such that $|\bar{\varphi}(B)|>2 k n_{0}$; therefore

$$
|\bar{\varphi}(B)|>n_{0} \text { and }\left|\bar{\varphi}\left(A_{0} \backslash B\right)\right|>n_{0} .
$$

Hence, $\Phi\left(\mathscr{R}_{B}\right)$ and $\Phi\left(\mathscr{R}_{A_{0} \backslash B}\right)$ being bounded, $\Phi\left(\mathscr{R}_{A_{0}}\right)$ is bounded, a contradiction.

Let now $A_{1} \in \mathscr{R}$ such that $\Phi\left(\mathscr{R}_{A_{1}}\right)$ is not bounded and $r(1)$ such that

$$
\left|\varphi\left(A_{1}\right)\right| \leqq r(1) \quad \forall \varphi \in \Phi ;
$$

by c) there exists $\left(\varphi_{1}, A_{2}\right) \in \Phi \times \mathscr{R}_{A_{1}}$ such that

$$
\left|\varphi_{1}\left(A_{2}\right)\right|>k+r(1) \text { and } \Phi\left(\mathscr{R}_{A_{2}}\right) \text { is not bounded. }
$$

Continuing by induction, we can find a decreasing sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of sets of \mathscr{R}_{n}, a sequence $\left(\varphi_{n}\right)_{n \in \mathcal{N}}$ of functions of Φ and a sequence $(r(n))_{n \in \mathcal{N}}$ of natural numbers such that for every $n \in \mathbf{N}$,

$$
\text { . }\left|\varphi_{n}\left(A_{n}\right)\right| \leqq r(n), \quad\left|\varphi_{n}\left(A_{n+1}\right)\right|>k n+r(n), \quad \Phi\left(\mathscr{R}_{A_{n}}\right) \text { are not bounded. }
$$

Finally, if we write $C_{n}=A_{n} \backslash A_{n+1}$ for each $n \in \mathbf{N},\left(C_{n}\right)_{f \mathbf{N}}$ is a disjoint sequence of sets of \mathscr{R} such that

$$
\left|\varphi_{n}\left(C_{n}\right)\right|>n \quad \forall n \in \mathbf{N},
$$

a contradiction with b).

Case II: For every $A \in \mathscr{R}$ the set $\Phi\left(\mathscr{R}_{A}\right)$ is bounded.
In this case, if we denote by \mathscr{R}_{A}^{\prime} the ring of sets of \mathscr{R} disjoint from A, we have that $\Phi\left(\mathscr{R}_{A}^{\prime}\right)$ is not bounded, for each $A \in \mathscr{R}$. Then, we put $A_{0}=\emptyset$ and we choose $\varphi_{2} \in \Phi$ and $A_{1} \in \mathscr{R}$ such that $\left|\varphi_{1}\left(A_{1}\right)\right| \geqq 1$. Continuing by induction, we find for every $n \in \mathbb{N}, \varphi_{n} \in \Phi$ and $A_{n} \in \mathscr{R}^{\prime} \bigcup_{1 \leq i \leq n-1}^{U} A_{i}$ such that $\left|\varphi_{n}\left(A_{n}\right)\right|>n$, a contradiction with b). This completes the proof.
(1.5). Let \mathscr{R} be a quasi σ-ring of subsets of S and let Φ be a set of k-triangular and exhaustive functions from \mathscr{R} to $(X,|| |$. If for every $A \in \mathscr{R}$ the set $\Phi(A)$ is bounded, then $\Phi(\mathscr{R})$ is bounded.

Suppose that $\Phi(\mathscr{R})$ is not bounded. Then, by (1.4), there exist a sequence $\left(\varphi_{n}\right)_{n \in \mathbf{N}}$ of functions of Φ and a disjoint sequence $\left(A_{n}\right)_{n \in \mathbf{N}}$ of sets of \mathscr{R} such that for every infinite subset M of \mathbf{N} the set $\bigcup_{n \in M}\left\{\varphi_{n}\left(A_{n}\right)\right\}$ is not bounded.

Let now, by (1.3), $\left(A_{n_{i}}\right)_{i \in N}$ be a subsequence of $\left(A_{n}\right)_{n \in \mathcal{N}}$ and \mathscr{S} a quasi σ-ring contained in \mathscr{R} such that $A_{n_{1}} \in \mathscr{S}(\forall i \in \mathbf{N})$ and the restriction of φ_{n} to \mathscr{S} is order continuous, for each $n \in \mathbf{N}$.

Let p_{1} be a positive real number and let $i_{1} \in \mathbf{N}$ such that

$$
\left|\varphi_{n_{i_{1}}}\left(A_{n_{i_{1}}}\right)\right|>2 p_{1}
$$

$\varphi_{n_{i_{1}}}$ being exhaustive, we can find $h_{1}>i_{1}$ such that

$$
\left|\varphi_{n_{i_{1}}}\left(A_{n_{m}}\right)\right|<p_{1} / 2 k^{3} \quad \forall m>h_{1}
$$

We write, $\forall i \in \mathbf{N}, \alpha_{i}=k^{2} \sup _{\varphi \in \Phi}\left|\varphi\left(A_{n_{i}}\right)\right|<+\infty$ and we put $p_{2}=\max \left\{2 p_{1}, \alpha_{i_{1}}\right\}$. Then there exist $i_{2}>h_{1}$ and $h_{2}^{\varphi \in \Phi}>i_{2}$ such that

$$
\left|\varphi_{n_{i_{2}}}\left(A_{n_{i_{2}}}\right)\right|>3 p_{2}
$$

and

$$
\left|\varphi_{n_{i_{1}}}\left(A_{n_{m}}\right)\right| \leqq p_{1} / 2^{2} k^{3}, \quad\left|\varphi_{n_{i_{2}}}\left(A_{n_{m}}\right)\right| \leqq p_{1} / 2^{2} k^{3} \quad \forall m \geqq h_{2}
$$

Similarly, if we write $p_{s}=\max \left\{s p_{s-1}, \alpha_{i_{s-1}}\right\}$ for each $s \in \mathbf{N},(s>1)$ we can find $h_{s-1}<i_{s}<h_{s}$ such that

$$
\left|\varphi_{n_{i_{s}}}\left(A_{n_{i_{s}}}\right)\right| \geqq(s+1) p_{s}
$$

and, for each $r \in\{1, \ldots, s\}$,

$$
\left|\varphi_{n_{i_{r}}}\left(A_{n_{m}}\right)\right|<p_{1} / 2^{s} k^{3} \quad \forall m \geqq h_{s} .
$$

Let now $\left(A_{n_{i_{s}}}\right)_{q \in \mathbf{N}}$ be a subsequence of $\left(A_{n_{i_{s}}}\right)_{s \in \mathrm{~N}}$ such that $A_{0}=\bigcup_{q \in \mathrm{~N}} A_{n_{i_{s_{q}}}} \in \mathscr{S}$; we obtain ($\forall q>1$) from (1.2)

$$
\begin{gathered}
\left|\varphi_{n_{i_{s_{q}}}}\left(A_{0}\right)\right| \geqq\left|\varphi_{n_{i_{s_{q}}}}\left(A_{n_{i_{s_{q}}}}\right)\right|-k^{2} \sum_{l<q}\left|\varphi_{n_{i_{s_{q}}}}\left(A_{n_{i_{s_{l}}}}\right)\right|-k^{3} \sum_{l>q}\left|\varphi_{n_{i_{s_{q}}}}\left(A_{n_{i_{s_{l}}}}\right)\right| \geqq \\
\geqq\left(s_{q}+1\right) p_{s_{q}}-\sum_{l<q} \alpha_{i_{s_{l}}}-\sum_{l>q} p_{1} / 2^{s_{l}-1} \geqq\left(s_{q}+1\right) p_{s_{q}}-\sum_{l<q} p_{s_{l}+1}-p_{1} \geqq \\
\geqq s_{q} p_{s_{q}}-(q-1) p_{s_{q-1}} \geqq q p_{1},
\end{gathered}
$$

a contradiction with the boundedness of $\Phi\left(A_{0}\right)$.
(1.6). Let \mathscr{R} be a ring of subsets of S with the Subsequential Interpolation Property ${ }^{9}$) and let Φ be a set of k-triangular and exhaustive functions from \mathscr{R} to $(X,| |)$. If for every $A \in \mathscr{R}$ the set $\Phi(A)$ is bounded, then $\Phi(\mathscr{R})$ is bounded.

We have to prove that b) of (1.4) is verified. Let $\left(\varphi_{n}\right)_{n \in \mathrm{~N}}$ be a sequence of functions of Φ and $\left(A_{n}\right)_{n \in \mathbf{N}}$ a disjoint sequence of sets of Φ.

It is easy to prove that $\mathscr{N}=\left\{A \in \mathscr{R}: \tilde{\varphi}_{n}(A)=0 \forall n \in \mathbf{N}\right\}$ is an ideal of $\left.\mathscr{R}^{10}\right)$ and $\mathscr{R} / \mathscr{N}$ satisfies the countable chain condition ${ }^{11}$); therefore by the (7.1.1) of [28] $\mathscr{R} / \mathcal{N}$ is a quasi σ-ring.

Now, we denote for each $n \in \mathbf{N}$ by $\hat{\varphi}_{n}$ the function

$$
[A] \in \mathscr{R} / \mathscr{N} \rightarrow\left|\varphi_{n}(A)\right|
$$

and we note that, $\forall n \in \mathbf{N}, \hat{\varphi}_{n}$ is a k-triangular and exhaustive function from $\mathscr{R} / \mathscr{N}$ to \mathbf{R}^{+12}).

Therefore, by (1.5) the set $\bigcup_{n \in \mathrm{~N}}\left\{\varphi_{n}\left(A_{n}\right)\right\} \subseteq \bigcup_{n \in \mathrm{~N}} \hat{\varphi}_{n}(\mathscr{R} / \mathcal{N})$ is bounded. The proof is complete.

Remark 1. We remark that (1.4) contains Theorem 1, p. 30 of [16] and (1.6) contains the Nikodym's boundedness Theorem of [20], Theorem N of [18], Corollaries $4,5,6$ p. 29 of [16].

We remark also that from (1.6) we obtain Corollary (Nikodym) of [1] and Theorem 2 of [21] ${ }^{13}$).
2. We shall denote below by \mathscr{A} a field of subsets of S and bv \mathscr{F} and \mathscr{G} two lattices contained in \mathscr{A} such that $S \backslash F \in \mathscr{G}$, for each $F \in \mathscr{F}$.

Let φ be a function from \mathscr{A} to $(X, \mid D)$; we say that φ is inner regular (with respect to \mathscr{F}) in $A, A \in \mathscr{A}$, if for every $\varepsilon>0$ there exists $F \in \mathscr{F}$ such that $F \subseteq A$ and $\tilde{\varphi}(A \backslash F)<\varepsilon$.

We say that φ is inner regular (with respect to \mathscr{F}) on $\mathscr{H}, \mathscr{H} \subseteq \mathscr{A}$, if φ is inner regular (with respect to \mathscr{F}) in each $A \in \mathscr{H} ; \varphi$ is said inner regular if it is inner regular on \mathscr{A}.

We note that:
(2.1). Let φ be a function from \mathscr{A} to (X, \mid) such that the function

$$
A \in \mathscr{R} \rightarrow|\varphi(A)|
$$

is k-subadditive. Then φ is inner regular if and only if it satisfies the condition
$\left(^{\circ}\right)$ For every $A \in \mathscr{A}$ and for every $\varepsilon>0$ there exist $F \in \mathscr{F}$ and $G \in \mathscr{G}$ such that $F \subseteq A \subseteq G$ and $\left.\tilde{\varphi}(G \backslash F)<\varepsilon^{14}\right)$.

It follows easily from the properties of $\tilde{\varphi}^{15}$).
Remark 2. This proposition is valid, in particular, for an inner regular k-subadditive function defined on \mathscr{A} with values in \mathbf{R}^{+}.

If S is a Hausdorff locally compact topological space, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets of S, \mathscr{A} is a field containing \mathscr{G}, a function φ from \mathscr{A} to $(X,| |)$, such that the function

$$
3 \quad A \in \mathscr{A} \rightarrow|\dot{\varphi}(A)|
$$

is k-subadditive, is inner regular (with respect to \mathscr{F}) iff the function

$$
A \in \mathscr{A} \rightarrow|\varphi(A)|
$$

is regular (R), in the sense of [8].
(2.2). Let \mathscr{F} be a semicompact lattice, so a lattice with the property:
(*) For every sequence $\left(F_{n}\right)_{n \in \mathbf{N}}$ in \mathscr{F} such that $\bigcap_{n \in \mathbb{N}} F_{n}=\emptyset$, there exists $n_{0} \in \mathbf{N}$ such that $\bigcap_{n \leq n_{0}} F_{n}=\emptyset$.

Let φ be an inner regular (with respect to \mathscr{F}) function from \mathscr{A} to $(X,| |)$; then, 1) if the function

$$
A \in \mathscr{A} \rightarrow|\varphi(A)|
$$

is k-subadditive, φ is order continuous and therefore the function

$$
A \in \mathscr{A} \rightarrow|\varphi(A)|
$$

and the semivariation of $\varphi, \tilde{\varphi}$, are also countably k-subadditive;
2) if φ is a k-triangular function, φ is \mathscr{H}-exhaustive, for every lattice $\mathscr{H} \subseteq \mathscr{A}$ such that for every disjoint sequence $\left(H_{n}\right)_{n \in \mathrm{~N}}$ in \mathscr{H} the σ-ring generated by $\left\{H_{n}, n \in \mathbf{N}\right\}$ is contained in \mathscr{A}.

To prove 1), by (1.2), it suffices to prove that φ is order continuous. For this, if $\left(A_{n}\right)_{n \in \mathrm{~N}}$ is a decreasing sequence of sets of ${ }^{\prime}$ such that $\bigcap_{n \in \mathrm{~N}} A_{n}=\emptyset$, for any $\varepsilon>0$ and $n \in \mathbf{N}$, let $F_{n} \in \mathscr{F}$ such that

$$
F_{n} \subseteq A_{n} \quad \text { and } \quad \tilde{\varphi}\left(A_{n} \backslash F_{n}\right)<\varepsilon / 2^{n} k
$$

Then by ($*$) there exists $m_{0} \in \mathbf{N}$ such that

$$
\bigcap_{i \leq m} F_{i}=\emptyset \quad \forall m \geqq m_{0} ;
$$

hence for each $m \geqq m_{0}$,

$$
\begin{gathered}
\left|\varphi\left(A_{m}\right)\right| \leqq \tilde{\varphi}\left(A_{m}\right)=\tilde{\varphi}\left(A_{m} \backslash \bigcap_{i \leqq m} F_{i}\right)=\tilde{\varphi}\left(\bigcup_{i \leqq m}\left(A_{i} \backslash F_{i}\right)\right) \leqq \\
\leqq \tilde{\varphi}\left(A_{1} \backslash F_{1}\right)+k \sum_{1<i \leqq m} \tilde{\varphi}\left(A_{i} \backslash F_{i}\right) \leqq k \sum_{n \in \mathrm{~N}} \varepsilon 2^{n} k=\varepsilon .
\end{gathered}
$$

To prove 2), it suffices to remark that, by 1), φ is order continuous and, if $\left(H_{n}\right)_{n \in \mathbf{N}}$ is a disjoint sequence in \mathscr{H}, for every $n \in \mathbf{N}$,

$$
\left|\varphi\left(H_{n}\right)\right| \leqq\left|\varphi\left(\bigcup_{i \leqq n} H_{i}\right)\right|+k\left|\varphi\left(\bigcup_{i \geqq n+1} H_{i}\right)\right| .
$$

This completes the proof.
(2.3). Let \mathscr{F} and \mathscr{G} satisfy the property:
(**) For each $F \in \mathscr{F}$ and for each sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{G} such that $F \subseteq \bigcup_{n \in \mathbb{N}} G_{n}$ there exists $n_{0} \in \mathbf{N}$ such that $\left.F \subseteq \bigcup_{n \leqq n_{0}} G_{n}{ }^{16}\right)$, and let \mathscr{G} be closed under the countable union of mutually disjoint sets.

If φ is a function from \mathscr{A} to $(X,| |$) inner regular (with respect to \mathscr{F}) on \mathscr{G}, the semivariation of $\varphi, \tilde{\varphi}$, (and therefore φ) is \mathscr{G}-exhaustive.

Let $\left(G_{n}\right)_{n \in \mathrm{~N}}$ be a disjoint sequence in \mathscr{G}. For every $\varepsilon>0$, let $F \in \mathscr{F}$ such that

$$
F \cong \bigcup_{n \in \mathbb{N}} G_{n} \text { and } \tilde{\varphi}\left(\bigcup_{n \in \mathbf{N}} G_{n} \backslash F\right)<\varepsilon ;
$$

hence, if $n_{0} \in \mathbf{N}$ is such that

$$
F \subseteq \bigcup_{n \leqq n_{0}} G_{n}
$$

for every $m \geq n_{0}+1$

$$
\left|\varphi\left(G_{m}\right)\right| \leqq \tilde{\varphi}\left(G_{m}\right) \leqq \tilde{\varphi}\left(\bigcup_{n \in \mathbb{N}} G \backslash F\right)<\varepsilon ;
$$

the proof is complete.
We remark also:
(2.4). Let φ be a k-triangular function inner regular (with respect to \mathscr{F}) defined on \mathscr{A} with values in $(X,| |)$. Then φ satisfies the condition
$\left(^{\circ}\right)$ For every $A \in \mathscr{A}$ and for every $\varepsilon>0$, there exist $F \in \mathscr{F}$ and $G \in \mathscr{G}$ such that $F \subseteq A \subseteq G$ and for every $A^{\prime} \in \mathscr{A}$ such that $F \subseteq A^{\prime} \subseteq G$ we have

$$
\left||\varphi(A)|-\left|\varphi\left(A^{\prime}\right)\right|<\varepsilon\right.
$$

Let $A \in \mathscr{A}$ and let $\varepsilon>0$. Then, by (2.1), we can find $F \in \mathscr{F}$ and $G \in \mathscr{G}$ such that

$$
F \cong A \subseteq G \quad \text { and } \quad|\varphi(B)|<\varepsilon / 2 k \quad \forall B \subseteq G \backslash F
$$

If $A^{\prime} \in \mathscr{A}$ and $F \subseteq A^{\prime} \subseteq G$, then obviously

$$
\left(A \backslash A^{\prime}\right) \cup\left(A^{\prime} \backslash A\right) \subseteq G \backslash F
$$

and therefore

$$
\left||\varphi(A)|-\left|\varphi\left(A^{\prime}\right)\right|\right| \leqq k\left|\varphi\left(A \backslash A^{\prime}\right)\right|+k\left|\varphi\left(A^{\prime} \backslash A\right)\right|<\varepsilon .
$$

In particular, we have:
Corollary (2.4). Let φ be a k-triangular function defined on \mathscr{A} with values in \mathbf{R}^{+}. If φ is inner regular, φ satisfies the condition
$\left(\circ^{\circ}\right)$ For every $A \in \mathscr{A}$ and for every $E>0$, there exist $F \in \mathscr{F}_{A}$ and $A \subseteq G \in \mathscr{G}$ such that for every $A \in \mathscr{A}$ such that $F \subseteq A^{\prime} \subseteq G$ we have

$$
\left|\varphi(A)-\varphi\left(A^{\prime}\right)\right|<\varepsilon
$$

Remark 3. If S is a Hausdorff locally compact topological space, \mathscr{A} is the σ-field of the Borel sets of S, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets of S, from (2.4) (resp. from Corollary (2.4)) we obtain that, if φ is an inner regular k-triangular function from \mathscr{A} to $(X, \mid \mathrm{I})$ (resp. to \mathbf{R}^{+}), the function

$$
A \in \mathscr{A} \rightarrow|\varphi(A)| \in \mathbf{R}^{+}
$$

(resp. φ) is regular on \mathscr{A} in the sense of [7], p. 303; see also Remark 2.
(2.5). Let ($\Gamma,| |$) be a quasi-normed abelian group and let φ a finitely additive function from \mathscr{A} to $(\Gamma,| |)$. Then φ is inner regular if and only if, for every $A \in \mathscr{A}$ and for every $\varepsilon>0$ there exist $F \in \mathscr{F}$ and $G \in \mathscr{G}$ such that $F \subseteq A \subseteq G$ and for every $A^{\prime} \in \mathscr{A}$ with $F \subseteq A^{\prime} \subseteq G$ we have

$$
\left|\varphi(A)-\varphi\left(A^{\prime}\right)\right|<\varepsilon .
$$

Obviously we can use the same arguments of the proof of Prop. 1, p. 304 of [7].
We say that a function φ from \mathscr{A} to $(X,| |)$ is regular if
(a) φ is inner regular,
(b) for every $F \in \mathscr{F}$ and for every $\varepsilon>0$ there exist $E \in \mathscr{G}, H \in \mathscr{F}, G \in \mathscr{G}$ such that $F \subseteq E \subseteq H \subseteq G$ and $\left.\tilde{\varphi}(G \backslash F)<\varepsilon^{17}\right)$.

Remark 4. If we suppose that \mathscr{F} and \mathscr{G} have the property:
(•)for every $F \in \mathscr{F}$ and for every $G \in \mathscr{G}$. such that $F \subseteq G$, there exist $E \in \mathscr{G}$, $H \in \mathscr{F}$, such that $F \subseteq E \subseteq H \subseteq G$, clearly a function φ from \mathscr{A} to $(X,| |)$ such that the function

$$
A \in \mathscr{A} \rightarrow|\varphi(A)|
$$

is k-subadditive (in particular a k-triangular function) is regular iff it is inner regular (see (2.1)).

In particular, if S is a Hausdorff locally compact (resp. normal) topological space, \mathscr{F} is the lattice of the compact (resp. closed) sets of S, \mathscr{G} is the lattice of the open sets of S, \mathscr{A} is a field containing \mathscr{G}, a k-triangular function is regular iff it is inner regular.

We remark also that in the case S Hausdorff locally compact topological space, \mathscr{A} the σ-field of the Borel sets of S, \mathscr{F} the lattice of the compact sets, \mathscr{G} the lattice of the open sets of S, a k-triangular function φ from \mathscr{A} to $(X,| |)$ with regular variation ${ }^{18}$) (regular in the sense of [7], p. 303) satisfies the condition (\bullet) of the (2.1) and therefore it is regular (see also [24], Theorem 1 and Corollary 1).
3. (3.1) Let Φ be a set of k-triangular inner regular functions from \mathscr{A} to ($X,| |)$. Then, for every $A \in \mathscr{A}$ such that $\Phi\left(\mathscr{A}_{A}\right)$ is not bounded and for every $n \in \mathbf{N}$ there exists $(\varphi, B) \in \Phi \times((\mathscr{F} \cup \mathscr{G}) \cap A)$ such that

$$
|\varphi(B)|>n \quad \text { and } \Phi\left(\mathscr{A}_{B}\right) \quad \text { is } \quad \text { not bounded. }
$$

Assume that there exist $A_{0} \in \mathscr{A}$ such that $\Phi\left(\mathscr{A}_{A_{0}}\right)$ is not bounded and $n_{0} \in \mathbf{N}$ such that for every $(\varphi, B) \in \Phi \times\left((\mathscr{F} \cup \mathscr{G}) \cap A_{0}\right)$

$$
|\varphi(B)|>n_{0} \text { implies that } \Phi\left(\mathscr{A}_{B}\right) \text { is bounded. }
$$

Let now $F \in \mathscr{F}_{A_{0}}$ and $\bar{\varphi} \in \Phi$ such that $|\bar{\varphi}(F)|>(1+k) n_{0}$; therefore we have

$$
F \in \mathscr{F}_{A_{0}}, \quad A_{0} \backslash F \in \mathscr{G} \cap A_{0}, \quad \bar{\varphi}(F)>n_{0}, \quad \bar{\varphi}\left(A_{0} \backslash F\right)>n_{0} .
$$

Then, both $\Phi\left(\mathscr{A}_{F}\right)$ and $\Phi\left(\mathscr{A}_{A_{0} \backslash F}\right)$ are bounded, a contradiction with the assumption that $\Phi\left(\mathscr{A}_{A_{0}}\right)$ is not bounded.

Now we can give the proof of:
(3.2). Let Φ be a set of k-triangular and regular functions from \mathscr{A} to $(X,| |)$ such that
$\alpha)$ for every $G \in \mathscr{G}, \Phi(G)$ is bounded,
β) for every sequence $\left(\varphi_{n}\right)_{n \in \mathbf{N}}$ of functions of Φ and for every disjoint sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of sets of \mathscr{G}, there exists an infinite subset M of \mathbf{N} such that $\bigcup_{n \in M}\left\{\varphi_{n}\left(G_{n}\right)\right\}$ is bounded.

Then $\Phi(\mathscr{A})$ is bounded.
Assume that $\Phi(\mathscr{A})$ is not bounded.
We will show firstly that Φ satisfies the following property:
γ) For every $A \in \mathscr{G}$ such that $\Phi\left(\mathscr{A}_{A}\right)$ is not bounded and for every $n \in \mathbf{N}$ there exists $\left(\bar{\varphi}, G, A^{\prime}\right) \in \Phi \times \mathscr{G}_{A} \times \mathscr{G}_{A}$ such that
$(* * *) \quad|\bar{\varphi}(G)|>n, \quad G \cap A^{\prime}=\emptyset, \quad \Phi\left(\mathscr{A}_{A^{\prime}}\right) \quad$ is not bounded.

Let $A \in \mathscr{G}$ such that $\Phi\left(\mathscr{A}_{A}\right)$ is not bounded and let $n \in \mathbf{N}$; let $h \in \mathbf{N}$ such that $|\varphi(A)| \leqq h$, for every $\varphi \in \Phi$.

There are two possibilities.
Case I: There exists $\left(\varphi_{*}, H\right) \in \Phi \times(\mathscr{F} \cap A)$ such that

$$
\left|\varphi_{*}(H)\right|>2(h+k n) \text { and } \Phi\left(\mathscr{A}_{H}\right) \text { is not bounded. }
$$

In this case, let $G^{\prime} \in \mathscr{G}, F^{\prime} \in \mathscr{F}, G^{\prime \prime} \in \mathscr{G}$ such that

$$
H \cong G^{\prime} \cap A \subseteq F^{\prime} \cap A \subseteq G^{\prime \prime} \cap A \quad \text { and } \quad \tilde{\varphi}_{*}\left(G^{\prime \prime} \cap A \backslash H\right)<(k+h n) / k
$$

so $\left|\varphi_{*}\left(F^{\prime} \cap A\right)\right|>h+k n$. Then, if we put

$$
G=A \backslash F^{\prime} \cap A, \quad A^{\prime}=G^{\prime} \cap A
$$

it is easy to see that $\left(\varphi_{*}, G, A^{\prime}\right) \in \Phi \times \mathscr{G}_{A} \times \mathscr{G}_{\boldsymbol{A}}$ verifies (***).
Case II: For every $(\varphi, H) \in \Phi \times(\mathscr{F} \cap A),|\varphi(H)|>2(h+k n)$ implies that $\Phi\left(\mathscr{A}_{H}\right)$ is bounded.

In this case, let $F \in \mathscr{F}_{A}$ and $\varphi_{*} \in \Phi$ such that $\left|\varphi_{*}(F)\right|>4(h+k n)$; let $G^{\prime} \in \mathscr{G}$, $F^{\prime} \in \mathscr{F}, G^{\prime \prime} \in \mathscr{G}$ such that
so

$$
F \cong G^{\prime} \subseteq F^{\prime} \subseteq G^{\prime \prime} \quad \text { and } \quad \tilde{\varphi}_{*}\left(G^{\prime \prime} \backslash F\right)<(h+k n) / k
$$

$$
\left|\varphi_{*}\left(F^{\prime} \cap A\right)\right|>2(h+k n) \quad \text { and } \quad\left|\varphi_{*}\left(G^{\prime} \cap A\right)\right|>2(h+k n) .
$$

Finally, if we put

$$
G=G^{\prime} \cap A, \quad A^{\prime}=A \backslash F^{\prime} \cap A
$$

obviously ($\varphi_{*}, G, A^{\prime}$) verifies the ($* * *$).
It is clear now that, by the same argument as that of (3.2) of [14], we obtain a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of functions of Φ and a disjoint sequence $\left(G_{n}\right)_{n \in \mathcal{N}}$ in \mathscr{G} such that $\left|\varphi_{n}\left(G_{n}\right)\right|>n$, for every $n \in \mathbf{N}$; a contradiction with β).
(3.3) Let \mathscr{G} be a SIP-lattice ${ }^{19}$) and let Φ be a set of k-triangular functions from \mathscr{A} to $(X, \mid 1), \mathscr{G}$-exhaustive and regular, such that for every $G \in \mathscr{G}, \Phi(G)$ is bounded; then $\Phi(\mathscr{A})$ is bounded.

It suffices to prove that Φ satisfies contion β) of (2.2).
For this, let $\left(\varphi_{n}\right)_{n \in N}$ be a sequence of functions of Φ and let $\left(G_{n}\right)_{n \in N}$ be a disjoint sequence of sets of \mathscr{G}. We denote respectively by $\left(G_{n_{i}}\right)_{i \in N}$ and by \mathscr{S} a subsequence of $\left(G_{n}\right)_{n \in N}$ and a ring with the Subsequential Interpolation Property contained in \mathscr{G}, such that $G_{n_{i}} \in \mathscr{S}$ for every $i \in \mathbf{N}$.

Clearly the restriction of φ_{n} to \mathscr{S} is exhaustive for each $n \in N$, and the set $\bigcup_{n \in \mathbb{N}}\left\{\varphi_{n}(G)\right\}$ is bounded for each $G \in \mathscr{G}$; therefore, by the (1.6) the set $\bigcup_{i \in \mathbb{N}} \varphi_{n_{i}}\left(G_{n_{i}}\right) \subseteq$ $\cong_{n \in \mathbb{N}} \bigcup_{n} \varphi_{n}(\mathscr{P})$ is bounded:

The proof is complete.
Corollary (3.4). Let \mathscr{G} be a SIP-lattice and suppose that \mathscr{F} and \mathscr{G} have the property:
(•) for every $F \in \mathscr{F}$ and every $G \in \mathscr{G}$ such that $F \subseteq G$, there exist $E \in \mathscr{G}, H \in \mathscr{F}$ such that $F \subseteq E \subseteq H \subseteq G$.

If Φ is a set of k-triangular, \mathscr{G}-exhaustive and inner regular functions from \mathscr{A} to (X, \mid) such that for every $G \in \mathscr{G} \Phi(G)$ is bounded, then $\Phi(\mathscr{A})$ is bounded.

It follows immediately from (3.3) (see Remark 4). In particular we have:
Corollary (3.5). Let S be a normal topological space, \mathscr{G} the lattice of the open sets, \mathscr{F} the lattice of the closed sets of S, \mathscr{A} a field containing \mathscr{G}. If Φ is a set of k-triangular, \mathscr{G}-exhaustive and inner regular functions from \mathscr{A} to $(X, \mid D)$ such that for every $G \in \mathscr{G} \Phi(G)$ is bounded, then $\Phi(\mathscr{A})$ is bounded.

Corollary (3.6). Let S be a Hausdorff locally compact topological space, \mathscr{F} the lattice of the compact sets, \mathscr{G} the lattice of the open sets, \mathscr{A} a field containing \mathscr{G}. If Φ is a set of k-triangular and inner regular functions from \mathscr{A} to $(X,| |)$, such that, for every $G \in \mathscr{G}, \Phi(G)$ is bounded, then $\Phi(\mathscr{A})$ is bounded.

It follows immediately from Corollary (3.4) and (2.2).
Corollary (3.7). Let S be a Hausdorff topological space, \mathscr{G} the lattice of the open sets, \mathscr{F} the lattice of the compact sets of S, \mathscr{A} a field containing \mathscr{G}. If Φ is a set of k-triangular and regular functions from \mathscr{A} to $(X,| |)$ such that for every $G \in \mathscr{G}$ $\Phi(G)$ is bounded, then $\Phi(\mathscr{A})$ is bounded.

It follows immediately from (3.3) and (2.2).
Remark 5. Clearly (see (2.1) and Remark 4), Corollary (3.6) contains Theorem 2 and Theorem 3 of [24] (see also [23], [6] Proposition 9, [2] Remark 2, p. 168).

We note that, if we put $\mathscr{F}=\mathscr{G}=\mathscr{A}$, (3.3) yields a Nikodym's boundedness theorem for k-triangular functions defined in a field which is a SIP-lattice. Moreover, from (3.3) we can obtain a Dieudonné boundedness type theorem for finitely additive functions from \mathscr{A} with values in a topological commutative group Γ (see [14]). In fact, if Γ is a topological commutative group with neutral element 0 , a finitely additive function φ from \mathscr{A} to Γ is \mathscr{G}-exhaustive (resp. inner regular, regular (in the sense of [14])) iff, for every continuous real-valued quasi-norm ϱ on Γ, the \mathbf{R}^{+}-valued 1 -triangular function $\varrho \circ \varphi$ is \mathscr{G}-exhaustive (resp. inner regular, regular) ${ }^{20}$).

Therefore:
Corollary (3.8). Let Γ be a topological commutative group and let \mathscr{G} be a

SIP-lattice. If Φ is a set of finitely additive and \mathscr{G}-exhaustive regular functions from \mathscr{A} to Γ, such that for every $G \in \mathscr{G}, \Phi(G)$ is \mathscr{U}-bounded, then $\Phi(\mathscr{A})$ is \mathscr{U}-bounded ${ }^{21}$).

For every continuous real-valued quasi-norm ϱ on Γ, apply (3.3) to the set $\bigcup_{\varphi \in \Phi}(\varrho \circ \varphi)$.

Notes

${ }^{1}$) A function ψ from \mathscr{R} to $\overline{\mathbf{R}}^{+}$is said k-subadditive (resp. countably k-subadditive) if, for any disjoint sets A, B from $\mathscr{R}, \psi(A \cup B) \leq \psi(A)+k \psi(B)$ (resp. for any disjoint sequence $\left(A_{n}\right)_{n \in \mathrm{~N}}$ in \mathscr{R} such that $\left.\bigcup_{n \in \mathbb{N}} A_{n} \in \mathscr{R}, \psi\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \leqq \psi\left(A_{1}\right)+k \sum_{n>1} \psi\left(A_{n}\right)\right)$ (see [15], [16]).
${ }^{2}$) See [15], Corollary 1 for the case φk-triangular with values in an abelian quasi-normed group and [19], Corollary (2.3) for the case φ finitely additive.
$\left.{ }^{3}\right)$ In fact, for each $A \in \mathscr{R}$,

$$
|\varphi(A)| \leqq\left|\varphi\left(A \cap A_{0}\right)\right|+k\left|\varphi\left(A \backslash A_{0}\right)\right| ;
$$

therefore $\varphi\left(\mathscr{R}_{A_{0}}\right)$ bounded implies $\varphi(\mathscr{R})$ bounded.
${ }^{4}$) See [15], Lemma 2, for the case φk-triangular function with values in an abelian quasinormed group.
${ }^{5}$) For the definition of quasi σ-ring see [3], [9], [13], [28]; see also [25], Lemma 1.
${ }^{6}$) We note that function a φ from \mathscr{R} to $(X, \mid 1)$ is exhaustive iff for every disjoint sequence $\left(A_{n}\right)_{n \in \mathrm{~N}}$ of set of \mathscr{R}

$$
\lim _{n} \varphi\left(A_{n} \cap A\right)=0,
$$

uniformly with respect to $A \in \mathscr{R}$ (see the proof of (1.1), Ch. II of [4]) see also note ${ }^{10}$, p. 134 of [4].
${ }^{7}$) It follows from (1.1) of [13]; in fact, it is easy to see that it is true also for an exhaustive function η from \mathscr{R} to \mathbf{R}^{+}such that

$$
\eta(X) \leqq \eta(Y) \text { if } X, Y \in \mathscr{R}: X \subseteq Y .
$$

${ }^{8}$) We refer to [16], remark p. 29, for an example of a set Φ of (real) 1 -triangular exhaustive functions verifying a), for which the set $\Phi(\mathscr{R})$ is not bounded. We write $\Phi(A)=\bigcup_{\varphi \in \Phi} \varphi(A)$ $\forall A \in \mathscr{R}$ and $\Phi(\mathscr{H})=\bigcup_{A \in \boldsymbol{X}} \Phi(A) \forall \mathscr{H} \subseteq \mathscr{R}$.
${ }^{9}$) See [10], [5] for the definition of rings with the Subsequential Intersolation Property (rings with the (P2) property in [28], satisfying condition $\left(E_{2}\right)$ in [9]).
${ }^{10}$) We note that, for each $n \in \mathbf{N},\left\{A \in \mathscr{R}:: \tilde{\varphi}_{n}(A)=0\right\}$ is an ideal of \mathscr{R}; see also [17], [27].
${ }^{11}$) In fact, let \mathscr{A} be a disjoint set of non-zero elements of $\mathscr{R} / \mathcal{N}$; we write, $\forall(n, k) \in \mathbf{N} \times \mathbf{N}$, $\mathscr{A}_{k}^{(n)}=\left\{[A] \in \mathscr{R} / \mathcal{N}: \tilde{\varphi}_{n}(A)>1 / k\right\}$. Then $\mathscr{A}=\bigcup_{(n, k) \in N \times N} \mathscr{A}_{k}^{(n)}$ and, φ_{n} being exhaustive $\forall n \in \mathbb{N}$, $\mathscr{A}_{k}^{(n)}$ is or empty or finite set, $\forall(n, k) \leqq \mathbf{N} \times \mathbf{N}$.
$\left.{ }^{12}\right)$ In fact, $\forall n \in \mathbf{N}$, we have $\left|\varphi_{n}(A)\right|=\left|\varphi_{n}(B)\right|$ if $[A]=[B], \hat{\varphi}_{n}([\emptyset])=0$,
$\left|\hat{\varphi}_{n}([A])-\hat{\varphi}_{n}([B])\right| \leqq k \varphi_{n}(A \backslash B)+k \varphi_{n}(B \backslash A)=k \hat{\varphi}_{n}([A] \backslash[B])+k \hat{\varphi}_{n}([B]-[A]) \forall[A],[B] \in \mathscr{R} / \mathcal{N} ;$ for every disjoint sequence $\left(\left[A_{p}\right]\right]_{p \in \mathrm{~N}}$ we put $A_{1}^{\prime}=A_{1}$ and, $\forall p>1, A_{p}^{\prime}=A_{p}-\bigcup_{i<p} A_{p} \cap A_{i}$ and we have

$$
\lim _{p} \hat{\varphi}_{n}\left(\left[A_{p}\right]\right)=\lim _{p}\left|\varphi_{n}\left(A_{p}^{\prime}\right)\right|=0 .
$$

${ }^{13}$) We note that, if \mathscr{R} is a σ-ring, a k-triangular and order continuous function is exhaustive. Moreover, if X is a commutative semigroup with a family F of non-negative real valued functions f which have the property

$$
f(x)-f(y) \leqq f(x+y) \leqq f(x)+f(y), \text { for each } x, y \in X,
$$

for every triangle set function ([21]) order continuous μ from \mathscr{R} to $(X,| |)$ the function

$$
v: A \in \mathscr{R} \rightarrow f(\mu(A)) \in[0,+\infty[
$$

is, for every $f \in F$, a 1 -triangular and order continuous function.
${ }^{14}$) If S is a Hausdorff locally compact topological space, \mathscr{A} is the σ-field of the Borel sets of S, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets of S, the $\left({ }^{\circ}\right)$ is the condition (R) of [23], [24].
$\left.{ }^{15}\right)$ For every $A \in \mathscr{A}$ and for every $\varepsilon>0$, let $F \in \mathscr{F}_{A}$ and $H \in \mathscr{F}_{S \backslash A}$ such that $\tilde{\varphi}(A \backslash F)<\varepsilon / 2$ and $\tilde{\varphi}(S \backslash A \backslash H)<\varepsilon / 2$ and put $G=S \backslash H$.
${ }^{16)}$ For instance, if S is a Hausdorff topological space, \mathscr{A} is the σ-field of the Borel sets of S, \mathscr{F} and \mathscr{G} are respectively the lattice of the compact sets and the lattice of the open sets, \mathscr{F} and \mathscr{G} satisfy the property ($* *$) (and therefore \mathscr{F} has the ($*$)).
${ }^{17}$) If $(X,| |)$ is a quasi-normed group and φ is a finitely additive function from \mathscr{A} to $(X,| |)$, this is the definition of regular finitely additive function of [14].
${ }^{18}$) The variation $|\varphi|$ of φ. is defined in the usual way;

$$
|\varphi|(A)=\sup _{\Pi} \sum_{B \in \Pi .}|\varphi(B)| \quad A \in \mathscr{A},
$$

where the supremum is taken over all partitions of A into a finite number of disjoint sets in \mathscr{A}.
${ }^{19}$) We say that a lattice \mathscr{G} is a SIP-lattice if for each disjoint sequence $\left(G_{n}\right)_{n \in \mathbf{N}}$ of sets of \mathscr{G} there exist a subsequence $\left(G_{n_{i}}\right)_{i \in \mathbf{N}}$ of $\left(G_{n}\right)_{n \in \mathbf{N}}$ and a ring \mathscr{S} with the SIP contained in \mathscr{G}, such that $G_{n_{i}} \in \mathscr{S}$, for each $i \in \mathrm{~N}$ ([14]).
${ }^{20}$) See [14] for the definitions of finitely additive inner regular and regular functions from \mathscr{A} to Γ. Recall that for every neighbourhood U of 0 , there exist an $\varepsilon>0$ and a continuous (real-valued) quasi-norm ϱ on Γ such that $\{x \in \Gamma: \varrho(x)<\varepsilon\} \subseteq U$.
${ }^{21}$) See [14] for the definition of \mathscr{U}-bounded subset of Γ; recall that a subset Y of Γ is \mathscr{U}-bounded iff, for every continuous real-valued quasi-norm on $\Gamma, \sup _{y \in Y} Q(y)<+\infty$ ([28], Th. (6.8) (a)). See [14], (3.2).

References

[1] L. V. Agafonova and V. M. Klimkin, A Nikodym theorem for triangular set functions, Sib. Math. J., 15 (1974), 1, 477-481.
[2] J. K. Brooks, On a Theorem of Dieudonné, Adv. in Math., 36 (1980), 165-168.
[3] C. Constantinescu, On Nikodym's boundedness theorem, Libertas Math., 1 (1981), 51-73.
[4] P. de Lucia, Funzioni finitamente additive a'valori in un gruppo topologico, Pitagora Editrice (Bologna, 1985).
[5] P. de Lucia and P. Morales, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym convergence theorems for uniform semigroup-valued additive functions on a Boolean ring, Ricerche Mat., 35 (1986), 75-87.
[6] J. Dieudonné, Sur la convergence des suites de measures de Radon, An. Acad. Brasil. Ci., 23 (1951), 21-38; 277-282.
[7] N. Dinculeanu, Vector measures, Pergamon Press (New York, 1967).
[8] N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. (3) 17 (1967), 505-512.
[9] I. Fleischer and T. Traynor, Equicontinuity and uniform boundedness for homomorphism and measures, Windsor Math. Report, 83-16 (1983), 1-7.
[10] F. J. Frenche, The Vitali-Hahn-Saks theorem for Boolean algebras with the subsequential interpolation property, Proc. Amer. Math. Soc., 92 (1984), 362-366.
[11] G. Fox and P. Morales, Uniform semigroup valued measures. I, Rapport de recherche no. 80-17, Université de Montreal (1980), pp. 1-20.'
[12] G. Fox and P. Morales, Théorèmes de Nikodym et de Vitali-Hahn-Saks pour les mesures à valeurs dans un semigroupe uniforme, Proc. Conf. on Measure Theory and Its Applications, Sherbrooke 1982, Lect. Notes in Math. 1033, Springer-Verlag (Berlin, 1983), pp. 199-208.
[13] E. Guariglia, Su un teorema di Nikodym per funzioni a valori nei gruppi topologici, Le Matematiche, 37 (1982), 328-342.
[14] E. Guariglia, On Dieudonne's Boundedness Theorem, J. Math. Anal. and Appl., 145 (1990), 447-454.
[15] N. S. Gusel'nikov, Extension of quasi-Lipschitz set functions, Math. Notes, 17 (1975), 14-19.
[16] N. S. Gusel'nikov, Triangular set functions and Nikodym's theorem on the uniform boundedness of a family of measures, Math. USSR Sbornik, 35 (1979), 19-33.
[17] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand (New York, 1963).
[18] J. Mikusinski, On a theorem of Nikodym on bounded measures, Bull. Acad. Pol. Sci. Sér. Math. Astronom. et Phys., 19 (1971), 441-444.
[19] P. Morales, Boundedness for uniform semigroup valued set functions, in: Proc. Conf. on Measure Theory, Oberwolfach 1983, Lect. Notes in Math. 1089, Springer-Verlag (Berlin, 1984), pp. 153-164.
[20] O. Nikodym, Sur les familles bornées de functions parfaitement additives d'ensemble abstrait, Monatsh. Math. Phys., 40 (1933), 418-426.
[21] E. Pap, Uniform boundedness of a family of triangle semigroup valued set functions, Zbornik radova PMF u Novom Sadu, 10 (1980), 77-83.
[22] E. Pap, Funkcionalna analiza, Institute of Mathematics (Novi Sad, 1982).
[23] E. Pap, A generalization of a Dieudonné theorem for a non-additive set functions, Zbornik radova PMF u Novom Sadu, 13 (1983), 113-123.
[24] E. Pap, A generalization of a theorem of Dieudonné for k-triangular set functions, Acta Sci. Math., 50 (1986), 159-167.
[25] E. Pap, The Vitali-Hahn-Saks theorems for k-triangular set functions, Atti. Sem. Mat. Fis. Univ. Modena, 25 (1987), 21-32.
[26] R. Sikorski, Boolean Algebras, Springer-Verlag (Berlin, 1960).
[27] M. Sion, A theory of semigroup valued measures, Lect. Notes in Math. 355, Springer-Verlag (Berlin, 1973).
[28] H. Weber, Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodym boundedness theorem, Rocky Mountain J. Math., 16 (2), (1986), 253-275.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI
„R. CACCIOPPOLI" UNIV. DI NAPOLI „FEDERICO II"
VIA MEZZOCANNONE, 8
80134 NAPOLI
ITALIA

[^0]: *) This research was partially supported by Ministero Publica Istruzione (Italy).
 Received November 13, 1987.

