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Uniform boundedness theorems for k-triangular set functions

EMMA GUARIGLIA%)

In a recent paper, we have obtained a generalization of the classical bounded-
ness Dieudonné theorem ([9], Prop.9), in the setting of finitely additive group
valued-functions ([14], (3.2)).

The purpose of this paper is to obtain an analogous result ((3.3)), in the setting
of semigroup valued k-triangular functions. For this, firstly we establish that Niko-
dym’s boundedness-theorem holds for k-triangular exhaustive functions on a ring
with the Subsequential Interpolation Property ((1. 6)) This proposition yields some
recent results of E. Pap as special cases (see [21], [23], [24]). We apply (3.3) to obtain
again a Dieudonné type theorem for finitely additive group-valued functions (Co-
rollary (3.8), see also [14], (4.2)).

1. Let X be a commutative semigroup with neutral element O; let p be a semi-
invariant pseudometric on X, namely a pseudometric satisfying the inequality

p(x+z,y+2) =p(x,y) Vx,»,2€X,
or, equivalenty, the inequality
plx+x,y+y)=ple; »)+p(x,y) Vx, X,y y'eX.
Let R*=[0, + [, R*=[0, + ). To p there corresponds the function

[ |: x€X > p(x, 0)¢R*
for which
0] =0
[lxl=1¥l] = Ix+3] = x| +Iy] Vx, yeX,
(1221, [23]).

*) This research was partially supported by Ministero Publica Istruzione (Italy).
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We will denote by (X,||) the uniform semigroup (X, %,), where %, is the
uniformity of X generated by the pseudometric p ([11], [27]). We say that a subset
Y of X is bounded if sup |y|< + .

yeY

Let 2 be a ring of subsets of a set S and ¢ a function from £ to (X, | |). We
say that ¢ is bounded if the set ¢ (%) is a bounded subset of X.

Let keR*. We say that ¢ is k-triangular if @(@)=0 and for any disjoint sets
A and B from £,

lp(D)—klpB)l = lp(4UB)| = [p(DI+ ko (B)l.
It is easy to see that ¢ is k-triangular if and only if
e(®) =0
and,.for any sets C, D from #, we have

o (O —1pD)I] = klo(C\D)l+k o (D\C)|
([16]). '

Moreover, a function ¢ k’-triangular is k-triangular for each A=k’ and ¢ k-tri-
angular for k€¢]0, 1[ implies |p(X)|=0 for each Xc£. Hence below we will
consider k-triangular functions with k=1.

Let % be a lattice contained in £; we say that a function ¢ from £ to (X, | |)
is G-exhaustive if, for every disjoint sequence (G,),en in ¥, we have

1im (G,) = 0;
an Z-exhaustive function is called exhaustive.

We say that a function ¢ from & to (X, | [) is order continuous if for every

decreasing sequence (4,),cy in & such that (| 4,=9
ngN

limp(4,) = 0.
We write, for every # S and A€Z,
H#,={HeH: HS A}
HNA={HNA, _HE.%’}.

Let ¢ be a function from £ to (X,| |); its semivariation (supremitation or
supremacy in [15], [16]) is the function

P: AER ~ Sup lo(B)IcR*
({11, (123, [19]).
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We have
¢®@ =0 if |p®) =0,

lp(4)] = $(4) VA€,
A S B= (A = ¢(B).

Moreover & is k-subadditive if the function

AER ~ |p(4)|€RT

is k-subadditive !); @ is exhaustive iff ¢ is exhaustive ([12], Lemma (2.2)).
Now, we give the proof of:

(L.1). Let # be a ring of subsets of S and ¢ a k-triangular and exhaustive func-
tion from & to (X, | |). Then ¢ (and therefore p) is bounded?).

Suppose the contrary. Then by Lemma (2.1) of [19] we can find 4,62 such
that for every A€
lp(AN\A4p) = 1.

Therefore the set ¢(#, ) is not bounded®) and we can find B,€£, such that

@ (B)| = k+1p(A4y).
Hence we have also

(ANBII = 7 [lo (Bl =l (40| = 1

and or <p(gz,,l) or (& Ao\Bl) is not bounded.

Then we write 4,=B; and C;=4,\B; if ¢(%;p) is not bounded; on the
contrary, we write A, =A\B; and C;=58;.

It is’clear now that we can obtain, as in [19], Theorem (2.2), a séquence (C,).¢n
of mutually disjoint sets of £ such that

lp(CHl =1 VneN,
a contradiction with the assumption that ¢ is exhaustive.

(1.2). Let & be a ring of subsets of S and let ¢ an order continuous function
from & to (X,||). If the function

AR ~ |p(4)

is k-subadditive, this function and the semivariation of ¢, ¢, are also countably k-sub-
additive®).
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Let (4,),cx be a disjoint sequence of elements of £ such that A,€R. Then,
néN

for every n€ N (n=2) and for every A€%,
|<p( U A,NA)| = l(p('LsJ AiﬂA)|+k|¢(9 A,N4)|=

= o NA)+k 3 o4 ﬂA)|+k|(p(U A;NA)|.

l<i=n

Taking lifnits in the above inequality, we obtain, for each 4<%,
lo (U 4:N4) = lo(4iN DI +k 3 lo(daNA)],

and also”

é( LEJNA..) = ¢(d)+k %@(A,.);
this completes the proof.

Corollary (1.2). If ¢ is an order continuous k-subadditive function defined
on the ring & with values in R*, then ¢ and its semivariation § are also countably
k-subadditive.

(1.3). Let # be a quasi o-ring of subsets-of S and let (¢,),cn be a sequence of
exhaustive functions from % to (X, | |). Then, for each disjoint sequence (A,),cn in
&, there exist a subsequence (A4, ),¢x of (A)scn and a quasi o-ring & containedin R
such that 4, €& for each rEN such that for every nEN the restrtctton of o, to .SP
is order contmuouss)

Let, for each nEN, @, be the semivariation of ¢, and let

N AER ~ Z mf{l Pa(A)}ERY;

it is easy to see that # is an exhaustive function such that
n(d)=n(B) if AS B, A4,BER®).

Let (4,),¢n be a disjoint sequence of sets of #; then we can find a subsequence
(4,)ren Of (A),cn and a quasi ¢-ring & contained in £ such that 4, €, for
each r€N, and the restriction of n to & is order continuous’).

Hence, if (B,),¢n is a decreasing sequence of sets of & such that () B,=§,
PEN

we have, for each neN,
lim ¢.(B,NB) =0,

umformly with respect to Bc$; namely, for each n¢N, the restriction of @, to
& is order continuous.
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(1.4). Let # be a ring of subsets of S and let ® be a set of k-triangular func-
tions from & to (X,||), such that

a) ®(A) is bounded for every ACZ,
b) for every sequence (¢,),cn Of elements of ® and for every disjoint sequence
(Anen Of sets of R there exists an infinite subset M of N such that ) {¢,(4)}
neM

is bounded.
Then ®(R) is bounded.t)

Suppose the contrary. Then there are two possibilities.

Case 1: There exists A€ such that (%) is not bounded.
In this case, firstly we prove:

c) for every ACR such that ®(R,) is not bounded and for every nEN, there
exists (¢, BYe®X R, such that

lo(B)f =n and &(Ry) is not bounded.

In fact, suppose that there exist n,€N and A,€# such that &(2,) is not
bounded such that for every (¢, B)ePXZ, , |¢(B)|>n, implies that &(%y) is
bounded. Let (@, B)c XA 4, Such that [@(B)|=>2kn,; therefore

[@(B)] > n, and [@(4y\B)| = ng.

Hence, &#(%#;) and ¢(Z Ao\B) being bounded, &(Z Ao) is bounded, a con-
tradiction.
Let now A4,€# such that (% 41) is not bounded and r(1) such that

lp(d)l =r(1) Voed;
by ) there exists (¢, 4)EPXR, such that
l@1(45)l = k+r(1) and D(2R,,) is not bounded.

Continuing by induction, we can find a decreasing sequence (4,),.n of sets of
X, a sequence (¢,), of functions of ¢ and a sequence (r(n)),l€N of natural numbers
such that for every neN,

l@a(d)l = r(n), |@u(dps1)l > kn+r(n), ®(2,,) are not bounded.

Finally, if we write C,=A\A4,4, for each neN, (C,).y is a disjoint se-
quence of sets of £ such that

|9.(CHl = n  VneN,
a contradiction with b).
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Case I1: For every A€# the set $(#,) is bounded.

In this case, if we denote by #/, the ring of sets of # disjoint from 4, we have
that @(#’) is not bounded, for each 4€%. Then, we put 4,=@ and we choose
@9 and A4,€# such that |¢,(4,)|=]1. Continuing by induction, we find for
every neEN, <p,,€<15 and 4.2 | 4, Such that |¢p,(4,)|>n, a contradiction

1=i=n~1

with b). This completas the proof

(1.5). Let # be a quasi a-ring of subsets of S and let ® be a set of k-triangular
and exhaustive functions from & to (X, | l) If for every A€R the set ®(A)is bounded,
then ®(R) is bounded

Suppose that ®(2#) is not bounded. Then, by (1.4), there exist a sequence
(@w)nen of functions of @ and a disjoint sequence (4,),cn of sets of Z such that
for every infinite subset M of N the set |J {p,(4,)} is not bounded.

n€M

Let now, by (1.3), (A,ii)ieN be a subsequence of (4,),.n and & a quasi o-ring
contained in £ such that A,,‘E & (vi€N) and the restriction of ¢, to & is order
continuous, for each n€N.

Let p, be a positive real number and let #,¢N such that

0n; (4n, ) > 2p1;
¢, being exhaustive, we can find h,>i, such that
h
|on; (4a )l < P2f2K° Y > by,

We write, YIiEN, o;=k? sup lp(4,)|<+o and we put p,=max {2p,,a; -

Then there exist i,>h; and i12>z2 such that

|q’n,~’(‘4n‘-=)| = 3P2
and
1@w; (4n,)] = P12, |@n, (An,)] = p1/22K® Vm = hy.

Similarly, if we write p,=max {sp,_,, ais-.} for each s€N, (s=>1) we can
find h,_,<i,<h, such that

|9n; (A )| Z (s +1)ps
and, for each re{l, ..., s},

10w, (Au)l < PA2RS Ym = .
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Let now (A )q€ n be a subsequence of (4, )sEN such that Ao—- U 4, ¢&;
R q9EN 'sq
we obtain (Vq>1) from (1.2)

I(p",' (Ao)l = lgD"is (All,- )I —k? 2 I(pﬂ,' (An,‘ )I_ka 2 I¢"i (Anl‘ )I =
5q q Sg I<q Sq St I>q Sq s
= (s, +Dp,, - ,2 % — ,2 n/257t = (s, 4+ D ps, — ,2 Posr1—P =
<q >q <q

=s5,Ps,—(q—1)ps,_, = qp1,
a contradiction with the boundedness of ®(4,).

(1.6). Let # be a rihg bf subsets of S with the Subsequential Interpolation
Property®) and let ® be a set of k-triangular and exhaustive functions from & to
X, | ). If for every ACR the set P(A) is bounded, then ®(R) is bounded.

We have to prove that b) of (1.4) is verified. Let (¢,),.x be a sequence of func-
tions of @ and (4,),n a disjoint sequence of sets of &.

It is easy to prove that A ={4€R: $,(4)=0 YneéN} is an ideal of #1%)
and /A4 satisfies the countable chain condition!!); therefore by the (7.1.1) of [28]
R[N is a quasi o-ring.

Now, we denote for each neN by ¢, the function

[A1€ 2| N ~ |p,(4)]

and we note that, YnéEN, §, is a k-triangular and exhaustive function from /A4
toRt 12)
Therefore, by (1.5) the set U {p.(4, )}C U ¢,(2/A) is bounded. The proof

is complete.

Remark 1. We remark that (1.4) contains Theorem 1, p. 30 of [16] and (1.6)
contains the Nikodym’s boundedness Theorem of [20), Theorem N of [18], Corol-
laries 4, 5, 6 p. 29 of [16].

We remark also that from (1.6) we obtain Corollary (Nikodym) of [1] and
Theorem 2 of [21]%3).

2. We shall denote below by o/ a field of subsets of § and bv # and ¥ two
lattices contained in .of such that S\F€Y¥, for each Fe¢&F.

Let ¢ be a function from &/ to (X, | |); we say that ¢ is inner regular (with
respect to F) in A, Acsf, if for every &>0 there exists FEF such that F&A
and @(ANF)<s.

We say that ¢ is inner regular (with respect to F) on #, # S, if ¢ is inner
regular (with respect to &) in each A€3#; ¢ is said inner regular if it is inner regu-
lar on .
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We note that:
(2.1). Let (p be a function from o to (X, | |) such that the function
AR ~ |p(4)|
is k-subadditive. Then @ is inner regular if and only if it satisfies the condition

(°) For every A€ sf and for every £>0 there exist FEF and GEY such that
FCACSG and $(G\F)<e").

It follows easily from the properties of ¢'%).

Remark 2. This proposition is valid, in particular, for an inner regular k-sub-
" additive function defined on &7 with values in R+, )

If S is a Hausdorff locally compact topological space, & and ¥ are respectively
the Iattice of the compact sets and the lattice of the open sets of S, & is a field con-
taining ¥, a function ¢ from & to (X, | |), such that the function

53

Aes ~ |o(4)|
is k-subadditive, is inner regular (wifh respect to &) iff the function
Aed —~ |o(4)|
is regular (R), in the sense of [§].
(2.2). Let & be a semicompact lattice, so a lattice with the property:
(%) For every sequence (F,),.n in & such that 'Qq E,=0, there exists ny¢N
such that (\ F,=0.

n=np

Let ¢ be an inner regular (with respeci to F ) function from of to (X, | |); then,
1) if the function

Aed —~lp(4)| -
is k-subadditive, @ is order continuous and therefore the function
Aesd — |p(4)]

and the semivariation of ¢, @, are also countably k-subadditive;

2) if @ is a k-triangular function, @ is #-exhaustive, for every lattice # S sf
such that for every disjoint sequence (H,),¢x it # the o-ring generated by {H,, ncN}
is contained in .

To prove 1), by (1.2), it suffices to prove that ¢ is order continuous. For this,
if (4,),¢n is a decreasing sequence of sets of ‘ such that () 4,=#, for any ¢>0

- . neN
and neEN, let F,€% such that

F,S 4, and $(4,\F) <s/2"k.
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Then by () there exists m,¢N such that
NE=0 Ym=myg;

i=m
hence for each m=m,,

()l = () = $(AN0 F) = 5(U (4NE) =

= ‘P(Al\ﬁ)'f'k 2 GANF) =k Z' g/2"k = e.

l<i=m

To prove 2), it suffices to remark that, by 1), (p 1s order contmuous and, if
(H,),en Is a disjoint sequence in J#, for every nEN,

lo ()| _|<p(u Hl+ klo( U H)

This completes the proof.

23). Let F and 9 satzsfy the property:

(* %) For each FEF and for each sequence (G,),cn in 9 such that F& U G
there exists nycN such that FS |J G,'®), and let 9 be closed under the countable

nsno

union of mutually disjoint sets.
If @ is a function from o to (X,||) inner regular (with respect to ) on ¥,
the semivariation of ¢, §, (and therefore @) is %-exhaustive.

Let (G,),¢n be a disjoint sequence in ¥. For every £=0, let FEF such that

FS UG, and $(U G\F)<g;
nEN neN

hence, if n€N is such that

for every m=ny+1
10(G)l = $(G,) = o( U G\F) <&

the proof is complete.
We remark also:

(2.4). Let ¢ be a k-triangular function inner regular (with respect to F) defined
on sf with values in (X,|]). Then ¢ satisfies the condition

(%°) For every A€sf and for every €=0, there exist FEF and GE? such
that FEASG and for every A'€sf such that FEA' &G we have ‘

lo()l—lo(4)| <e.
Let A€o andlet ¢>0. Then, by (2.1), we.can find FEF and Ge¥ such that
FSCAS G and |p(B) <¢2k VB S G\F.
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If A’¢o and FSA'CG, then obviously
(ANAYU(AN\A) & G\ F

and therefore

o () —lo (]| = klo(ANA) +k o (4 \A)] <.

In particular, we have:

Corollary (2.4). Let ¢ be a k-triangular function defined on of with values
in R*. If @ is inner regular, ¢ satisfies the condition

(3°) For every Acsf and for every £=0, there exist F€F, and ASG €%
such that for every A€sd such that FSA'SG we have .

lp(A)—p(d)] <&

Remark 3. If S is a Hausdorff locally compact topological space, & is the
o-field of the Borel sets of S, # and ¢ are respectively the lattice of the compact
sets and the lattice of the open sets of S, from (2.4) (resp. from Corollary (2.4)) we
obtain that, if ¢ is an inner regular k-triangular function from & to (X, ]| |) (resp.
to R+), the function

Acsl — |p(A)€R*

(resp. @) is regular on & in the sense of [7], p. 303; see also Remark 2.

(2.5). Let (I',| ) be-a quasi-normed abelian group and let ¢ a finitely additive
Sunction from o to (I, | |). Then ¢ is inner regular if and only if, for every A€ sf
and for every ¢=>0 there exist FEF and GEY such that FSASG and for every
A'esd with FEA'SG we have : ‘ '

lp(A)—o(4)] <e.

Obviously we can use the same arguments of the proof of Prop. 1, p. 304 of [7].

We say that a function ¢ from & to (X, ]| |) is regular if

(a) ¢ is inner regular,

(b) for every F€# and for every ¢>0 there exist E€%, HE/ GE% such
that FCECHCG and G(GN\F)<e').

Remark 4. If we suppose that & and ¥ have the property:
(e)for every Fe&F and for every G€¥. such that FEG, there exist E€Y,
" HeZ, such that FSECSHECG, clearly a function ¢ from & to (X,||) such
that the function

AEM o (4)l

is k-subadditive (in particular a k-triangular function) is regular iff it is inner regular

(see (2.1)).
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In particular, if S is a Hausdorff locally compact (resp. normal) topological
space, & is the lattice of the compact (resp. closed) sets of S, ¥ is the lattice of the
open sets of S, of is a field containing ¢, a k-triangular function is regular iff it is
inner regular,

We remark also that in the case S Hausdorff locally compact topologlcal space,
& the o-field of the Borel sets of S, & the lattice of the compact sets, ¢ the lattice
of the open sets of S, a k-triangular function ¢ from & to (X, | |) with regular vari-
ation'®) (regular in the sense of [7], p. 303) satisfies the condition (e) of the (2.1)
and therefore it is regular (see also [24], Theorem 1 and Corollary 1).

3. (3.1) Let @ be a set of k-triangular inner regular functions from sf to (X, | |).
Then, for every Acsf such that O(H,) is not bounded and for every nEN there
exists (¢, BYe ®X((FUF)NA) such that

le(B) = n and ®(sfg) is not bounded.

Assume that there exist A,€s/ such that &(« Ao) is not bounded and 7N
such that for every (¢, B)€ @ X((FU%)NA,)

|o(B)| > n, implies that ®(sfp) is bounded.
Let now FeZ, and @€ such that |g(F)|=(1+k)ny; therefore we have
FEF,, ANFE9NAy, 3(F)>ny, @(ANF) > n,.

Then, both &(s/) and (s, are bounded, a contradiction with the as-
sumption that cD(.dAo) is not bounded.
Now we can give the proof of:

(3.2). Let & be a set of k-triangular and regular functions from o to (X,]| )
such that '
a) for every G€Y, D(G) is bounded,
P) for every sequence (9,),cn Of functions of ® and for every disjoint sequence .
(Gy)uen Of sets of 4, there exists an infinite subset M of N such that |J {0,(G,)}
_ n€M

is bounded.
Then &(f) is bounded.

Assume that &(s#) is not bounded.

We will show firstly that & satisfies the following property:

y) For every A¢% such that &(«,) is not bounded and for every néN there
exists (@, G, A)EP XY, X9, such that

(% % %) [@(G) =n, GNA =0, ®(,) is not bounded.
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Let A€¥ such that &(#,) is not bounded and let nEN; let heN such that
lo(A)|=h, for every @€ ®.
There are two possibilities.

Case I: There exists (p,, H)EPX(FNA) such that
lo (H)| >2(h+kn) and &(«fy) is not bounded.
In this case, let G’c¥, F'€#, G’€¥ such that
HSGNASFNASG'NA and ,(G"NANH) < (k+hn)/k,
so |@, (F’NA)|=h+kn. Then, if we put
. ‘ G=A\F'NA4, A =G'NA
it is easy to see that (¢, , G, 4)EPXY XY, verifies (* * *).

Case II: For every (p, H)€ PX(F N A), |¢(H)|=2(h+kn) implies that ¢ (ofp)
is bounded. ‘
In this case, let F€#, and ¢, such that | (F)|=4(h+kn); let G'€9Y,
F'e¢ZF,G"¢% such that )
FSGCSF SG and $,(G\F) < (h+kn)k,
) .
lp (F'NA)| >2(h+kn) and |, (G'NA)| > 2(h+kn).
Finally, if we put ' ‘
. =GNA, A =AF'NA,

obviously (¢, , G, A") verifies the (% % *).

It is clear now that, by the same argument as that of (3.2) of [14], we obtain
a sequence (¢,),¢n of functions of & and a disjoint sequence (G,),¢n in ¢ such that
|9, (G,)|=n, for every neN; a contradiction with B).

(3.3) Let & be a SIP-lattice'®) and let & be a set ‘of k-triangular functions from
o to (X, ]), Y-exhaustive and regular, such that for every Ge€%4, ®O(G) is bounded,;
then ®() is bounded.

It suffices to prove that & satisfies contion ﬂ) of (2.2). :

For this, let (¢,),cn be a sequence of functions of ¢ and let (G,),(x be a dis-
joint sequence of sets of ¥. We denote respectively by (Gp)ien and by & a sub-
sequence of (G,),.n and a ring with the Subsequential Interpolation Property con-
tained in &, such that G, €% for every i€N.

Clearly the.restriction of ¢, to & is exhaustive for each n¢N, and the set
ngl {9,(G)} is bounded for each G€¥; therefore, by the (1.6) the set tE‘va 0,,(G,)E

c L{, 0,(%) is bounded.
ne . T
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The proof is complete.

Corollary (34). Let ¥ be a SIP-lattice and suppose that & and 4 have
the property: ’

() for every FEF and every GE¥ such that FEG, there exist E€Y, HEF
such that FEECHCG.

If @ is a set of k-triangular, %-exhaustive and inner regular functions from
to (X,| 1) such that for every Ge€Y &(G) is bounded, then ® (L) is bounded.

| It follows immediately from (3.3) (see Remark 4). In particular we have:

Corollary (3.5). Let S be a normal topological space, % the lattice of the
open sets, F the lattice of the closed sets of S, s a field containing 4. If ® is a set
of k-triangular, 9-exhaustive and inner regular functions from & to (X,||) such
that for every GE% &(G) is bounded, then ®(f) is bounded.

Corollary (3.6). Let S be a Hausdorff locally compact topological space, ¥
the lattice of the compact sets, 4 the lattice of the open sets, o/ a field containing 4.
If & is a set of k-triangular and inner regular functions from o to (X,||), such
that, for every G€%, ®(G) is bounded, then ®(f) is bounded.

It follows immediately from Corollary (3.4) and (2.2).

Corollary (3.7). Let S be a Hausdorff topological space, % the lattice of the
open sets, F the lattice of the compact sets of S, o a field containing 4. If @ is a
set of k-triangular and regular functions from o to (X, | |) such that for every GEY
&(G) is bounded, then &(f) is bounded.

It follows immediately from (3.3) and (2.2). -

Remark 5. Cledrly (see (2.1) and Remark 4), Corollary (3.6) contains Theo-
rem 2 and Theorem 3 of [24] (see also [23], [6] Proposition 9, [2] Remark 2, p. 168).

We note that, if we put F=¥=«, (3.3) yields a Nikodym’s boundedness
theorem for k-triangular functions defined in a field which is a SIP-lattice. More-
over, from (3.3) we can obtain a Dieudonné boundedness type theorem for finitely
additive functions from &/ with values in a topological commutative group I' (see
[14]). In fact, if I’ is a topological commutative group with neutral element 0, a
finitely additive function ¢ from & to I' is ¥-exhaustive (resp. inner regular, regu-
lar (in the sense of [14])) iff, for every continuous real-valued quasi-norm @ on
I, the R*-valued 1-triangular function gog is ¥-exhaustive (resp. inner regular,
regular)®). '

Therefore:

Corollary (3.8). Let I be a topdlbgiéal commutative group and let- 4 be a



404 v Emma Guariglia

SIP-lattice. If @ is a set of finitely additive and %-exhaustive regular functions
from o to T, such that for every G€%, ®(G) is U-bounded, then (L) is
U-bounded®). '
For every continuous real-valued quasi-norm g on I', apply (3.3) to the set
(eo9).

PeP

Notes

1) A function y from £ to R+ is said k-subadditive (resp. countably k-subadditive) if, for any
disjoint sets 4, B from &, w(AUB)=y(A4)+ky(B) (resp. for any disjoint sequence (Ap)yeN in
R such that |J 4,62, w(|J 4,)sw(d)+k I w(4,) (see [15], [16)).

néEN neN n>1

) See [15], Corollary 1 for the case ¢ k-triangular with values in an abelian quasi-normed
group and [19], Corollary (2.3) for the case ¢ finitely additive.
3) In fact, for each A€X,
lo(AD)] = lp(AN A+ k lo(AN\ Aol
therefore 9(Z 4,) bounded implies ¢(Z2) bounded.

%) See [15], Lemma 2, for the case ¢ k-triangular function with values in an abelian quasi-
normed group.

%) For the definition of quasi a-ring see [3], [9], {13], [28]; see also [25], Lemma 1.

%) We note that function a ¢ from £ to (X, | |) is exhaustive iff for every disjoint sequence

(Anen of set of R
limg(4,NA4) =0,

uniformly with respect to 4€Z (see the proof of (1.1), Ch. II of [4]) see also note °), p. 134 of [4}.

") It follows from (1.1) of [13]; in fact, it is easy to see that it is true also for an exhaustive
function n from £ to R+ such that

nX)=n(¥) if X, YER: Xg Y.

8). We refer to [16], remark p. 29, for an example of a set @ of (real) 1-triangular exhaustive
functions verifying a), for which the set #(%) is not bounded. We write #(4)= |J o(4)

PED
VAER and ®(H)= |J ®(4) VH EX.
Acx

9) See [10], [5] for the definition ‘of rings with the Subsequential Intersolation Property
(rings with the (P2) property in [28), satisfying condition (E;) in [9]).

10) We note that, for each neN, {A4€ZR: 3,(A)=0} is an ideal of & ; see also [17], [27].

1) In fact, let & be a disjoint set of non-zero elements of &/ A”; we write, V (n, K)ENXN,
A ={[AERIN: §,(4)=>1/k}). Then /= U .sﬂk(") and, g, being exhaustive Vn€N,

‘ (ENXN
d,‘(") -is or empty or finite set, V(n, k)=NXN.
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1) Infact, VnEN, wehave 19,(4)|=|p,(B)| if [4]1=[B], ,(18])=0,
10n((4]) — $u([BD] = k@ (ANB)+ ko, (B\A) = k¢, ([AIN\IB])+kp.((BI1—[A]) VIA), [BIEZ/N;
for every disjoint sequence ([4,]),cn We put A; =4, and, Yp>1,4,=A4,— |J 4,04, and
i<p

we have
lilt,n Pa((4,)) = 1i£ﬂ |9a(4p)l = 0. .

15) We note that, if Z is a o-ring, a k-triangular and order continuous function is exhaustive.
Moreover, if X is a commutative semigroup with a family F of non-negative real valued functions
f which have the property

F&)—f(y) = fx+y) =f(x)+f(y), for each x,y€X,
for every triangle set function ([21]) order continuous g from Z to (X, | ) the function
v: AER —~ f(u(A))EIO, + <[
is, for every f€F, a l-triangular and order continuous function.

1) If S is a HausdorfT locally compact topological space, & is the o-field of the Borel sets
of §, & and ¥ are respectively the lattice of the compact sets and the lattice of the open sets of S,
the (°) is the condition (R) of [23], [24].

%) For every A€s/ and for every £=0, let FEF, and HEFg\ 4 such that FANF)<¢e/2
and F(S\A\H)<eg/2 and put G=S\H.

18) For instance, if S is a Hausdorff topological space, & is the o-field of the Borel sets of S,
F and ¥ are respectively the lattice of the compact sets and the lattice of the open sets, & and
satisfy the property (% %) (and therefore & has the (*)).

17) If (X, | |) is a quasi-normed group and ¢ is a finitely additive function from &/ to (X, | |),
this is the definition of regular finitely additive function of [14].

18) The variation |¢| of ¢ is defined in the usual way;

lpl(4) =sup T |p(B)| Aco,
I Benll

where the supremum is taken over all partitions of 4 into a finite number of disjoint sets in &7,

1%) We say that a lattice & is a SIP-lattice if for each disjoint sequence (Gpen of sets of
@ there exist a subsequence (Gp)icy Of (G,)pen and a ring & with the SIP contained in &, such
that G, €%, for each i€N ({14]).

20) See [14] for the definitions of finitely additive inner regular and regular functions from
& to I'. Recall that for every neighbourhood U of 0, there exist an ¢>0 and a continuous
(real-valued) quasi-norm ¢ on I"such that {x€I": o(x)<e}SU.

21y See [14] for the definition of #-bounded subset of I'; recall that a subset Y of I"is %-bounded
iff, for every continuous real-valued quasi-norm on I, sup ¢(y)<+ « ([28], Th. (6.8) (2)). See
yeY

[14], (3.2).

12



406 © . Emma Guariglia.-~
References

[1] L. V. Acaronova and V. M. KLiMKIN, A Nikodym theorem for triangular set functions,
Sib. Math. J., 15 (1974), 1, 477—481.

[2] J. K. BrooOKs, On a Theorem of Dieudonné, Adv. in Math., 36 (1980), 165—168.

{3] C. ConsTANTINESCU, On Nikodym’s boundedness theorem, Libertas Math., 1 (1981), 51—73.

[4] P. pE LucCla, Funzioni finitamente additive a valori in un gruppo topologico, Pitagora Editrice
(Bologna, 1985).

[5] P. pE Lucia and P. MoraLEes, Equivalence of Brooks—Jewett, Vitali—Hahn—Saks and
Nikodym convergence theorems for uniform semigroup-valued additive functions on a
Boolean ring, Ricerche Mat., 35 (1986), 75—87.

[6] J. DIEUDONNE, Sur la convergence des suites de measures de Radon, An. Acad. Brasil. Ci.,
23 (1951), 21—38; 277—282.

[7] N. DINCULEANU, Vector measures, Pergamon Press (New York, 1967).

[8] N. DmncuLeaNu and 1. KLUVANEK, On vector measures, Proc. London Math. Soc. (3) 17
(1967), 505—512. ’ ' '

[91 1. FLeiscHER and T. TrRAYNoOR, Equicontinuity and uniform boundedness for homomorphism
and measures, Windsor Math. Report, 83—16 (1983), 1—7.

[10] F. J. FrenicHE, The Vitali—Hahn—Saks theorem for Boolean algebras with the subsequential
interpolation property, Proc. Amer. Math. Soc., 92 (1984), 362—366.

{11] G. Fox and P. MoraLEts, Uniform semigroup valued measures. I, Rapport de recherche no.
80—17, Université de Montreal (1980), pp. 1-—20.-

[12] G. Fox and P. MoraLzs, Théorémes de Nikodym et de Vitali—Hahn—Saks pour les mesures
4 valeurs dans un semigroupe uniforme, Proc. Conf. on Measure Theory and Its Applications,
Sherbrooke 1982, Lect. Notes in Math. 1033, Springer-Verlag (Berlin, 1983), pp. 199—208.

[13] E. GUARIGLIA, Su un teorema di Nikodym per funzioni a valori nei gruppi topologici, Le
Matematiche, 37 (1982), 328—342.

[14] E. GuariGLI1A, On Dieudonné’s Boundedness Theorem, J. Math. Anal. and Appl., 145 (1990),
447—454,

[15] N. S. GuseL’NIKov, Extension of quasx-Llpschxtz set functions, Marh. Notes, 17 (1975), 14-—19

[16] N. S. GuseL’Nikov, Triangular set functions and Nikodym’s theorem on the uniform bounded-
ness of a family of measures, Math. USSR Sbornik, 35 (1979), 19—33.

[17] P. R. HALMOS, Lectures on Boolean Algebras, Van Nostrand (New York, 1963).

[18] J. Mikusinski, On a theorem of Nikodym on bounded measures, Bull. Acad. PoI Sci. Sér.
Math. Astronom. et Phys., 19 (1971), 441—444.

[19] P. MorALES, Boundedness for uniform semigroup valued set functions, in: Proc. Conf. on
Measure Theory, Oberwolfach 1983, Lect. Notes in Math. 1089, Springer-Verlag (Berlin,
1984), pp. 153—164. ]

[20] O. N1kopYM, Sur les familles bornées de functions parfaitement additives d’ensemble-abstrait,
Monatsh. Math. Phys., 40 (1933), 418—426.

[21] E. Pap, Uniform boundedness of a family of triangle sermgroup valued set functions, Zbornik
radova PMF u Novom Sadu, 10 (1980), 77—83. .

[22] E. PaP, Funkcionalna analiza, Institute of Mathematics (Novi Sad, 1982).

[23] E. Pap, A generalization of a Dieudonné theorem for a non-additive set functions, Zbornik
radova PMF u Novom Sadu, 13 (1983), 113—123.

[24] E. Pap, A generalization of a theorem of Dieudonné for k-triangular set functions, Acta Sci.
Math., 50 (1986), 159—167.



Uniform boundedness theorems 407

[25] E. PAp, The Vitali—Hahn—Saks theorems for k-triangular set functions, Atti. Sem. Mat.
Fis. Univ. Modena, 25 (1987), 21—32.

[26] R. Sikorski1, Boolean Algebras, Springer-Verlag (Berlin, 1960).

[27] M. SioN, A theory of semigroup valued measures, Lect. Notes in Math. 355, Springer-Verlag
(Berlin, 1973).

[28] H. WEBER, Compactness in spaces of group-valued contents, the Vitali—Hahn—Saks theo-
rem and Nikodym boundedness theorem, Rocky Mountain J. Math., 16 (2), (1986), 253—275.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI
»R. CACCIOPPOLI” UNIV. DI NAPOLI ,,FEDERICO I’
VIA MEZZOCANNONE, 8

80134 NAPOLI

ITALIA

12*



