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On the lattice of complete congruences of a complete lattice:
On a result of K. Reuter and R. Wille . '

G. GRATZER, H. LAKSER and B. WOLK

1. Introduction. For a complete lattice L, let Com L denote the lattice of
complete congruence relations of L. Obviously, Com L is a complete lattice; however,
unlike Con L, the lattice of congruence relations of a lattice L, it is not distributive
in general. In fact, in [4], K. REUTER and R. WILLE raise the question whether every
complete lattice K can be represented in the form Com L for some complete lattice L.

K. ReuTEr and R. WILLE [4] prove the following

Theorem. Let K be a complete distributive lattice in which every element is the
(infinite) join of ( finitely) join-irreducible elements. Then K is isomorphic to the lattice
of complete congruences of some complete lattice L.

They quote [1, pp. 69 and 58]: the condition of the Theorem holds for every
distributive dually continuous lattice, and in particular, for every completely distri-
butive complete lattice. ‘ ‘

The proof of K. Reuter and R. Wille is based on an earlier paper of R. WILLE
[5] on complete congruence relations of concept lattices. In this note we show how
the approaches of [2] and [3] apply.

In Sec. 2 and 3, we present two essentially equivalent proofs of the Theorem.
The first uses sequences and it is purely computational; it assumes no background in
lattice theory. The second is based on ideals of partial lattices and uses some knowl-
edge of lattice theory; this approach may help visualize the proof.

In Sec. 4, we show that the complete lattice L of the Theorem can be chosen to
be sectionally complemented. We also compare the constructions of [4], Sec. 2, and
3. Finally, we find the “simplest’” complete lattice L such that Com L is not distribu-
tive.
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2. Construction with sequences. Let K be a complete distributive lattice; let
J denote the set of join-irreducible elements of K. We assume that every element u
of K is a join of join-irreducible elements, that is, u=\/((#]NJ), where (u]=
={p€K|p=u}.
To construct the lattice L, take the lattice Q=M], the J-th power of the lattice
M. (In forming the direct power, J is regarded as an unordered set.) The elements of
the lattice M, will be denoted by o, a, b, c, i, where o is the zero, a, b, c are the atoms,
and i is the unit. For s€Q and .p€J, s(p) will denote the p-th component of s.
For s¢Q, let T(s)={peJ|s(p)=i} and 7(s)=V, T(s). We define 5€Q as fol-
lows:
i, if p=1(s) in K and s(p) >0 in M,;
. o - P =1(s) ®) :

s(p), otherwise.

We call s closed iff s=35. We construct L as the set of all closed s€Q, partially or-
dered componentwise. -
Claim 1. Let SSL. Then u=/\,S is again closed.

Proof. Take a p€J such that u(p)=o. Since u(p)= A, (stp)ls€S) and u(p)
is completely meet-irreducible in M, it follows that u(p)=s(p) for some s€S.
Now u=s, hence u=35=(since sis closed)=s, hence #(p)=35(p)=s(p)=u(p), and
therefore u is closed.

Thus L is a A-sublattice of Q. It follows that L is a complete lattice, in which

®) ViS=V,S for SESL.
For z€ K, we define a congruence, 6°, on Q as follows:
3) u=v (mod&?) iff u(p)=v(p) forall p=£ =
Obviously, 67 is the kernel of the projection of Q=M; onto M; —,
Claim 2. Let u,v€Q. Then .
' u = v (mod 6) illzﬁplies-'tha_t i =15 (mod 67).

Proof. Let u=v(mod§?). We want to prove that u(p)=0v(p) for p=z.
Since u(p)=v(p), we can assume that u(p)=i(p), by symmétry. By (1), in K,

p=1() = VeTW) =V (TW)—(2)Vx Vi (TN (2]).

Since p is join-irreducible in K, this implies that p=\/ (T(u)—(z]) or p=\/x (T(¥)(
N(z]). The latter would imply that p=z, contradicting that p%z. Hence p=
= V(T —(2)-
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By (3), u(g)=v(q) for g¢(z]. Hence T(u)—(z]=T(v)—(z]. Since u(p)=u(p),
therefore, by (1), u(p)>o0 and so v(p)=o. Finally,

P =Nk TW—(2]) = Vxk (T@)—(2]) = Vs T®) = (),

hence #(p)=i by (1). Therefore, @#(p)=v(p).

By Claim 2, the restriction, 63, of 8° to L is a complete congruence relation on L.
To complete the proof of the Theorem we have to prove that every complete congru-
ence relation of L is of this form.

Let 0 be a complete congruence of L. Set

P = {pcJ|there exist u?, vP€ L, u? = +? (mod 0), u?(p) = v*(p)}.

We claim that 0=07 with z=Vy P.
Obviously, 0=6;.
For x¢M, and YCJ, let xy denote the element of Q defined by

{x, for peY,
*(p) = o0, otherwise.
Note that X,=xy, since xy(p) is either o or x, and so xy€L.
For convenience of notation, if xéM; and YEK, then we write xy for xy. ;.
For Y={y}, we write x, for x,,. Note that {xy[x€M,} is a sublattice of L
isomorphic to M;. For all YEJ, 0y=0, the zero of L.
Since, for all p€P, )
u? = o? (mod ),

it follows, by taking the meet of both sides with 7,, that

u?(p), = v*(p), (mod o),

i, = 0, (mod 6).

and so

By the completeness of 6,
4 ip = 0 (mod 8).

Now consider s=ipV; bi1-p. Obviously, 7(s)=z, hence, s=i ;. Thus join-
ing both sides of (4) with b,y_p yields

i(z] = b(z]—P (mod 9).
Thus
i1-p = biz1—p (mod6),
s0
iz1-p =0 (mod 0).
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Consequently,
;7 =0 (mod9),

completing the proof of 8;=0, and the proof of the Theorem.

3. Construction with ideals. We are given K and J as in Sec. 2. First, we
construct a partial lattice, M, as in 3, pp. 81—84]: the elements of M are 0, for every
p€J, the elements p, p,, and p,, and for p,g€J, p>q, the element p(q); if pis a
maximal element of J, we set p=p,=p,. For p>¢q, we form the six-element lattice,
M(p, q), with elements O, p,, 41, 4., ¢, and p(q); the operations are defined by

aNg =0, ¢:1Vqgs=¢q, p,Nqg=0,
PV = p(9), p:Ngz = p(q), p.Vq=p(q).

In the partial lattice M, all the elements p, and p, (p€J) are atoms; any two
elements have a meet; two elements have a join iff they belong to an M(p, q) and
then their join is the join in M(p, g). Note that JS M.

The partial lattice M is atomic (every element is a join of atoms), hence every
complete congruence relation is determined by its kernel, i.e., by the congruence
class containing O.

Every congruence of M extends uniquely to a congruence of the lattice, Id M =0,
of ideals of M. Since Q is atomic, it follows from [3, p. 147] that an element S of Q
is standard iff for any atom u of Q such that uz£ S, the atoms of M in SVu are
the atoms of § and u.

For an ideal I of M, we define t(/)=\x{INJ). We call I closed iff for all
peJ and p=z(l), if p, or p,€l, then pcl Using the fact that all pcJ are join-
irreducible, it is easy to verify that if INJ is finite, then I is closed. Every ideal I
has a closure I, the smallest closed ideal containing 7, and the closed ideals of M
form a lattice Cd M=L.

For a€K, let I, be the ideal of M generated by JN(a]. Obviously, I, is a
closed ideal. We claim that 7, is standard. Indeed, let u be an atom of L, such that
uxl,; then there is a pcJ with u=(p,] (or (p,]) and pza. Obviously,
©(I,Vou)=a, hence I,V, u is closed, implying that the only atom of I,V, # not in
I, is u.

Let 6, be the standard congruence relation associated with the standard ele-
ment I, of L. We claim that a—6, is an isomorphism between K and Com L. Since
a—0, is obviously order preserving, it is sufficient to prove that it is one-to-one and
onto.

0, is a complete congruence on L. Indeed, I=J (mod 6,) iff the atoms of I—1,
and J—1I, are the same; thus 6, preserves ()(=Ao=/.) and it also preserves
V1 since the kernel, (Z,], is principal. Conversely, let 8 be a complete congruence on L.
Since 6 is complete, the kernel must be principal, generated by an ideal S of M.
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Let a=\gJNS. Weclaim that §=0,; equivalently, that S=1,. The ideals S and
I, are equal iff they contain the same atoms. So let p,£S (i=1 or 2), ie., p,;=0
(mod 6); then p=0 (mod 6) also holds: if p is maximal in J, it holds by virtue of
p=p;; otherwise, take a g=p in J and compute in M(q, p) that p,=0 (mod 6)
implies that p=0 (mod ). Conversely, let p,cI, (i=1o0r2), ie., p=a=Vg(JNS).
Then p=1(S), and S is closed, hence p,£S. This, again, completes the proof of
Theorem.

4. Concluding remarks. A lattice L with zero is sectionally complemented if
every interval [0, a] is complemented. See, e.g., [3, Sec. I11. 3 and II1. 4] for the signifi-

cance of this property. Using our first proof we can somewhat strengthen the Theo-
rem.

Addendum to Theorem. The complete lattice L of the Theorem can be chosen
to be sectionally complemented.

"Proof. Let u, tc L, and let u<t. We have to construct a v€ L with uA v=0
and uV, v=t Set

A ={peJ|t(p) =i and u(p) = o}.

For p€J, define u*(p) as a complement of u(p) in [o, t(p)]. Now we describe v;
for p€J, define

u*(p), if w*(p) is the unique complement of u(p) in [o, t(p)],
v(p) = (p), if p=E Vg4,
0, otherwise.

Obviously, v€Q. Furthermore, T(v)=A. Hence v is closed, and so v€L. Now,
u(p)Av(p)=o0 holds in M; by definition for all p€J, so uA,v=0. Finally,
@Vgov)(p)=u(p)Vu*(p)=1(p) except if u*(p) is not the unique complement of
u(p) in [o, t(p)] and p=V A4; in this case, (uVyv)(p)=u(p)Vo=u(p). However,
T(uVov)2T()=4 and u(p)c{a,b,c} (otherwise, u*(p) would be the unique
complement of u(p) in [o, t(p)]), hence by (1), uV,v(p)=i=1(p), proving that
uVpv=t

It is reasonable to ask how the constructions of [4], Sec. 2, and 3 compare.
Let K be the three-element chain. It can be computed that the construction of [4]
yields a lattice isomorphic to L, which can be represented as M? with the elements
{a, a), {a, b), and (g, i) removed. Sec 2 yields a lattice L, which can be represented as
M; with the elements (a, i), (b, i), and {c, i) removed. Note that L, and L, both
have 22 elements but they are not isomorphic. Finally, Sec. 3 produces the six-element
lattice M(p, q).
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Finally, in [4, Section 4], K. REUTER and R. WILLE produce examples of com-
plete lattices L such that Com L is not distributive. We think the following example
is the simplest.

Let L be N (the set of nonnegative integers with the usual partial ordering) with
two additional elements: a, i. Let O be the zero, and i the unit of L. Let aAn=0 and
aVn=i forall n¢N, n>0. Obviously, L is a complete lattice. We define three com-
plete congruences, a, f§, and y on L:

nontrivial classes
o: [2n+1,2n+2], for n=0,1,2,...
B:[2n+1,2n+2], for n=1,2,...
y: [2n, 2n+1], for n=1,2,....

It is easy to check that «, B,y generate a sublattice isomorphic to Ny in Com L.

Observe that L is a “minimal” example. If Com L is nondistributive, then L
must contain a chain, C, of the type w-1 or its dual, otherwise Com L is isomorphic
to Con L, and hence distributive. L—C is nonempty; indeed, if L=C, then
Com L=Com C, and Com C is isomorphic to Con w, which is distributive. We
conclude that L—C must contain at least one element. In our example, it contains
exactly one element.
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