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Endomorphism monoids in small varieties of bands 

M. D E M L O V A and V. K O U B E K * ) 

Introduction 

The study of the relationship between an algebra A and its endomorphism' 
monoid End (A) has gradually, in the course of two decades, crystallized into a gene-
ral framework, which we find worthwhile to outline here. 

As soon as we have a class X of algebras, the assignment A—End (A) for A£ jf 

defines the class Jl of monoids M isomorphic to End (A) for some i.e. the 
monoids representable in The class J f is said to be monoid universal if all monoids 
are representable in №. I f every finite monoid M is representable by a finite algebra 
in JT then we say that Jf" is finite monoid universal. 

The problem of representability of a given monoid M in a given class X~ o f 
algebras is just one aspect of the relationship between A£ X and End (A). Another, 
in a way complementary aspect of this relationship is the problem of determinancy 

of A£ Jf" by End (A): to what extent the knowledge of End (A) (up to isomorphism) 
determines the structure of A (within the class J f ) ? The class ,yf is said to be k-

determined, for a cardinal k, if any set of pairwise non-isomorphic algebras from J f 
with the same (up to isomorphism) endomorphism monoid has the cardinality 
strictly less than k. 

Since both representability and determinacy are tied to the algebraic structure of 
the algebras of a given class, it is natural to consider in the first place the varieties of 
algebras (of a given similarity type); the lattice of subvarieties can serve as a sort of 
a structural hierarchy in which universality is an increasing property and determinacy 
a decreasing property. 

When we try to elucidate the nature of universality/determinacy in this lattice 
of subvarieties setting, we are naturally led to the notion of (categorical) universality: 

*) The results were presented at the Colloquium on Semigroups and its Applications held 
in Wien, July 4—8, 1988. 
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A variety J f is said to be universal i f the category o f all graphs and compatible mapp-

ings can be fully embedded into X . If, moreover, there exists a full embedding f rom 

the category o f all graphs and compatible mappings into J f such that it maps finite 

graphs into finite algebras then c/C is called finite-to-finite universal. 

Al l known monoid universal varieties are also universal but, in general, it does 

not hold. It is an open problem whether for varieties the monoid universality and the 

categorical universality are equivalent. The categorical universality o f a variety 

"V excludes any A>determinacy of "V, for the reason that simply for any cardinal k, 

the discrete category of k graphs can be fully embedded into "K M o r e generally, any 

monoid M has a proper class o f pairwise non-isomorphic representing objects in "V 

(see [7] or [9]). 

So much for the general framework of the present study. 

Our subject proper — endomorphism monoids o f bands (i.e., idempotent semi-

groups) — does not ideally fit into the above general scheme for the obvious reason 

that bands admit all constant self maps as endomorphisms, thus the endomorphism 

monoid of any band has left zeros, thus no variety o f bands is monoid universal 

(and also not universal). However, as it is shown in the previous work [3] o f the 

authors, monoid universality (and even more, universality) is there, only as if buried 

by a layer of superfluous morphisms. A natural way how to dispose of the undesi-

rable morphisms is to strengthen the structure o f the representing objects — the 

bands in our case. It may come as a surprise that even very small varieties o f bands 

can be made universal by enriching their operational type by two or three miliary 

operation symbols, i.e. by turning the bands in question into 2 or 3-pointed bands 

(1-pointed would not do). 

Every band variety is determined, within the variety o f all bands, by a single 

equation u=v, a useful means to refer to the variety as [M=I>] (especially if there is 

no other commonly accepted name for its members). 

Figure 1 visualizes the meet semilattice T0 which is isomorphic to the bottom o f 

the lattice of band varieties, see [1, 4, 5]. The nodes o f T0 represent the fol lowing band 

varieties: 

do =[x=y] — trivial bands 

ai = [xy=x] — left zero semigroups 

a2 = [xy=yx] — semilattices 

a3 =[yx=x] — right zero semigroups 

= [xyz=xzy] — left normal bands 

«5 = [xyz=xz] — rectangular bands 
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a6 = [yzx = zyx] 

7 -[xyx = xy] a. 

a8 = [xyzu = xzyu] 

a9 = [xyx-yx] 

a10=[xyz=xyxz] 

an — [xyz = xzyz] 

— right normal bands 

— semilattices of left zero semigroups 

— normal bands 

— semilattices of right zero semigroups 

— left distributive bands 

— right distributive bands. 

The meet semilattice T„ 
Figure 1 

It is readily seen that no number of nullary operations added to semilattices or 
rectangular bands makes them monoid universal. 

The aim of this paper is to prove 

T h e o r e m 1.1. The variety of rectangular bands and the variety of semilattices 

with an arbitrary number of nullary operations added is not universal. 

T h e o r e m 1.2. A variety 'f of bands with two nullary operations added is uni-

versal if and only if 'f contains either the variety of semilattices of left zero semigroups 

or the variety of semilattices of right zero semigroups. 

T h e o r e m 1.3. A variety 'V of bands with three nullary operations added is uni-

versal if and only if the variety of semilattices is a proper subvariety of "V. 
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It should be said that the very "undesirable" morphisms, removed by the additio-
nal nullary operations in order to achieve universality, are very precious for the 
determinacy of small band varieties: semilattices are 3-determined [10], normal bands 
are 5-determined [11], semilattices of left (or right) zero semigroups are 3-determined 
and left (or right) distributive bands are 5-determined [3]. 

The results of this paper raise the question whether there exist other strengthen-
ings of the structure of bands to obtain a universal category. The authors [3] showed 
that also the variety of bands with a unary operation * satisfying the identities 
xx*x=x and x**=x is universal. It is an open question whether we can restrict 
ourselves to the *-bands (here the unary operation, moreover, satisfies the identity 
x*y* = (7* )* ) , or to a subvariety of *-bands. 

The semigroup theoretical notions used in this paper can be found in the mono-
graphs [2] or [8]. 

The rest of the paper is devoted to the proof of Theorems 1.1, 1.2, and 1.3. The 
proof is divided into three parts. The proof of the universality of the 2-pointed 
variety [xyx=xy] (or [xyx=yx]) is contained in Section 2, and the proof of the uni-
versality of the 3-pointed variety [xyz=xzy] (or [yzx=zyx]) is the aim of Section 3. 
Common to both parts is the use of unary varieties. Denote by 7(1, 1) the variety o f 
algebras with two unary idempotent operations and 7(1, 1, 0) its 1-pointed version. 

It is known 

T h e o r e m 1.4 [9]. 7(1, 1) and 7(1, 1,0) are finite-to-finite universal. 

Our universality proofs construct a full embedding of 7(1, 1) or 7(1, 1, 0) into 
the variety in question. 

The final section is devoted to the proof of non-universality of some pointed 
varieties of bands. This finishes the proof of Theorems 1.1, 1.2, and 1.3. 

2. Universality of 2-pointed semilattices of left zero semigroups 

Denote by (S, # ) the groupoid given by the following table (see on the next 
page). 

Then the following holds: 

P r o p o s i t i o n 2.1. The groupoid (S, *) is a semigroup belonging to the variety 

[xyx=xy] of semilattices of left zero semigroups. Moreover, B={bt', 2}, C = 

= {c f ; /62}, D = {di; 2}, E= {et; 4} are all non-singleton Si-classes of (S, *). 

P r o o f by a direct inspection. 

Assume that (.X, <p0, <px) is an algebra from 7(1. 1) such that Z D 5 ' = 0 . Denote 

by X0, X1, X2 three disjoint copies of X, the element xiX in the copy X(, 3 
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(S, *) a0 « i 'o 6o ¿1 Co Ci ¿0 d. Co ex ea C, 

a„ a0 bo to bo to ¿>0 bo Co Ci rfi dx Co Cl e3 c, 

a-L ¿i Oi by tl 1X bx Ci Ci do dx e i Ci c2 e3 

to 'o bo to bo to ¿0 ¿0 Ci Ci dx dx Cl Ci e3 c3 

h bi ti bi tl 11 61 Ci Ci dx dx Ci Ci c3 c3 

h 'o t-L to h h ¿0 ftl Ci Ci di dx Ci Ci c3 c3 

bo bo bo bo bo bo ¿0 bo Ci Ci dx dx el Cl c3 c3 

¿i ¿i ¿1 bx K bx ¿1 by Ci Ci h dx Ci Ci Ca e3 

c„ Co Co Co Co Co Co Co Co Co Co Co Co e0 Co Co 

Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci e-L Ci Cl Ci «1 Ci 

d0 do do do ¿0 ¿0 ¿0 ¿0 e2 c2 do <4 C2 c2 e2 c2 

dx rf. dx di dx rfl dx c3 e3 dx dx e3 c3 c3 c3 

e„ Co c0 Co Co Co Co Co Co Co Co Co Co Co e0 

e t Ci Ci ei ct Ci Ci «1 Ci Ci ex Ci Ci Cl Cl ex 

c2 e2 e2 Ca C2 Co Co <?2 C2 Co c2 C2 C2 C2 c2 

e3 c3 e3 c3 c3 e3 e3 c3 C3 C3 c3 c3 C3 e3 C3 e3 

Figure 2 

is denoted by W e shall define a groupoid 4>'(X, <p0, <p1)=(Y, •) which is a co-
extension of S (i.e. there exists a surjective homomorphism f:(Y, • )—(S, * ) ) as 
follows: 

Y = (S\{tt; / € 3 } ) U ( U { ^ ; ¿€3}) 

and if y,z£Y then: 

y-z=u*v if the following hold: 

j ^ S and y — u or y£Xi and u = ti for some 3, 

! z£S and z=v or z£X( and v = tt for some 3, ti*v£Y; 

y-z=uk if there exist u, v£X with y=uh z=v}, and t* t} = tk for some 
i,j,k£ 3; 

y-z=uk if y=u t £X i , and ti*z—tk for some i,k£3; 

y • z=(<pk(u))k if y=di, z = Ujf_Xj and a-, * tj — tk for some i,j,k£3. 
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Denote by a mapping from Y to S such, that 

t¡/(y) = y for y£S, iHy) = U for y£X„ /63. 

W e have 

P r o p o s i t i o n 2.2. 4>'(X, <p0, <p1) = (Y, •) is a semigroup belonging to the variety 

[ x y x = x y ] for every (A", (p0, 1, 1). Furthermore, \p: ( Y , •) —(5, * ) is a sur-

jective homomorphism and B, C, D, E, Xh /63 are all non-singleton <2>-classes of 

(Y, •)• 

P r o o f . That \jj is a homomorphism is straightforward. W e show that (Y , • ) 
is a semigroup. Let x, y, z6 Y and we investigate the equality 

(*) (x-y)-z = x-(y-z). 

Since i/i is a homomorphism and (S, * ) is a semigroup we obtain that ( * ) holds for 
every x,y,z£Y with (x-y)-z£S or x-(y-z)£S. if(x-y)-z£Y\S then (x-y)-z£ 

6 U {Xi; /€3}, and moreover, (x •y)-zdXi if and only if x -(y • z)£Xi. Assume 
that (x-y)-z£X,o then x,y,z€XQUX«U {aQ}. I f x£X0 then ( * ) holds because x 
is a left zero with respect to the set X0UX2[J {fl0}- If x=u2 for some u£X then for 
every i;6^0UA'2U {fl0} we have u2 • (w0, u2) and hence we again obtain ( * ) . 
Finally, assume x=a0. I f y=ui for some u£X, /6(0,2} then we have (x-y) z = 

= (<Po(")o) • z=(pu(u)a and y-z£{u0,u2}, hence x-(y-z)-(p0(u) 0 and ( * ) hold. 
I f y = a0 then Z = H; for some u£X, /6(0,2} and hence (x • y) • z=a0 • z = <p0(u)0 

and x • (y • z)=x • cp0(w)0=(Po(<Pa(«))o=9o(")o because <p0 is idempotent. Analogously 
we prove ( * ) if (x • j ) • z£X1. Finally, if (x-y)-zZX2, then x, y, ziX2 and be-
cause X2 is a left zero subsemigroup of (Y , •) we conclude that ( * ) holds and hence 
(Y, •) is a semigroup. The rest is obvious. 

Define a functor <P from 7(1, 1) into the 2-pointed variety [xyx=xy] of all 
2-pointed semilattices of left zero semigroups. For an algebra (X , q>0, f rom /(1,1) 
define <P(X, tp0, <p1)=(Y, •,c0,d0) where <P'(X, <pQ, cpi)=(Y, •)• For a homomor-
phism /: {X, (p0, cp'0, (p'J in 7(1, 1) define a mapping <£/: 

$f(x/) = /00; f ° r every x£X, /63, and $f(s) = s for every s£S. 

If u£{a0,aj}, U {Xt; /63} then <Pf(uv) = <Pf(u) • <Pf(v) because / i s a homomor-
phism, for the remaining case we obtain by a direct inspection that <Pf is a homo-
morphism. Thus we can summarize: 

P r o p o s i t i o n 2.3. <t> is an embedding of 7(1, 1) into the 2-pointed [xyx=xy]. 

W e prove that $ is full. Assume that &(X, cp0, (p1) = (Y, •, c0, d0), <t>(X\ <p'0' 

(p'1) = (Y', - ,c0,d0) are algebras from the 2-pointed variety [xyx=xy] and let 
/: (7 , •, c0, d0)-+ (Y\ •,c0,d0) be a homomorphism. Then we have 
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L e m m a 2.4. For every we have f(u) = u. 

P r o o f . Since/preserves the miliary operations we have /(c0 ) — c0,f(d0)=d0. 

Hence f(C)QC, f(D)QD. Furthermore, an arbitrary ^-class containing an arbit-
rary element of the set U {Xt; ¡£3}U-BU {aQ, аг} is greater than the ^-classes С and 
D. Thus / ( и { Л ^ ; /€3 }U5U {a 0 , вх})Е /63 }U5U {a0, a j . Moreover, ай 

is a unique element of the set U {Xt; z£3}U.6U {a0, a^} with a0 • c 0 =c 0 and ax is a 
unique element of the set U ^ ; / 6 3 } U S U { a 0 > «1} with a1-d0=d0. Hence f(a0) = 

= a0, f(a1)=a1. Since the subsemigroup generated by {a0, c0, d0j is STl У we 
obtain that / is identical on the set 5 П Y. 

L e m m a 2.5. There exists g: X-»X' such that for every x£X, 3 we have 

Л * г ) = * ( * ) , -

P r o o f . Choose x£X. By Lemma 2.4 we conclude that /(x2 )6 U {X'r, /£3}U 
UBU{ao , tfj}. I f f(x2KX'0U{a0,b0} then bx=f(b1) =/(x2 • a, • aQ) =f(x2) -Да,) • 

• f(ao) = b0 — a contradiction, if /(x2 )6 X[ U {аг, Ьг) then b0 =f(b0) =/(x2 • a0 • at} = 

=f(x2)-f(a0)-f(a1) = b1 — a contradiction. Thus f(X2)QX'2. Set g: X-+X' with 
f(x2)=g{x) 2 forevery x£X. Then we have f(x0) =/(x 2 • a0) =/(x2 ) •f(a0)=g(x)2 • aa= 

=g(x)о and / ( x j ) =/(x 2 • flj) =/ (x 2 ) -/(aj) = g ( x ) 2 • аг =g(x\. 

L e m m a 2.6. ГЛе mapping g of Lemma 2.5 is a homomorphism from (X, cp0, cp^y 

into (X\ (p'0, <pi). 

P r o o f . Consider x£X, then g(cp0(x))„ =/ (% ( x ) 0 ) =f(a0 • x2) =f(an) -/(x2) = 
=a0 g(x)2=(p'0(g(x))0 and hence go<pQ = <p,0og. By the dual argument we obtain 
go<p1=(p[og, whence g is a homomorphism. 

Since for a homomorphism g from Lemma 2.5 we have <!>g—f we have proved 
that Ф is a full embedding and thus Theorem 1.4 completes the proof of the following 

T h e o r e m 2.7. The variety [xyx = xy] with two nullary operations added is 

finite-to-finite universal. 

Hence we immediately obtain 

C o r o l l a r y 2.8. The variety [xyx=yx] with two nullary operations added is 

finite-to-finite universal. 

P r o o f . Obviously, a semigroup ( T , • ) belongs to the variety [xyx=xy] i f 
and only if the semigroup (T, ® ) belongs to the variety [xyx=yx] where t®u=u-t 

for every t,u£T. Hence Corollary 2.8 immediately follows from Theorem 2.7. 
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(xm, Oi)(yn, dj) = 

3. The universality of the 3-pointed variety [xyz = xzy] 

For an algebra A = (X, <p, if/, q)£l(l, 1, 0) denote by Xt, /62 two disjoint 
•copies of the set X, for an element x£X denote by xt the corresponding element in 
the copy /62. Define an algebra 4>A in the 3-pointed variety [xyz=xzy]. The 
underlying set of 4>A is (X0X K , a 2 , a 7 , a10})U{XrX {a3, a%, an})U((A^UA^X 
X { a 4 , a 5 , a 6 , i i g } ) U { ( 0 , a0)}- For x,y£X, m, «62 , /,./612 if aiAaj=ak in the semi-
lattice T0 and if (xm, a,), (y„, aj) are elements o f the underlying set o f <PA then 

( x m , a k ) if k > 3 , 

( * ( * J i , « a ) i f k = 3> 

(.xa, a2) if k = 2, 

{<P(xJo, « i ) i f k - \ , 

(0 ,a0 ) . if k = 0, 

moreover (0, a0) is a zero in <PA, where <p, ¡¡/: ( X q U X ^ ^ X are the mappings defined 
q>(x0)=x, cp(xJ) = (p(x), = ip(x), $(xl) = x for every x£X. By a direct ins-

pection we obtain that the definition of the binary operation is correct and that <PA 

is a strong semilattice of left zero semigroups, thus by [8] it is a left normal band. The 
three added miliary operations are (q0, a5), (qQ, a7), (qx, a9). 

For a homomorphism f: A—B where A = (X, <p, i//, q), B = (Y, (p',\j/', r) 

•denote b y / ' the mapping defined as follows: f'(xm, ai)=(f(x)m, aj for every 
x£X, w62, /612\{0} , / ' (0 , a0)=(0, a0). By a direct inspection we obtain that f 

maps the underlying set o f <PA into the underlying set o f <PB, furthermore the res-
triction o f / ' to &A is a homomorphism. Thus if the restriction o f / ' to <PA and <PB is 
•denoted by <t>f then we obtain 

P r o p o s i t i o n 3.1. 4> is an embedding of 1(1, 1,0) into the 3-pointed variety 

[xyz=xzy]. 

P r o o f . By a direct inspection. 

W e prove that $ is a full embedding. For the purpose assume that A, 56/(1, 1,0) 
where A—(X, cp, ip, q), B=(Y, cp', i¡/', r) and that f : <PA — <PB is a homomorphism 
in the 3-pointed variety [xyz = xzy]. 

L e m m a 3.2. The structural homomorphism of f is the identity. 

P r o o f : Since T0 is the structural semilattice of <M and <PB we get that the 

.structural homomorphism g o f / is an endomorphism of Ta. Since / preserves the 

nullary operations we conclude that g ( a , ) =a ; for every /6 {5, 7, 9}. Moreover, g 

preserves the order and thus g ( a , ) = a ; for /6 {10, 11}. Since g is an endomorphism 

and { a f ; /6 {5, 7, 9, 10, 11}} generates T0 we conclude that g is the identity. 
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Define mappings f0,fi- such that 

/0o . «10) = ( / o ( 4 > «10) for every x£X, 

/(x l 5 flu) = ( / i ( 4 , au) for every x£X. 

L e m m a 3.3. For every {1, 2, 4, 5, 6, 7, 8, 10}, we have /(x0 , a i )= (/ 0 ( x ) 0 , at) 

for every x£X. 

For every /6 (3 ,4 ,5 ,6 ,8 ,9 ,11 } , we have / (x l 5 ai)=(f1(x)1, a) for every 

xex. 

P r o o f . For every x£X and /6 (1 ,2 ,4 ,5 ,6 ,7 ,8 } we have (x0, a , )= (x 0 , a10) • 

• (x0 ,a i ) and hence 

f(x0, ai) = / ( x 0 , a10)f(x0, a,) = (/0(x)0, a10)f(x0, a ;) = (/0 (x)0, a,). 

Hence we obtain the first assertion. The proof of the second assertion is dual. 

C o r o l l a r y 3.4. f0= 

P r o o f . We apply Lemma 3.3 and the fact that 

(/o(*)o> a2) = f(x0, a2) = / ( ( x 1 ; a u ) ( x 0 , a2)) = f ( x u a n ) / ( x 0 , a2) = 

= ( / i W i - « i i ) (/oWo, a2) = (yi(x)q, a2) 
for every xdX. 

L e m m a 3.5. /0 zi a homomorphism of /(1, 1, 0) from A into B. 

P r o o f . Obviously fo(q) = r. W e have 

0 (/o (*))o > = (/o ( * ) i , a5) (/o W o > Oi) = / ( ( * ! , o5) (*o > « i ) ) = 

= /(<fWo, fli) = (fo(<P(x))o, «x)-

Thus/0 commutes with <p. By duality we obtain that f0 commutes with Hence f0 

is a homomorphism. 

Since $fQ =f we conclude that $ is a full embedding from /(1, 1, 0) into the 
3-pointed variety [xyz=xzy]. Theorem 1.4 completes the proof of the following: 

T h e o r e m 3.6. The variety [xyz=xzy] with three nullary operations added is 

finite-to-finite universal. 

I f we apply the same idea as in the proof of Corollary 2.8 we obtain 

C o r o l l a r y 3.7. The variety [yzx=zyx] with three nullary operations added is 

finite-to-finite universal. 
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4. Non-universality of pointed varieties of bands 

First we investigate the variety o f rectangular bands, and the variety o f semilatti-

ces. If B is a rectangular band then B is a product o f a left zero semigroup L and a 

right zero semigroup R. It is well known that / : B-~B is an endomorphism o f B if 

and only if f=gXh where g:L-~L, h : R — R. Hence we obtain: 

P r o p o s i t i o n 4.1. For any cardinal a, no a-pointed rectangular band B repre-

sents a non-trivial group as End (B). 

W e prove an analogous result for semilattices: 

P r o p o s i t i o n 4.2. For any cardinal a, no a-pointed semilattice S represents a 

non-trivial group of a finite order as End (S ) . 

P r o o f . Assume the contrary, let S be an a-pointed semilattice such that its 

endomorphism monoid is isomorphic to a non-trivial group G o f finite order. First, 

for every g C l E n d ^ ) and for every x£S if g(x)j±x then x and g(x) are incompa-

rable because there exists a natural number n with g"(x)=x. For every endomor-

phism g £ E n d ( S ) define /: S-~S such that f(x)=xg(x) for every x£S. Obviously, 

/6End (S) and f(x) and x are comparable for every x£S. Moreover. / is identical 

if and only if g is identical and this is a contradiction with the fact that G is 

non-trivial. 

Propositions 4.1 and 4.2 complete the proof o f Theorem 1.1. Moreover, Theo-

rems 1.1 and 3.6, and Corollary 3.7 complete the proof of Theorem 1.3. Thus it 

suffices to finish the proof o f Theorem 1.2. For this purpose we. shall investigate the 

2-pointed variety o f normal bands. 

Proposition 4.3. Let B be a normal band with a structural semilattice S. If f is an 

endomorphism of S such that f(s)^s for every s£S then there exists an endomorphism 

g: B —2? with a structural morphism fsuch that for every ¡¡¡-class D of B with f{D) = D 

and for every x£D we have g(x) = x. 

P r o o f . By [8], B is a strong semilattice o f rectangular bands, i.e. for every s£S 

there exists a rectangular band D{s) (it is the S)-c)ass corresponding to 5) and f o r 

every pair s, t£S with s^t there exists a homomorphism [iUs: D(t)^D(s) such 

that . 

a) for every s£ S, ps>s is the identity; 

b) for every triple s, t, u£ S with s^ t~ u we have 

c) 5 = U { D ( J ) ; s£S} and { D ( s ) ; are pairwise disjoint; 



Endomorphism monoids 19 

d) for every s,t£S, x£D(s), y^D(t) we have 

xy = Vs,sAt(x)H<,sA,(y) 

where the former product is in B and the latter one is in D (sA t). 

For every x£D(s), s£S define g(x)=fisfis)(x). By a) through d) we easily 
obtain that g is an endomorphism of B with the required properties. 

L e m m a 4.4. Let S be a semilattice with an element d£S. If /6End (Sd) where 

Sd—{s(iS; s=sd} is a subsemilattice of S then g: S—S defined by g(s)=f(s) for 

s£Sd, g(s)=dAs for s£S\Sd is an endomorphism of S. 

P r o o f . Clearly g is correctly defined. Let x,y£S. I f x,y£Sd then also 
xAyiSd and since /6End (Sd) we obtain g(x)Ag(y)=g(xAy). I f y£S\Sd then 
g(xAy)=xAyAd. I f x£Sd then x,f(x)sid, whence xAyAd=f(x)AyAd-

=g(x)Ag(y); if xiS\Sd then obviously g(x)Ag(y) = xAyAd. I f x£S\Sd the 
proof is analogous. 

T h e o r e m 4.5. No 2-pointed normal band B represents a nontrivial group as 

End (B). 

P r o o f . Assume that B is a normal band with two added miliary operations ah 

/62 such that End (B) is a group (i.e. every endomorphism of B is an automorphism). 
Let S be the structural semilattice of B, assume that elements bh /6 2 of S corres-
pond to the ^-classes containing ah /62. I f there exists s£S such that s^b( for 
/62 and s is not the unity of S then consider the endomorphism h of S such that 
h(x)—sAx for every x6S . Since i ^ i ) ; we have By Proposition 4.3 

there exists a band endomorphism g of B with structural endomorphism h and 
g(ai)=at for /62. Thus g is an endomorphism of B and because neither h nor g 

is an automorphism, this is a contradiction. Hence we can assume that only the unity 
1 in S is greater than bh /62. Set c = fc0Afc1 and let dfS with JSc . Denote Sd= 

= {s£S; s^d} and define f: Sd^Sd as follows: 

f(x) = x if x = l , 

f ( x ) = b i if x ^ l and x ^ b i for an /62, 

f(x)=c if x^bj for any /62 and 

f(x)=d if x^c and x^d. 

By a direct inspection we obtain that / i s an endomorphism of Sd with f(x)Sx for 
every x£Sd and /(6 i )=fc1 for /62. I f we use Lemma 4.4 we obtain an endomor-
phism h of S with h(x)sx for every x£S and h (£>,-)=£>; for /62. Finally, if we 
apply Proposition 4.3 we obtain a 2-pointed band endomorphism g of B with structur-

2* 
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a l e n d o m o r p h i s m h. S ince g is a n a u t o m o r p h i s m w e c o n c l u d e that h is a n a u t o m o r -

p h i s m o f S, thus Sd=SQ { 1 , b0, by, c, d) w h e r e 1 is the un i ty o f S ( i f i t ex is ts ) . I t 

is r ou t ine t o v e r i f y that B is r i g id . 

T h e p r o o f o f T h e o r e m 1.2 f o l l o w s f r o m T h e o r e m s 2.7, 4.5, a n d f r o m C o r o l l a r y 

2.8. I n f ac t , w e have p r o v e d s t r onge r results than T h e o r e m s 1.1, 1.2, a n d 1.3: 

C o r o l l a r y 4.6. For a variety "V of bands with k nullary operations the following 

are equivalent: 

a) "V is finite-to-finite universal; 

b) "V is universal; 

c) "f is monoid universal; 

d) ~V is finite monoid universal; 

e) there exist a non-trivial group G of finite order and an algebra A(Hr with 

E n d 0 4 ) ^ G ; 

f ) either k^2 and ir^[xyx=xy] or k^2 and ir^[xyx=yx] or k^3 

and the variety of all semilattices is a proper subvariety of "V. 

Acknowledgement. W e thank the r e f e r ee w h o s e c o m m e n t s he l p ed us t o i m p r o v e 

severa l passages. 

[1] A. BIRJUKOV, Varieties of idempotent semigroups, Algebra i Logika, 9 (1970), 255—273. (Rus-
sian). 

[2] A. H. CLIFFORD and G. B. PRESTON, The Algebraic Theory of Semigroups, A M S (Providence, 
Vol. 1: 1961, Vol. 2: 1967). 

[3] M. DEMLOVA and V. KOUBEK, Endomorphism monoids of bands, Semigroup Forum, 38 (1989), 
305—329. 

[4] CH. FFINNEMORE, All varieties of bands, Semigroup Forum, 1 (1970), 172—179. 
[5] J. A. GERHARD, The lattice of equational classes of idempotent semigroups, J. Algebra, 15 

(1970), 195—224. 
[6] Z. HEDRLI'N and A. PULTR, On full embeddings of categories of algebras, Illinois J. Math., 10 

(1966), 392—406. 
[7] Z. HEDRLIN and J. SICHLER, Any boundable binding category contains a proper class of mutu-
¡33 ally disjoint copies of itself, Algebra Universalis, 1 (1979), 97—103. 
[8] M . PETRICH, Introduction to Semigroups, Merill (Columbus, 1973). 
[9] A. PULTR and V. TRNKOVA, Combinatorial Algebraic and Topological Representations of 

Groups, Semigroups and Categories, North Holland (Amsterdam, 1980). 
[10] B. M. SCHEIN, Ordered sets, semilattices, distributive lattices and Boolean algebras with homo-

morphic endomorphism semigroups, Fund. Math., 68 (1970), 31—50. 
[11] B. M. SCHEIN, Bands with isomorphic endomorphism semigroups, J. Algebra. 96 (1985), 548— 

Re f e r ences 

565. 

(M. D.) 
FACULTY OF ELECTRICAL ENGINEERING 
SUCHBATAROVA2 
166 27 PRAHA 6 
CZECHOSLOVAKIA 

(V. K.) 
FACULTY OF MATHEMATICS AND PHYSICS 
MALOSTRANSKFI NAM. 25 
118 00 PRAHA 1 
CZECHOSLOVAKIA 


