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On a problem posed by I. Z. Ruzsa 

R I C H A R D W A R L I M O N T 

In his paper titled "On the small sieve II. Sifting by composite numbers'* 
(Journal of Number Theory, 14 (1982), 260—268) I. Z . RUZSA p o s e d the f o l l o w i n g 

problem: 
For and fc€ Z let R(a, b) denote the residue class b mod a. Consider all 

systems ax, ...,am (m not fixed) of natural numbers 1 S f l i < „ . « j f f l g « for which 
there exist integers blt ...,bm such that 

m 

( * ) U R(aj,bj)z>{l, ...,n}. 
j-1 

Put 
m J 

H{n) := mm Jg — 
J=I aj 

where the minimum has to be taken over all those systems. What can be said abou 
the behaviour of n(ri) for «-*»=? 

Since ( * ) implies 

the lower estimate /i(n)S — follows at once. Ruzsa mentions that he can improve 

it to 

H(n) S l o g ^ ¡ - = 0-56754538... 

and he also gives the upper estimate 
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Ruzsa's problem appears to be very delicate but it gives rise to another one which 
can be solved: Denote by si(n) the family of all subsets Ac{ 1, . . . , « } with the 
property 

illSH» 
and put 

v(n) : = min y . — . • • : • • • 
At*wafA a 

Obviously v(n)^/i(n). I could show 

Ruzsa simplified my proof. His modifications also led to the better error term 0( l/n) . 
With his kind permission I present this simpler version. 

Let Y(n) denote the set of all y=(yt, ...,y„)€R" which fulfil 

O s j j s l i l s j s n ) and . ¿ 3 > j ( [ y ] + l ) s n. 

Put 

" 1 
v*(n):= min 2 y j — . 

y e r w y t i J j 

Obviously v* (w)^v(n) . It will be shown that 

and 

(2) v ( « ) ^ v * ( » ) + o ( i ) . . . 

I f we put Pj:= — j + l j and denote by Z ( « ) .the set of all z=(zlt ..., z„ )6Rn 

which fulfil 

0 ^ z , 4 - (1 s / s /3) and 2 z jp j s 1 
J i=i 

then 
tl 

v*(ri) = min 7 z,. 
Z€Z(N) YTI 1 .. :•: 
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Let (Ci, ..., U e Z ( n ) be such that v * ( w ) = Then 
j=i 

The quantity 

and ZZJPJ = 1-
J i=i 

y =y(n) : = m i n i 

turns out to be crucial in the argumentation. One has 

(3) Sj = 0, 

(4) = 

Here (3) is evident and (4) can be seen this way: Let m, l s m s n , be such that 

fim=y. Then £ m >0 . I f there existed some k, l^k^n, with and 
k 

then k ^ m and 

N o w put 

+ £Pm, Zj for j ^ ttl, k. 

Since O s ^ i and Z = 2 S j P j = l> we have ( C - , 0 € Z ( n ) . This 
J j=i y=i implies v* ( « ) S i i j = v*(n)-e(pk-y) < V*(M) j=i 

which is absurd. 

N o w put 5=5(n):=y(n)—l. From / ^ 2 and 

^iMMi lHi ' -^K 
we see that in particular — 1. I f A: is an integer, l ^ k ^ n , then 

n 

P j - i w for T i T ^ f 

W e shall show next that 

(5) for all n. 
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W e put x : = m i n j y , and have 

i = 2 ZjPJ-
j=1 k-zx nyUk+l)^jmnlk 

y 
Since in the inner sum ( f c + l ) = y . W e infer from (4) that 

k~1-1 

kTx wUk+f&jzinik J n n kTx \\.k\ Yk + \\) 

= D f f - T x r - ^ 2T~5 2 ( k + 2 J - 3 -

Therefore ^ — = 4 which implies x ^ 50. 
k 

I f x=Vn then Vn S 50 and therefore <5 =r — s . I f x = — then 
n 2500 5 

1 1 
— 35 50, and therefore 3 — . 
5 50 

N o w comes 

(6) 3 ( n ) = ^ + 0 { ± ) . 

T o establish that we start from 

i = 2 ZjPJ+ 2 tjPj) + 
j = l fc-=l/<5 n/(* + l)cjSnW(fc + l ) nyl(k + l)cjmnlk 

+ 2 2 = s 1 + s a + s 8 . 

n 1 1 
W e estimate 5S . If ./ < — then f}, < H s 1 +<5 = y. I f k > — then 

A: & 5 
1 72 

/?,- s 1 + — < 1 + 5 = y. Thus by (3) there is at most one term c,-n i = , 
* l/<5 

in S3 which may not vanish. Therefore, by (5), 

1 2 2 

ny y 
W e estimate 5X. I f j < — — then Pj < — i — (£ + 1 ) = y. Thus by (3) there 

/c -f-1 /c -f-1 
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is at most one term in the innermost sum which may not vanish and 

/ n Yl 

Therefore, by (5), 

<? ^ y k + l 2 - 2 

1 ~ n ~ 5*n ~ S2n ' 

y 
Finally we evaluate S2. In S2 we have 0,- = (k+1) = y which by (4) 

k + l 

implies i = —• Therefore 

" k^l/d U K + L J 

= 2 where 
kills yk ) B-n 

1 ~ W ~ J L t ~ 1 + W " 

Thus we obtain 

fccl/5 
If we put 

/ ( 0 : = 2 ( i - ' l for 0 < / ^ 1 
*«=l/t 

then one easily verifies that the following inequality holds true: 

\h-h\ S \f(h)-f(u)\ for 0 < t2 =1 1. 

Since f\ — I = 1 we obtain /y-
P r o o f o f (1). 

« - - i f 
= l/(<5) — ll = 6 

92n " 

* ( n ) = 2 Z j = 2 ( 2 2 Q+ 
j = 1 fc-=l/5 n/(* + l)-c/3ny/(fc-t-l) nyKk + l)-zjSnlk 

+ 2 2 ^J = T1+Ti+Ta. 
llisk&n n/ (H l ) < j sn f t 

Because of we have 

Jl + T j ^ S i - l - S a « ^ - . 
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Further for ?JSH0 by (6) one has 

T . - 2 2 I - i k ^ i + o t i ) ] - i o g A + 0 ( i ) . 
k = l nyKk+VcjSnlk J fctu yk \n)) y3 \n) 

But (6) implies 

"•-«•«•-(SMt)-
P r o o f o f (2). Since — is no integer we may write k > — in T3. Therefore 

8 8 

= 0 in T3. In Tx there are at most 3 terms with ^ < — . These are replaced 

1 4 
by — s —. I f we denote the new system by then we have 

J n 

t'j = 0 or 1 (1 j ^ n) and J i'jßj ^ 1 Zjßj s 1. 
J j=i j=i 

Therefore 

" " 12 12 
j=l j=l n n 
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