On a problem posed by I. Z. Ruzsa

RICHARD WARLIMONT

In his paper titled "On the small sieve II. Sifting by composite numbers" (*Journal of Number Theory*, 14 (1982), 260–268) I. Z. RUZSA posed the following problem:

For $a \in \mathbb{N}$ and $b \in \mathbb{Z}$ let R(a, b) denote the residue class $b \mod a$. Consider all systems a_1, \ldots, a_m (*m* not fixed) of natural numbers $1 \le a_1 < \ldots < a_m \le n$ for which there exist integers b_1, \ldots, b_m such that

$$(*) \qquad \qquad \bigcup_{j=1}^m R(a_j, b_j) \supset \{1, ..., n\}.$$

Put

$$\mu(n) := \min \sum_{j=1}^m \frac{1}{a_j}$$

where the minimum has to be taken over all those systems. What can be said about the behaviour of $\mu(n)$ for $n \rightarrow \infty$?

Since (*) implies

$$2n\sum_{j=1}^{m}\frac{1}{a_j} \ge \sum_{j=1}^{m}\left(\left[\frac{n}{a_j}\right] + 1\right) \ge n$$

the lower estimate $\mu(n) \ge \frac{1}{2}$ follows at once. Ruzsa mentions that he can improve it to

$$\mu(n) \ge \log \frac{2^5 3^6}{5^2 2 3^2} = 0.567\,545\,38\dots$$

and he also gives the upper estimate

$$\mu(n) \leq \log \frac{5}{2} + O\left(\frac{1}{n}\right).$$

Received October 11, 1988 and in revised form May 29, 1990.

Ruzsa's problem appears to be very delicate but it gives rise to another one which can be solved: Denote by $\mathcal{A}(n)$ the family of all subsets $A \subset \{1, ..., n\}$ with the property

$$\sum_{a \in A} \left(\left[\frac{n}{a} \right] + 1 \right) \ge n$$

and put

$$v(n) := \min_{A \in \mathscr{A}(n)} \sum_{a \in A} \frac{1}{a}.$$

Obviously $v(n) \leq \mu(n)$. I could show

$$v(n) = \log \frac{2^5 \cdot 3^6}{23^3} + O(n^{-1/3}).$$

Ruzsa simplified my proof. His modifications also led to the better error term O(1/n). With his kind permission I present this simpler version.

Let Y(n) denote the set of all $y=(y_1,...,y_n)\in \mathbb{R}^n$ which fulfil

$$0 \leq y_j \leq 1 \ (1 \leq j \leq n) \text{ and } \sum_{j=1}^n y_j \left(\left[\frac{n}{j} \right] + 1 \right) \geq n.$$

Put

$$v^*(n) := \min_{y \in Y(n)} \sum_{j=1}^n y_j \frac{1}{j}.$$

Obviously $v^*(n) \leq v(n)$. It will be shown that

(1)
$$v^*(n) = \log \frac{2^5 \cdot 3^6}{23^3} + O\left(\frac{1}{n}\right)$$

and

(2)
$$v(n) \leq v^*(n) + O\left(\frac{1}{n}\right).$$

If we put $\beta_j := \frac{j}{n} \left(\left[\frac{n}{j} \right] + 1 \right)$ and denote by Z(n) the set of all $z = (z_1, ..., z_n) \in \mathbb{R}^n$ which fulfil

$$0 \leq z_j \leq \frac{1}{j}$$
 $(1 \leq j \leq n)$ and $\sum_{j=1}^n z_j \beta_j \geq 1$

then

$$v^*(n) = \min_{z \in Z(n)} \sum_{j=1}^n z_j.$$

Let $(\xi_1, ..., \xi_n) \in Z(n)$ be such that $v^*(n) = \sum_{j=1}^n \xi_j$. Then

$$0 \leq \xi_j \leq \frac{1}{j}$$
 $(1 \leq j \leq n)$ and $\sum_{j=1}^n \xi_j \beta_j = 1$.

The quantity

$$\gamma = \gamma(n) := \min_{\xi_j > 0} \beta_j$$

turns out to be crucial in the argumentation. One has

$$\beta_j < \gamma \Rightarrow \xi_j = 0,$$

(4)
$$\beta_j > \gamma \Rightarrow \xi_j = \frac{1}{j}.$$

Here (3) is evident and (4) can be seen this way: Let m, $1 \le m \le n$, be such that $\beta_m = \gamma$. Then $\xi_m > 0$. If there existed some k, $1 \le k \le n$, with $\beta_k > \gamma$ and $\xi_k < \frac{1}{k}$ then $k \ne m$ and

$$\varepsilon := \min\left\{\frac{\xi_m}{\beta_k}, \frac{1}{\beta_m}\left(\frac{1}{k} - \xi_k\right)\right\} > 0.$$

Now put

$$\xi'_m := \xi_m - \varepsilon \beta_k, \quad \xi'_k := \xi_k + \varepsilon \beta_m, \quad \xi'_j := \xi_j \quad \text{for} \quad j \neq m, k.$$

Since $0 \leq \xi'_j \leq \frac{1}{j}$ and $\sum_{j=1}^n \xi'_j \beta_j = \sum_{j=1}^n \xi_j \beta_j = 1$, we have $(\xi'_1, ..., \xi'_n) \in Z(n)$. This implies

$$v^*(n) \leq \sum_{j=1}^n \xi'_j = v^*(n) - \varepsilon(\beta_k - \gamma) < v^*(n)$$

which is absurd.

Now put $\delta = \delta(n) := \gamma(n) - 1$. From $\beta_j \leq 2$ and

$$\beta_j - 1 = \frac{j}{n} \left(1 - \left(\frac{n}{j} - \left[\frac{n}{j} \right] \right) \right) \ge \frac{j}{n} \left(1 - \frac{j-1}{j} \right) = \frac{1}{n}$$

we see that in particular $\frac{1}{n} \leq \delta \leq 1$. If k is an integer, $1 \leq k \leq n$, then

$$\beta_j = \frac{j}{n}(k+1)$$
 for $\frac{n}{k+1} < j \le \frac{n}{k}$.

We shall show next that

(5)
$$\delta(n) \ge \frac{1}{2500} =: 9 \quad \text{for all } n.$$

We put $x := \min\left\{\frac{1}{\delta}, \sqrt{n}\right\}$ and have

$$1 = \sum_{j=1}^{n} \xi_j \beta_j \ge \sum_{k < x} \sum_{n \neq j < k+1 < j \le n/k} \xi_j \beta_j.$$

Since in the inner sum $\beta_j > \frac{\gamma}{k+1} (k+1) = \gamma$. We infer from (4) that

$$1 \ge \sum_{k < x} \sum_{n\gamma/(k+1) < j \le n/k} \frac{1}{j} \frac{j}{n} (k+1) = \frac{1}{n} \sum_{k < x} (k+1) \left(\left[\frac{n}{k} \right] - \left[\frac{n\gamma}{k+1} \right] \right) \ge \frac{1}{n} \sum_{k < x} (k+1) \left(\frac{n}{k} - \frac{n\gamma}{k+1} - 1 \right) = \sum_{k < x} \frac{1}{k} - \delta \sum_{k < x} 1 - \frac{1}{n} \sum_{k < x} (k+1) \ge \sum_{k < x} \frac{1}{k} - 3.$$

Therefore $\sum_{k < x} \frac{1}{k} \le 4$ which implies $x \le 50$. If $x = \sqrt{n}$ then $\sqrt{n} \le 50$ and therefore $\delta \ge \frac{1}{n} \ge \frac{1}{2500}$. If $x = \frac{1}{\delta}$ then $\frac{1}{\delta} \le 50$, and therefore $\delta \ge \frac{1}{50}$. Now comes

(6)
$$\delta(n) = \frac{5}{18} + O\left(\frac{1}{n}\right)$$

To establish that we start from

$$1 = \sum_{j=1}^{n} \zeta_{j} \beta_{j} = \sum_{k < 1/\delta} \left(\sum_{n/(k+1) < j \le n\gamma/(k+1)} \zeta_{j} \beta_{j} + \sum_{n\gamma/(k+1) < j \le n/k} \zeta_{j} \beta_{j} \right) + \sum_{1/\delta \le k \le n} \sum_{n/(k+1) < j \le n/k} \zeta_{j} \beta_{j} = S_{1} + S_{2} + S_{3}.$$

We estimate S_3 . If $j < \frac{n}{k}$ then $\beta_j < 1 + \frac{1}{k} \le 1 + \delta = \gamma$. If $k > \frac{1}{\delta}$ then $\beta_j \le 1 + \frac{1}{k} < 1 + \delta = \gamma$. Thus by (3) there is at most one term $\xi_i, \beta_i, i = \frac{n}{1/\delta}$, in S_3 which may not vanish. Therefore, by (5),

$$S_3 = \xi_i \beta_i \leq 2 \frac{1}{i} = \frac{2}{\delta n} \leq \frac{2}{\vartheta n}$$

We estimate S_1 . If $j < \frac{n\gamma}{k+1}$ then $\beta_j < \frac{\gamma}{k+1}$ $(k+1) = \gamma$. Thus by (3) there

is at most one term $\xi_i \beta_i$ in the innermost sum which may not vanish and

$$\xi_i\beta_i \leq \frac{1}{i}\frac{i}{n}(k+1) = \frac{k+1}{n}.$$

Therefore, by (5),

$$S_1 \leq \sum_{k < 1/\delta} \frac{k+1}{n} \leq \frac{2}{\delta^2 n} \leq \frac{2}{\vartheta^2 n}.$$

Finally we evaluate S_2 . In S_2 we have $\beta_j > \frac{\gamma}{k+1}(k+1) = \gamma$ which by (4) implies $\xi_j = \frac{1}{j}$. Therefore

$$S_{2} = \frac{1}{n} \sum_{k < 1/\delta} (k+1) \left(\left[\frac{n}{k} \right] - \left[\frac{n\gamma}{k+1} \right] \right) =$$
$$= \frac{1}{n} \sum_{k < 1/\delta} (k+1) \left(\frac{n}{k} - \frac{n\gamma}{k+1} + r \right) \text{ where } |r| \le 1$$
$$= \sum_{k < 1/\delta} \left(\frac{1}{k} - \delta \right) + R \text{ where } |R| \le \frac{2}{9^{2}n}.$$

Thus we obtain

$$1 - \frac{6}{\vartheta^2 n} \leq \sum_{k < 1/\delta} \left(\frac{1}{k} - \delta \right) \leq 1 + \frac{2}{\vartheta^2 n}.$$

If we put

$$f(t) := \sum_{k < 1/t} \left(\frac{1}{k} - t \right)$$
 for $0 < t \le 1$

then one easily verifies that the following inequality holds true:

$$|t_1 - t_2| \le |f(t_1) - f(t_2)|$$
 for $0 < t_1, t_2 \le 1$
Since $f\left(\frac{5}{18}\right) = 1$ we obtain

$$\left|\delta - \frac{5}{18}\right| \le |f(\delta) - 1| \le \frac{6}{\vartheta^2 n}$$

Proof of (1).

$$v^{*}(n) = \sum_{j=1}^{n} \xi_{j} = \sum_{k < 1/\delta} \left(\sum_{n/(k+1) < j \le n\gamma/(k+1)} \xi_{j} + \sum_{n\gamma/(k+1) < j \le n/k} \xi_{j} \right) + \sum_{1/\delta \le k \le n \ n/(k+1) < j \le n/k} \xi_{j} = T_{1} + T_{2} + T_{3}.$$

Because of $\beta_j > 1$ we have

•

$$T_1+T_3 \leq S_1+S_3 \ll \frac{1}{n}.$$

Further for $n \ge n_0$ by (6) one has

$$T_{2} = \sum_{k=1}^{3} \sum_{n \neq l(k+1) < j \le n/k} \frac{1}{j} = \sum_{k=1}^{3} \left(\log \frac{k+1}{\gamma k} + O\left(\frac{1}{n}\right) \right) = \log \frac{4}{\gamma^{3}} + O\left(\frac{1}{n}\right)$$

But (6) implies

$$\gamma^3 = (1+\delta)^3 = \left(\frac{23}{18}\right)^3 + O\left(\frac{1}{n}\right)^3$$

Proof of (2). Since $\frac{1}{\delta}$ is no integer we may write $k > \frac{1}{\delta}$ in T_3 . Therefore $\xi_j = 0$ in T_3 . In T_1 there are at most 3 terms with $\xi_j < \frac{1}{j}$. These are replaced by $\frac{1}{j} \leq \frac{4}{n}$. If we denote the new system by ξ'_j then we have $\xi'_j = 0$ or $\frac{1}{j}$ $(1 \leq j \leq n)$ and $\sum_{i=1}^n \xi_i \beta_i \geq \sum_{i=1}^n \xi_j \beta_i \geq 1$.

Therefore

$$v(n) \leq \sum_{j=1}^{n} \xi'_{j} \leq \sum_{j=1}^{n} \xi_{j} + \frac{12}{n} = v^{*}(n) + \frac{12}{n}.$$

UNIVERSITÄT REGENSBURG INSTITUT FÜR MATHEMATIK D—8400 REGENSBURG UNIVERSITÄTSSTRASSE 31