On a problem posed by I. Z. Ruzsa

RICHARD WARLIMONT

In his paper titled "On the small sieve II. Sifting by composite numbers" (Journal of Number Theory, 14 (1982), 260-268) I. Z. RuzsA posed the following. problem:

For $a \in \mathbf{N}$ and $b \in \mathbf{Z}$ let $R(a, b)$ denote the residue class $b \bmod a$. Consider all systems a_{1}, \ldots, a_{m} (m not fixed) of natural numbers $1 \leqq a_{1}<\ldots<a_{m} \leqq n$ for which there exist integers b_{1}, \ldots, b_{m} such that
(*)

$$
\bigcup_{j=1}^{m} R\left(a_{j}, b_{j}\right) \supset\{1, \ldots, n\} .
$$

Put

$$
\mu(n):=\min \sum_{j=1}^{m} \frac{1}{a_{j}}
$$

where the minimum has to be taken over all those systems. What can be said abou the behaviour of $\mu(n)$ for $n \rightarrow \infty$?

Since (*) implies

$$
2 n \sum_{j=1}^{m} \frac{1}{a_{j}} \geqq \sum_{j=1}^{m}\left(\left[\frac{n}{a_{j}}\right]+1\right) \geqq n
$$

the lower estimate $\mu(n) \geqq \frac{1}{2}$ follows at once. Ruzsa mentions that he can improve it to

$$
\mu(n) \geqq \log \frac{2^{5} 3^{6}}{5^{2} 23^{2}}=0.56754538 \ldots
$$

and he also gives the upper estimate

$$
\mu(n) \leqq \log \frac{5}{2}+O\left(\frac{1}{n}\right) .
$$

Received October 11, 1988 and in revised form May 29, 1990.

Ruzsa's problem appears to be very delicate but it gives rise to another one which can be solved: Denote by $\mathscr{A}(n)$ the family of all subsets $A \subset\{1, \ldots, n\}$ with the property

$$
\sum_{a \in A}\left(\left[\frac{n}{a}\right]+1\right) \geqq n
$$

and put

$$
v(n):=\min _{A \in \Omega(n)} \sum_{a \in A} \frac{1}{a} .
$$

Obviously $v(n) \leqq \mu(n)$. I could show

$$
v(\dot{n})=\log \frac{2^{5} \cdot 3^{6}}{23^{3}}+O\left(n^{-1 / 3}\right)
$$

Ruzsa simplified my proof. His modifications also led to the better error term $O(1 / n)$. With his kind permission I present this simpler version.

Let $Y(n)$ denote the set of all $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{\dot{n}}$ which fulfil

$$
0 \leqq y_{j} \leqq 1 \quad(1 \leqq j \leqq n) \quad \text { and } \quad \sum_{j=1}^{n} y_{j}\left(\left[\frac{n}{j}\right]+1\right) \geqq n
$$

Put

$$
v^{*}(n):=\min _{y \in Y(n)} \sum_{j=1}^{n} y_{j} \frac{1}{j} .
$$

Obviously $v^{*}(n) \leqq v(n)$. It will be shown that

$$
\begin{equation*}
v^{*}(n)=\log \frac{2^{5} \cdot 3^{6}}{23^{3}}+O\left(\frac{1}{n}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
v(n) \leqq v^{*}(n)+O\left(\frac{1}{n}\right) . . \tag{2}
\end{equation*}
$$

If we put $\beta_{j}:=\frac{j}{n}\left(\left[\frac{n}{j}\right]+1\right)$ and denote by $Z(n)$ the set of all $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{R}^{n}$ which fulfil

$$
0 \leqq z_{j} \leqq \frac{1}{j}(1 \leqq j \leqq n) \quad \text { and } \quad \sum_{j=1}^{n} z_{j} \beta_{j} \leqq 1
$$

then

$$
v^{*}(n)=\min _{z \in \mathbb{Z}(n)} \sum_{j=1}^{n} z_{j}
$$

Let $\left(\xi_{1}, \ldots, \xi_{n}\right) \in Z(n)$ be such that $v^{*}(n)=\sum_{j=1}^{n} \xi_{j}$. Then

$$
0 \leqq \xi_{j} \leqq \frac{1}{j} \quad(1 \leqq j \leqq n) \quad \text { and } \quad \sum_{j=1}^{n} \xi_{j} \beta_{j}=1
$$

The quantity

$$
\gamma=\gamma(n):=\min _{\xi_{j}>0} \beta_{j}
$$

turns out to be crucial in the argumentation. One has

$$
\begin{equation*}
\beta_{j}<\gamma \Rightarrow \xi_{j}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{j}>\gamma \Rightarrow \xi_{j}=\frac{1}{j} \tag{4}
\end{equation*}
$$

Here (3) is evident and (4) can be seen this way: Let $m, 1 \leqq m \leqq n$, be such that $\beta_{m}=\gamma$. Then $\xi_{m}>0$. If there existed some $k, 1 \leqq k \leqq n$, with $\beta_{k}>\gamma$ and $\xi_{k}<\frac{1}{k}$ then $k \neq m$ and

$$
\varepsilon:=\min \left\{\frac{\xi_{m}}{\beta_{k}}, \frac{1}{\beta_{m}}\left(\frac{1}{k}-\xi_{k}\right)\right\}>0
$$

Now put

$$
\xi_{m}^{\prime}:=\xi_{m}-\varepsilon \beta_{k}, \quad \xi_{k}^{\prime}:=\xi_{k}+\varepsilon \beta_{m}, \quad \xi_{j}^{\prime}:=\xi_{j} \quad \text { for } \quad j \neq m, k
$$

Since $0 \leqq \xi_{j}^{\prime} \leqq \frac{1}{j}$ and $\sum_{j=1}^{n} \xi_{j}^{\prime} \beta_{j}=\sum_{j=1}^{n} \xi_{j} \beta_{j}=1$, we have $\left(\xi_{1}^{\prime}, \ldots, \xi_{n}^{\prime}\right) \in Z(n)$. This implies

$$
v^{*}(n) \leqq \sum_{j=1}^{n} \xi_{j}^{\prime}=\nu^{*}(n)-\varepsilon\left(\beta_{k}-\gamma\right)<v^{*}(n)
$$

which is absurd.
Now put $\delta=\delta(n):=\gamma(n)-1$. From $\beta_{j} \leqq 2$ and

$$
\beta_{j}-1=\frac{j}{n}\left(1-\left(\frac{n}{j}-\left[\frac{n}{j}\right]\right)\right) \geqq \frac{j}{n}\left(1-\frac{j-1}{j}\right)=\frac{1}{n}
$$

we see that in particular $\frac{1}{n} \leqq \delta \leqq 1$. If k is an integer, $1 \leqq k \leqq n$, then

$$
\beta_{j}=\frac{j}{n}(k+1) \quad \text { for } \quad \frac{n}{k+1}<j \leqq \frac{n}{k}
$$

We shall show next that

$$
\begin{equation*}
\delta(n) \geqq \frac{1}{2500}=: \vartheta \text { for all } n \tag{5}
\end{equation*}
$$

We put $x:=\min \left\{\frac{1}{\delta}, \sqrt{n}\right\}$ and have

$$
1=\sum_{j=1}^{n} \xi_{j} \beta_{j} \geqq \sum_{k<x} \sum_{n \gamma /(k+1)<j \geqq n / k} \xi_{j} \beta_{j}
$$

Since in the inner sum $\beta_{j}>\frac{\gamma}{k+1}(k+1)=\gamma$. We infer from (4) that

$$
\begin{gathered}
1 \geqq \sum_{k<x} \sum_{n \gamma /(k+1)<j \leqq n / k} \frac{1}{j} \frac{j}{n}(k+1)=\frac{1}{n} \sum_{k<x}(k+1)\left(\left[\frac{n}{k}\right]-\left[\frac{n \gamma}{k+1}\right]\right) \geqq \\
\geqq \frac{1}{n} \sum_{k<x}(k+1)\left(\frac{n}{k}-\frac{n \gamma}{k+1}-1\right)=\sum_{k<x} \frac{1}{k}-\delta \sum_{k<x} 1-\frac{1}{n} \sum_{k<x}(k+1) \geqq \sum_{k<x} \frac{1}{k}-3 .
\end{gathered}
$$

Therefore $\sum_{k<x} \frac{1}{k} \leqq 4$ which implies $x \leqq 50$.
If $x=\sqrt{n}$ then $\sqrt{n} \leqq 50$ and therefore $\delta \geqq \frac{1}{n} \geqq \frac{1}{2500}$. If $x=\frac{1}{\delta}$ then $\frac{1}{\delta} \leqq 50$, and therefore $\delta \geqq \frac{1}{50}$.

Now comes

$$
\begin{equation*}
\delta(n)=\frac{5}{18}+O\left(\frac{1}{n}\right) \tag{6}
\end{equation*}
$$

To establish that we start from

$$
\begin{gathered}
1=\sum_{j=1}^{n} \xi_{j} \beta_{j}=\sum_{k<1 / \delta}\left(\sum_{n /(k+1)<j \leqq n \gamma /(k+1)} \xi_{j} \beta_{j}+\sum_{n \gamma /(k+1)<j \leqq n / k} \xi_{j} \beta_{j}\right)+ \\
+\sum_{1 / \delta \leqq k \leqq n} \sum_{n /(k+1)<j \leqq n / k} \xi_{j} \beta_{j}=S_{1}+S_{2}+S_{3} .
\end{gathered}
$$

We estimate S_{3}. If $j<\frac{n}{k}$ then $\beta_{j}<1+\frac{1}{k} \leqq 1+\delta=\gamma$. If $k>\frac{1}{\delta}$ then $\beta_{j} \leqq 1+\frac{1}{k}<1+\delta=\gamma$. Thus by (3) there is at most one term $\breve{\zeta}_{i}, \beta_{i}, i=\frac{n}{1 / \delta}$, in S_{3} which may not vanish. Therefore, by (5),

$$
S_{3}=\xi_{i} \beta_{i} \leqq 2 \frac{1}{i}=\frac{2}{\delta n} \leqq \frac{2}{\vartheta n}
$$

We estimate S_{1}. If $j<\frac{n \gamma}{k+1}$ then $\beta_{j}<\frac{\gamma}{k+1}(k+1)=\gamma$. Thus by (3) there
is at most one term $\xi_{i} \beta_{i}$ in the innermost sum which may not vanish and

$$
\xi_{i} \beta_{i} \leqq \frac{1}{i} \frac{i}{n}(k+1)=\frac{k+1}{n}
$$

Therefore, by (5),

$$
S_{1} \leqq \sum_{k<1 / \delta} \frac{k+1}{n} \leqq \frac{2}{\delta^{2} n} \leqq \frac{2}{\vartheta^{2} n}
$$

Finally we evaluate S_{2}. In S_{2} we have $\beta_{j}>\frac{\gamma}{k+1}(k+1)=\gamma \quad$ which by (4) implies $\xi_{j}=\frac{1}{j}$. Therefore

$$
\begin{gathered}
S_{2}=\frac{1}{n} \sum_{k<1 / \delta}(k+1)\left(\left[\frac{n}{k}\right]-\left[\frac{n \gamma}{k+1}\right]\right)= \\
=\frac{1}{n} \sum_{k<1 / \delta}(k+1)\left(\frac{n}{k}-\frac{n \gamma}{k+1}+r\right) \text { where }|r| \leqq 1 \\
=\sum_{k<1 / \delta}\left(\frac{1}{k}-\delta\right)+R \text { where }|R| \leqq \frac{2}{\vartheta^{2} n} .
\end{gathered}
$$

Thus we obtain

$$
1-\frac{6}{\vartheta^{2} n} \leqq \sum_{k<1 / \delta}\left(\frac{1}{k}-\delta\right) \leqq 1+\frac{2}{\vartheta^{2} n} .
$$

If we put

$$
f(t):=\sum_{k<1 / t}\left(\frac{1}{k}-t\right) \quad \text { for } \quad 0<t \leqq 1
$$

then one easily verifies that the following inequality holds true:

$$
\left|t_{1}-t_{2}\right| \leqq\left|f\left(t_{1}\right)-f\left(t_{2}\right)\right| \quad \text { for } \quad 0<t_{1}, \quad t_{2} \leqq 1
$$

Since $f\left(\frac{5}{18}\right)=1$ we obtain

$$
\left|\delta-\frac{5}{18}\right| \leqq|f(\delta)-1| \leqq \frac{6}{\vartheta^{2} n}
$$

Proof of (1).

$$
\begin{gathered}
v^{*}(n)=\sum_{j=1}^{n} \xi_{j}=\sum_{k<1 / \delta}\left(\sum_{n /(k+1)<j \leqq n \gamma /(k+1)} \xi_{j}+\sum_{n \gamma /(k+1)<j \leqq n / k} \xi_{j}\right)+ \\
+\sum_{1 / \delta \leqq k \leqq n} \sum_{n /(k+1)<j \leqq n / k} \xi_{j}=T_{1}+T_{2}+T_{3} .
\end{gathered}
$$

Because of $\beta_{j}>1$ we have

$$
T_{1}+T_{3} \leqq S_{1}+S_{3} \ll \frac{1}{n} .
$$

Further for $n \geqq n_{0}$ by (6) one has

$$
T_{2}=\sum_{k=1}^{3} \sum_{n y /(k+1)<j \leq n / k} \frac{1}{j}=\sum_{k=1}^{3}\left(\log \frac{k+1}{\gamma k}+O\left(\frac{1}{n}\right)\right)=\log \frac{4}{\gamma^{3}}+O\left(\frac{1}{n}\right)
$$

But (6) implies

$$
\gamma^{3}=(1+\delta)^{3}=\left(\frac{23}{18}\right)^{3}+O\left(\frac{1}{n}\right)
$$

Proof of (2). Since $\frac{1}{\delta}$ is no integer we may write $k>\frac{1}{\delta}$ in T_{3}. Therefore $\xi_{j}=0$ in T_{3}. In T_{1} there are at most 3 terms with $\xi_{j}<\frac{1}{j}$. These are replaced by $\frac{1}{j} \leqq \frac{4}{n}$. If we denote the new system by ξ_{j}^{\prime} then we have

$$
\xi_{j}^{\prime}=0 \quad \text { or } \quad \frac{1}{j} \quad(1 \leqq j \leqq n) \quad \text { and } \quad \sum_{j=1}^{n} \xi_{j}^{\prime} \beta_{j} \geqq \sum_{j=1}^{n} \xi_{j} \beta_{j} \geqq 1
$$

Therefore

$$
v(n) \leqq \sum_{j=1}^{n} \xi_{j}^{\prime} \leqq \sum_{j=1}^{n} \xi_{j}+\frac{12}{n}=v^{*}(n)+\frac{12}{n} .
$$

UNIVERSITÄT REGENSBURG
INSTITUT FUR MATHEMATIK
D-8400 REGENSBURG
UNIVERSITĀTSSTRASSE 31

