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Well-quasiordering depends on the labels

IGOR KRIiZ and JIRT SGALL

1. Introduction

A well-quasiordering (WQO) is a quasiordered set containing no infinite de-
creasing chain and no infinite antichain. A considerable part of the results on WQO
is of the form that a concrete category Q is WQO, where a=b means that there
exists a Q-morphism from a to b.

As an example let us mention the category T of finite trees with tree embeddings
(see [2]). The recent solution of the Wagner’s conjecture by ROBERTSON and SEYMOUR
([5]) is also of the form that certain category is WQO.

Other categories are trivially WQO, for example the category F of finite sets
and injective mappings or the category H of finite linearly ordered sets and strictly
increasing mappings. Still, we come to non-trivial questions, if we introduce more
involved orderings:

Let 4 be a WQO and let Q be a concrete category with finite objects and injec-
tive morphisms. We consider a class Q (4) of objects of Q “labeled by’ elements of 4
at each point. We put a=»b if there is a morphism from a to b which increases the
labels (not necessarily strictly). Now the question is: Is it true that

(D 0(4) is WQO whenever 4 is WQO?

(-i) was proved for F, H by HIGMAN [1] and for T by NasH-WiLLIaMS [4]. Of
course, it would be useful if (1) were implied by a simpler condition, say,

). O(y) is WQO for any ye€Ord.

" Although this is not known in general, it was proved recently by one of the auth-
ors ([3]) for a considerably broad class of categories (for all subcategories of H).
Let us note that, by an easy cardinality argument, (2) is equivalent to

3 . O(w,) is WQO.
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So, for subcategories of H, (3)—~(1). However, it has not been known if (1) were not
implied by a still weaker condition, say (even!),

@ 0(2) is WQO.

It is the purpose of this paper to present a bunch of counterexamples of this kind.
To be exact, we show that the set

6)) M = {HI(3O)(((VB < 1Q(B) is WQO)&(Q(y) is not WQO))}
is confinal in w;. We also prove that
M 2 o,

showing that (4) does not imply Q(3) to be WQO.

2. Preliminaries

2.1. Conventions and notation. The cardinality of a set X is denoted by |X]|.
For the ordinals, we use that definition where y is identified with

{BIB < v}

In particular, this will apply to natural numbers. A quasiordering is a reflexive and
transitive relation. In a quasiordering, a sequence (g;) (finite or infinite) is called bad
if
i<j—a % a

and is called good if

I<j—a=a;.
Each infinite sequence contains an infinite good subsequence or an infinite bad sub-
sequence (Ramsey theorem). A quasiordering is called WQO, if no infinite sequence
is bad. This definition is equivalent to that used in the Introduction by the Ramsey
theorem. For a category C and objects a, b the symbol C(a, b) designates the corres-
ponding hom-set and the symbol I1d, designates the identity on a. For a concrete
category, let the forgetful functor be denoted by U.

2.2. Definition. In this paper, a QO-category is a concrete category with finite
objects and injective morphisms. For a QO-category Q and a quasiordering 4, put

0(A4) = {z = (u., ¢.)|c; is an object of Q and u_: ¢, -~ A4}.

The quasiordering on Q(A) is given by z=t if there exists a Q-morphism
o: c.—~c, such that w,oU(p)=u. (pointwise). We also say that z=1¢ via the mor-
phism ¢. In the sequel, we shall use the symbol M for the set defined by formula (5)
of the Introduction.



Well-quasiordering depends on the labels 61

3. The results
To warm up, we start with a special theorem which demostrates the basic idea of
our construction.
3.1. Theorem. M2w.

Proof. Let a category @, consist of finite sets a, (n€ w) where each a, is a dis-
joint union of k sets @°, ..., at™. Moreover, we shall assume

lim || = w for each ick.

The hom-set Q,(a,, a,) will be
@) 9 if n>m,
(b) {Id, } if n=m,
(©) {o: a, —~ a,| ¢ injective and (V ick) (p(a}) S g. aj) & (3ick) (o(a}) € at)}

if n<m.

To see that Q, (k) is not WQO, let z,(u,, a,) where u, sends a, to i for each ick.
Itis easily seen that (z,), ¢, is a bad sequence. To prove that Q, (i) is WQO for i<k,
introduce an auxilliary category 0, with the same objects as O, and with the same
morphisms from g, to a,, for n=m, while for n<m

0.(a,, a,) = {o: a, ~ a,| @ injective and (Vick)(p(a) S U a})}.
jsi

Let (z)=((4,, a,y)) be a bad sequence in Q, (i), i<k. Of course, we have

limn(t) = w,
t—w

since (z,) is bad. By HIGMAN’s theorem [1], we may assume that (z,) is good with
respect to @, (7). Let, in 0,(i), z,=z, via @, Gy —~dyu- NOW, since i<k, there
isa j€i such that, for each K€w, there exist p, rék, p>r, and t(K)€w such that

[{xE ak cxyy | iy (%) =j}| =K,
I{Xéaz(,(x))lu,(x)(x) =j}| =K.

Without loss of generality, we may assume p, r fixed and 7(0)=0. Put s=4( lag )l +1).
Thus, there exist x€af, y€ap such that

u(x) = u(y) =j

y¢Im g ,.



62 1. KfiZ and J. Sgall

We conclude that, in Q, (i), z,=z, via a mapping ¢ given by
0(2) =@y, (2) If z#x
@(x) =y,
contradicting our assumption.
3.2. Theorem. M is confinal in w,.

Proof below in 3.8.

3.3. The Constructions. Let w=y=w,. The there exists a bijection s,:
w—7y. Let the objects of C, be the sets

a,(n) = {s,(0), ..., s,(n—1)}.

The hom-set C,(a,(k), a,(n)) will be
1) 9 for k=n,
(2) {Id, my} for k =n,
(3) the set of all injective mappings ¢: a,(k)—~a,(n) such that, for some j<&k,
L@ els() < 5,0,

() for i<j ¢(s,(D) = 5,0,

(© for i=j, B=<s()—~oB)=<s

3.4. Lemma. C, is a QO-category.

Proof. What remains to show is that, for k<m<n,

0€C,(a,(K), ay)(m), YEC,(a,0m), a,(m)
yopeC,(a,(k), a,(n)).

To this end, let ¢, Y satisfy the statement of (3) with constants j<k, j<m, respect-
ively. We will show that yog satisfies it with the constant min(j, j). We distin-
guish two cases:

Case 1. j=j: The proof of (a), (b), (c) for Yoge is contained in the following
computations. (By (a) for ¢, j=j and (c) for )

Yoo(s,(/)) < s,(/)-
For i<j (by (b) for ¢, ¥ and j=j))
Yo (D)) = ¥(s,(i)) = s,(i).
For i=j, B<s,(i), (by (c) for @,y and j=J)
Yo (B) < 5,(d).
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Case 2. j<j: Compute again. (By (b) for ¢ and by (a) for ¥)
Yoo(s, (D) = ¥(s,(D) = 5,(J)-
For i<j, (by (b) for o, ¢)
Yop(s, (D)) = ¥(s,(D) = s,d).
For i=j, B=<s,(i), (by (c) for ¢,¥) |
Yoo (p) < s5,(4).
3.5. Lemma. C,(y) is not WQO.
Proof. Introduce a sequence z,=(u,, ¢,) in C,(y) by putting
€y = a,(n)
u,(s,(9)) = 5,(i).
By condition (a) in 3.3 (3) we see easily that (z,),¢,, is bad in c,(y).

n€w

3.6. Auxilliary definition. Let us call a pair (8, o), «, B€w, admissible, if
there exist a y€w,, y=a, an increasing sequence (n(i));c,,» a number K€w and
a bad sequence z;=(u;, a,(n(i))) in C,(w,) such that for each icw

({6 < aldea,(n()) &u,(6) = BY| < K.

3.7. Lemma.

(1) If C,(B) is not WQO then (B, y) is admissible.

2) If (B, o) is admissible and &<a then (B, &) is admissible.

3) (0, w) is not admissible.

@) If (B, a+w) is admissible then there exists a B<p such that (B, «) is admissible.

Proof. (2) and (3) are obvious. Note that in (1) we may use K=1. We shall
prove (4).
Consider the entities y, n(i), K, z; constituting the admissibility of (8, «+w).
Let
p = max {ila = s5,(i) < a+K]}.
Further, let «,,,=7,

{8,00), ..., 5,(p)} = {otp = oty <...< o).
For i€p+1, t€w, define b;(t)€ F(w;) (recall that F is the category of finite sets
and injective mappings) in the following way:
() = {s;(NNJj < n(), o« <5,(j) < %}
bi(1) = (u;]¢; (), (D).

By Ramsey and Higman’s theorems there exists an increasing sequence (7.)

x€w



€4 I. KiiZ and J. Sgall

such that n(t,)>p and for x<y, i€p+1
(*) U, (ai) = Uy, (“i)
" bi(t,) = bi(t,) in F(w,) via some mapping ¢;(t,, t,).

Without loss of generality, we may assume t,=x. Now, by () and by the definition
of K there exists an a=a<a+K such that for all ¢

u(@) < B.

We will show that (u,(&), &) is admissible, concluding the proof of (4) by (2).

In fact, for the new K we may take n(0): If, for some ¢=0, there are more than
n(0), of j<n(t) with u,(n,(7))=u,() then there exists at least one such ; that neither
j=p nor s,(j) lies in the image of ¢;(0,¢) for any i. Now define ¢: a,(n(0))—
—a,(n(r)) by

¢(s,() = s5,(i) whenever i€p+1,s(i) # &

@ (@) = 5,(j)
©(6) = ¢;(0, () if d€c;(0).
We see easily that ¢@€C,(a,(n(0), a,(n(?))) and
| Zo = z, via @,
contradicting the assumption that (z;) is bad.
3.8. Proof of Theorem 3.2. Define y(f) inductively by
7(0) = @
YB+1) =y(P)+o
7(B) = (limy(B))+w for B, /B.

1t follows from 3.7. (2), (4) that (8, y(B)) is not admissible for any . Thus, by 3.7. (1),
¢, (B) is WQO. This, together with Lemma 3.5, concludes the proof of Theorem 3.2.
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