Well-quasiordering depends on the labels

IGOR KŘíŽ and JIŘí SGALL

1. Introduction

A well-quasiordering (WQO) is a quasiordered set containing no infinite decreasing chain and no infinite antichain. A considerable part of the results on WQO is of the form that a concrete category Q is WQO, where $a \leqq b$ means that there exists a Q-morphism from a to b.

As an example let us mention the category T of finite trees with tree embeddings (see [2]). The recent solution of the Wagner's conjecture by Robertson and Seymour ([5]) is also of the form that certain category is WQO.

Other categories are trivially WQO, for example the category F of finite sets and injective mappings or the category H of finite linearly ordered sets and strictly increasing mappings. Still, we come to non-trivial questions, if we introduce more involved orderings:

Let A be a WQO and let Q be a concrete category with finite objects and injective morphisms. We consider a class $Q(A)$ of objects of Q "labeled by" elements of A at each point. We put $a \leqq b$ if there is a morphism from a to b which increases the labels (not necessarily strictly). Now the question is: Is it true that

$$
\begin{equation*}
Q(A) \text { is WQO whenever } A \text { is WQO? } \tag{1}
\end{equation*}
$$

(1) was proved for F, H by Higman [1] and for T by Nash-Williams [4]. Of course, it would be useful if (1) were implied by a simpler condition, say,
$Q(\gamma)$ is WQO for any $\gamma \in$ Ord.
Although this is not known in general, it was proved recently by one of the authors ([3]) for a considerably broad class of categories (for all subcategories of H). Let us note that, by an easy cardinality argument, (2) is equivalent to

$$
\begin{equation*}
Q\left(\omega_{1}\right) \text { is WQO. } \tag{3}
\end{equation*}
$$

Received August 4, 1988.

So, for subcategories of $H,(3) \rightarrow(1)$. However, it has not been known if (1) were not implied by a still weaker condition, say (even!),

$$
\begin{equation*}
Q(2) \text { is WQO. } \tag{4}
\end{equation*}
$$

It is the purpose of this paper to present a bunch of counterexamples of this kind. To be exact, we show that the set

$$
\begin{equation*}
M=\{\gamma \mid(\exists Q)(((\forall \beta<\gamma) Q(\beta) \text { is WQO }) \&(Q(\gamma) \text { is not WQO }))\} \tag{5}
\end{equation*}
$$

is confinal in ω_{1}. We also prove that

$$
M \supseteqq \omega
$$

showing that (4) does not imply $Q(3)$ to be WQO.

2. Preliminaries

2.1. Conventions and notation. The cardinality of a set X is denoted by $|X|$. For the ordinals, we use that definition where γ is identified with

$$
\{\beta \mid \beta<\gamma\}
$$

In particular, this will apply to natural numbers. A quasiordering is a reflexive and transitive relation. In a quasiordering, a sequence (a_{i}) (finite or infinite) is called bad if
and is called good if

$$
i<j \rightarrow a_{i} \text { 丰 } a_{j}
$$

$$
i<j \rightarrow a_{i} \leqq a_{j}
$$

Each infinite sequence contains an infinite good subsequence or an infinite bad subsequence (Ramsey theorem). A quasiordering is called WQO, if no infinite sequence is bad. This definition is equivalent to that used in the Introduction by the Ramsey theorem. For a category C and objects a, b the symbol $C(a, b)$ designates the corresponding hom-set and the symbol Id_{a} designates the identity on a. For a concrete category, let the forgetful functor be denoted by U.
2.2. Definition. In this paper, a QO-category is a concrete category with finite objects and injective morphisms. For a QO-category Q and a quasiordering A, put

$$
Q(A)=\left\{z=\left(u_{z}, c_{z}\right) \mid c_{z} \text { is an object of } Q \text { and } u_{z}: c_{z} \rightarrow A\right\} .
$$

The quasiordering on $Q(A)$ is given by $z \leqq t$ if there exists a Q-morphism $\varphi: c_{z} \rightarrow c_{t}$ such that $u_{t} \circ U(\varphi) \geqq u_{z}$ (pointwise). We also say that $z \leqq t$ via the morphism φ. In the sequel, we shall use the symbol M for the set defined by formula (5) of the Introduction.

3. The results

To warm up, we start with a special theorem which demostrates the basic idea of our construction.

3.1. Theorem. $M \supseteq \omega$.

Proof. Let a category Q_{k} consist of finite sets $a_{n}(n \in \omega)$ where each a_{n} is a disjoint union of k sets $a_{n}^{0}, \ldots, a_{n}^{k-1}$. Moreover, we shall assume

$$
\lim _{n \rightarrow \omega}\left|a_{n}^{i}\right|=\omega \quad \text { for each } i \in k
$$

The hom-set $Q_{k}\left(a_{n}, a_{m}\right)$ will be
(a) \emptyset if $n>m$,
(b) $\left\{\mathrm{Id}_{a_{n}}\right\}$ if $n=m$,
(c) $\left\{\varphi: a_{n} \rightarrow a_{m} \mid \varphi\right.$ injective and $\left.(\forall i \in k)\left(\varphi\left(a_{n}^{i}\right) \subseteq \bigcup_{j \leqq i} a_{m}^{j}\right) \&(\exists i \in k)\left(\varphi\left(a_{n}^{i}\right) \subseteq a_{m}^{i}\right)\right\}$ if $n<m$.

To see that $Q_{k}(k)$ is not WQO, let $z_{n}\left(u_{n}, a_{n}\right)$ where u_{n} sends a_{n}^{i} to i for each $i \in k$. It is easily seen that $\left(z_{n}\right)_{n \in \omega}$ is a bad sequence. To prove that $Q_{k}(i)$ is WQO for $i<k$, introduce an auxilliary category \bar{Q}_{k} with the same objects as Q_{k} and with the same morphisms from a_{n} to a_{m} for $n \geqq m$, while for $n<m$

$$
\bar{Q}_{k}\left(a_{n}, a_{m}\right)=\left\{\varphi: a_{n} \rightarrow a_{m} \mid \varphi \text { injective and }(\forall i \in k)\left(\varphi\left(a_{n}^{i}\right) \subseteq \bigcup_{j \leq i} a_{m}^{j}\right)\right\}
$$

Let $\left(z_{t}\right)=\left(\left(u_{t}, a_{n(t)}\right)\right)$ be a bad sequence in $Q_{k}(i), i<k$. Of course, we have

$$
\lim _{t \rightarrow \infty} n(t)=\omega,
$$

since $\left(z_{t}\right)$ is bad. By Higman's theorem [1], we may assume that $\left(z_{t}\right)$ is good with respect to $\bar{Q}_{k}(i)$. Let, in $\bar{Q}_{k}(i), z_{s} \leqq z_{i}$ via $\varphi_{s, t}: a_{n(s)} \rightarrow a_{n(t)}$. Now, since $i<k$, there is a $j \in i$ such that, for each $K \in \omega$, there exist $p, r \in k, p>r$, and $t(K) \in \omega$ such that

$$
\begin{aligned}
& \left|\left\{x \in a_{n t(K))}^{p} \mid u_{t(K)}(x)=j\right\}\right| \geqq K, \\
& \left|\left\{x \in a_{n(t(K))}^{r} \mid u_{t(K)}(x)=j\right\}\right| \geqq K .
\end{aligned}
$$

Without loss of generality, we may assume p, r fixed and $t(0)=0$. Put $t=t\left(\left|a_{n(0)}^{r}\right|+1\right)$. Thus, there exist $x \in a_{0}^{p}, y \in a_{0}^{r}$ such that

$$
\begin{gathered}
u_{0}(x)=u_{t}(y)=j \\
y \notin \operatorname{Im} \varphi_{0, t} .
\end{gathered}
$$

We conclude that, in $Q_{k}(i), z_{0} \leqq z_{t}$ via a mapping φ given by

$$
\begin{aligned}
& \varphi(z)=\varphi_{0, t}(z) \text { if } z \neq x \\
& \varphi(x)=y,
\end{aligned}
$$

contradicting our assumption.
3.2. Theorem. M is confinal in ω_{1}.

Proof below in 3.8.
3.3. The Constructions. Let $\omega \leqq \gamma \leqq \omega_{1}$. The there exists a bijection s_{γ} : $\omega \rightarrow \gamma$. Let the objects of C_{γ} be the sets

$$
a_{\gamma}(n)=\left\{s_{\gamma}(0), \ldots, s_{\gamma}(n-1)\right\}
$$

The hom-set $C_{y}\left(a_{\gamma}(k), a_{\gamma}(n)\right)$ will be
(1) \emptyset for $k>n$,
(2) $\left\{\mathrm{Id}_{a_{y}(n)}\right\}$ for $k=n$,
(3) the set of all injective mappings $\varphi: a_{\gamma}(k) \rightarrow a_{\gamma}(n)$ such that, for some $j<k$,
(a) $\varphi\left(s_{\gamma}(j)\right)<s_{\gamma}(j)$,
(b) for $i<j, \quad \varphi\left(s_{\gamma}(i)\right)=s_{\gamma}(i)$,
(c) for $i \leqq j, \quad \beta<s_{\gamma}(i) \rightarrow \varphi(\beta)<s_{\gamma}(i)$.
3.4. Lemma. C_{γ} is a QO-category.

Proof. What remains to show is that, for $k<m<n$,

$$
\begin{gathered}
\varphi \in C_{y}\left(a_{y}(k), a_{y}(n)\right), \quad \psi \in C_{\gamma}\left(a_{\gamma}(m), a_{y}(n)\right) \\
\psi \circ \varphi \in C_{y}\left(a_{y}(k), a_{y}(n)\right) .
\end{gathered}
$$

To this end, let φ, ψ satisfy the statement of (3) with constants $j<k, j<m$, respectively. We will show that $\psi \circ \varphi$ satisfies it with the constant $\min (j, j)$. We distinguish two cases:

Case 1. $j \geqq j$: The proof of (a), (b), (c) for $\psi \circ \varphi$ is contained in the following computations. (By (a) for $\varphi, j \leqq \bar{j}$ and (c) for ψ)

$$
\psi \circ \varphi\left(s_{\gamma}(j)\right)<s_{\gamma}(j)
$$

For $i<j$ (by (b) for φ, ψ and $j \leqq \bar{j}$)

$$
\psi \circ \varphi\left(s_{\gamma}(i)\right)=\psi\left(s_{\gamma}(i)\right)=s_{\gamma}(i) .
$$

For $i \leqq j, \beta<s_{\gamma}(i)$, (by (c) for φ, ψ and $j \leqq j$)

$$
\psi \circ \varphi(\beta)<s_{\gamma}(i) .
$$

Case 2. $\bar{j}<j$: Compute again. (By (b) for φ and by (a) for ψ)

$$
\psi \circ \varphi\left(s_{\gamma}(j)\right)=\psi\left(s_{y}(j)\right)=s_{\gamma}(j) .
$$

For $i<j$, (by (b) for φ, ψ)

$$
\psi \circ \varphi\left(s_{y}(i)\right)=\psi\left(s_{y}(i)\right)=s_{y}(i) .
$$

For $i \leq j, \beta<s_{y}(i)$, (by (c) for φ, ψ)

$$
\psi \circ \varphi(\beta)<s_{\gamma}(i) .
$$

3.5. Lemma. $C_{\gamma}(\gamma)$ is not WQO.

Proof. Introduce a sequence $z_{n}=\left(u_{n}, c_{n}\right)$ in $C_{\gamma}(\gamma)$ by putting

$$
\begin{gathered}
c_{n}=a_{y}(n) \\
u_{n}\left(s_{y}(i)\right)=s_{y}(i) .
\end{gathered}
$$

By condition (a) in 3.3 (3) we see easily that $\left(z_{n}\right)_{n \in \omega}$ is bad in $c_{\gamma}(\gamma)$.
3.6. Auxilliary definition. Let us call a pair $(\beta, \alpha), \alpha, \beta \in \omega_{1}$ admissible, if there exist a $\gamma \in \omega_{1}, \gamma \geqq \alpha$, an increasing sequence $(n(i))_{i \in \omega}$, a number $K \in \omega$ and a bad sequence $z_{i}=\left(u_{i}, a_{y}(n(i))\right)$ in $C_{\gamma}\left(\omega_{1}\right)$ such that for each $i \in \omega$

$$
\left|\left\{\delta<\alpha \mid \delta \in a_{y}(n(i)) \& u_{i}(\delta) \geqq \beta\right\}\right|<K .
$$

3.7. Lemma.
(1) If $C_{\gamma}(\beta)$ is not WQO then (β, γ) is admissible.
(2) If (β, α) is admissible and $\bar{\alpha}<\alpha$ then ($\beta, \bar{\alpha}$) is admissible.
(3) $(0, \omega)$ is not admissible.
(4) If $(\beta, \alpha+\omega)$ is admissible then there exists a $\bar{\beta}<\beta$ such that $(\bar{\beta}, \alpha)$ is admissible.

Proof. (2) and (3) are obvious. Note that in (1) we may use $K=1$. We shall prove (4).

Consider the entities $\gamma, n(i), K, z_{i}$ constituting the admissibility of $(\beta, \alpha+\omega)$. Let

$$
p=\max \left\{i \mid \alpha \leqq s_{\gamma}(i)<\alpha+K\right\} .
$$

Further, let $\alpha_{p+1}=\gamma$,

$$
\left\{s_{\gamma}(0), \ldots, s_{\gamma}(p)\right\}=\left\{\alpha_{0}<\alpha_{1}<\ldots<\alpha_{p}\right\} .
$$

For $i \in p+1, t \in \omega$, define $b_{i}(t) \in F\left(\omega_{1}\right)$ (recall that F is the category of finite sets and injective mappings) in the following way:

$$
\begin{aligned}
& c_{i}(t)=\left\{s_{y}(j) \mid j<n(t), \quad \alpha_{i}<s_{\gamma}(j)<\alpha_{i+1}\right\} \\
& b_{i}(t)=\left(u_{i} \mid c_{i}(t), c_{i}(t)\right) .
\end{aligned}
$$

By Ramsey and Higman's theorems there exists an increasing sequence $\left(t_{x}\right)_{x \in \omega}$
such that $n\left(t_{x}\right)>p$ and for $x<y, i \in p+1$

$$
\begin{equation*}
u_{t_{x}}\left(\alpha_{i}\right) \leqq u_{t_{i}}\left(\alpha_{i}\right) \tag{*}
\end{equation*}
$$

$$
\begin{equation*}
b_{i}\left(t_{x}\right) \leqq b_{i}\left(t_{y}\right) \text { in } F\left(\omega_{1}\right) \text { via some mapping } \varphi_{i}\left(t_{x}, t_{y}\right) \tag{}
\end{equation*}
$$

Without loss of generality, we may assume $t_{x}=x$. Now, by (*) and by the definition of K there exists an $\alpha \leqq \bar{\alpha}<\alpha+K$ such that for all t

$$
u_{t}(\bar{\alpha})<\beta .
$$

We will show that $\left(u_{0}(\bar{\alpha}), \bar{\alpha}\right)$ is admissible, concluding the proof of (4) by (2).
In fact, for the new K we may take $n(0)$: If, for some $t>0$, there are more than $n(0)$, of $j<n(t)$ with $u_{t}\left(n_{\gamma}(j)\right) \geqq u_{0}(\bar{\alpha})$ then there exists at least one such j that neither $j \leqq p$ nor $s_{\gamma}(j)$ lies in the image of $\varphi_{i}(0, t)$ for any i. Now define $\varphi: a_{\gamma}(n(0)) \rightarrow$ $\rightarrow a_{\gamma}(n(t))$ by

$$
\begin{gathered}
\varphi\left(s_{\gamma}(i)\right)=s_{\gamma}(i) \text { whenever } i \in p+1, s(i) \neq \bar{\alpha} \\
\varphi(\bar{\alpha})=s_{\gamma}(j) \\
\varphi(\delta)=\varphi_{i}(0, t)(\delta) \text { if } \delta \in c_{i}(0)
\end{gathered}
$$

We see easily that $\varphi \in C_{\gamma}\left(a_{\gamma}(n(0)), a_{\gamma}(n(t))\right)$ and

$$
z_{0} \leqq z_{t} \quad \text { via } \varphi,
$$

contradicting the assumption that $\left(z_{i}\right)$ is bad.
3.8. Proof of Theorem 3.2. Define $\gamma(\beta)$ inductively by

$$
\begin{gathered}
\gamma(0)=\omega \\
\gamma(\beta+1)=\gamma(\beta)+\omega \\
\gamma(\beta)=\left(\lim _{i \rightarrow \omega} \gamma\left(\beta_{i}\right)\right)+\omega \text { for } \beta_{i} / \beta .
\end{gathered}
$$

It follows from 3.7. (2), (4) that $(\beta, \gamma(\beta))$ is not admissible for any β. Thus, by 3.7. (1), $c_{\gamma(\beta)}(\beta)$ is WQO. This, together with Lemma 3.5, concludes the proof of Theorem 3.2.

References

[1] G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc., (3) 2 (1952), 326-336.
[2] J. Kruskal, Well-quasi-ordering, the three theorem, and Vazsony's conjecture, Trans. Amer. Math. Soc., 95 (1960), 210-225.
[3] I. KŘíž, and R. Thomas, On well-quasi-ordering finite structures with labels, Graphs and Combinatorics, 6 (1990), 41-44.
[4] C. St. J. A. Nash-Williams, On well-quasi-ordering finite trees, Proc. Camb. Phil. Soc., 59 (1963), 833-835.
[5] N. Robertson and P. D. Seymour; Graph minors I-XIII, submitted (1986-1988).
(J. S)

SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLOW UNIVERSITY
PITTSBURGH, PA 15213-3890

