Embedding results pertaining to strong approximation

L. LEINDLER

1. The aim of the paper is to make a step toward answering an open problem of our previous paper [2] and to extend another result published in the same paper. In order to quote the known results we have to recall some notions and notations. Let $f(x)$ be a continuous and 2π-periodic function and let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

be its Fourier series. Let $s_{n}=s_{n}(x)=s_{n}(f ; x)$ and $\tau_{n}=\tau_{n}(x)=\tau_{n}(f, x)$ denote the n-th partial sum and the classical de la Vallée Poussin mean of (1), i.e.

$$
\tau_{n}(x)=\frac{1}{n} \sum_{k=n+1}^{2 n} s_{k}(x), \quad n=1,2, \ldots
$$

We denote by $\|\cdot\|$ the usual supremum norm.
Let $\omega(\delta)$ be a nondecreasing continuous function on the interval $[0,2 \pi]$ having the properties: $\omega(0)=0, \omega\left(\delta_{1}+\delta_{2}\right) \leqq \omega\left(\delta_{1}\right)+\omega\left(\delta_{2}\right)$ for any $0 \leqq \delta_{1} \leqq \delta_{2} \leqq \delta_{1}+\delta_{2} \leqq 2 \pi$. Such a function is called a modulus of continuity. The modulus of continuity of f will be denoted by $\omega(f ; \delta)$.

We define the following classes of continuous functions:

$$
\begin{aligned}
H^{\omega} & :=\{f: \omega(f ; \delta)=O(\omega(\delta))\} \\
S_{p}(\lambda) & :=\left\{f: \| \sum_{n=0}^{\infty} \lambda_{n}\left|s_{n}-f\right|^{p}| |<\infty\right\}
\end{aligned}
$$

and

$$
V_{p}(\lambda):=\left\{f:\left\|\sum_{n=1}^{\infty} \lambda_{n}\left|\tau_{n}-f\right|^{p}\right\|<\infty\right\},
$$

where $\lambda=\left\{\lambda_{n}\right\}$ is a monotonic sequence of positive numbers and $0<p<\infty$.
V. G. Krotov and the author ([1]) proved the following result.

Received July 4, 1988.

Theorem A. If $\left\{\lambda_{n}\right\}$ is a positive monotonic sequence, ω is a modulus of continuity and $0<p<\infty$, then

$$
\begin{equation*}
\sum_{k=1}^{n}\left(k \lambda_{k}\right)^{-1 / p}=O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{2}
\end{equation*}
$$

implies

$$
\begin{equation*}
S_{p}(\lambda) \subset H^{\omega} . \tag{3}
\end{equation*}
$$

Conversely, if there exists a number Q such that $0 \leqq Q<1$ and

$$
\begin{equation*}
n^{Q} \lambda_{n} \mathrm{t} \tag{4}
\end{equation*}
$$

then (3) implies (2).
Since the de la Vallée Poussin means τ_{n} usually approximate the function f, in the sup norm, better than the partial sums s_{n} do, so we may expect that under reasonable conditions the following embedding relations will hold

$$
\begin{equation*}
S_{p}(\lambda) \subset V_{p}(\lambda) \subset H^{\omega} . \tag{5}
\end{equation*}
$$

In [2], A. Meir and me, verified some results pertaining to (5). More precisely the following theorems were proved:

Theorem B. If $p \geqq 1$ and $\left\{\lambda_{n}\right\}$ is a monotonic (nondecreasing or nonincreasing) sequence of positive numbers satisfying the condition

$$
\begin{equation*}
\lambda_{n} / \lambda_{2 n} \leqq K^{*}, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
S_{p}(\lambda) \subset V_{p}(\lambda) \tag{7}
\end{equation*}
$$

holds.
Theorem C. Let $\left\{\lambda_{n}\right\}$ be a monotonic sequence of positive numbers, furthermore let ω be a modulus of continuity and $0<p<\infty$. Then condition (2) implies

$$
\begin{equation*}
V_{p}(\lambda) \subset H^{\omega} \tag{8}
\end{equation*}
$$

If $p \geqq 1$ and there exists a number Q such that $0 \leqq Q<1$ and (4) holds, then, conversely, (8) implies (2).

To decide whether $S_{p}(\lambda) \subset V_{p}(\lambda)$, i.e. (7), holds when $0<p<1$; it was left as an open problem.

Making many unsuccessful attempts to prove (7) or its converse, at the present time, I have the conjecture that neither $S_{p}(\lambda) \subset V_{p}(\lambda)$ nor $V_{p}(\lambda) \subset S_{p}(\lambda)$ hold generally, but I have not been able to verify this statement.

[^0]However it turned out that if one defined a new subclass of $V_{p}(\lambda)$, which one could call "strong" $V_{p}(\lambda)$-class, and denoted by $V_{p}^{(s)}(\lambda)$, i.e.

$$
V_{p}^{(s)}(\lambda):=\left\{f:\left\|\sum_{n=1}^{\infty} \lambda_{n}\left(\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|\right)^{p}\right\|<\infty\right\},
$$

then under restriction (6) $S_{p}(\lambda) \subset V_{p}^{(s)}(\lambda)$ also holds for $p \geqq 1$, and $S_{p}(\lambda) \supset V_{p}^{(s)}(\lambda)$ is already true for $0<p \leqq 1$ if $\lambda_{2 n} \leqq K \lambda_{n}$. First we prove these statements.

Compare the definitions of $V_{p}(\lambda)$ and $V_{p}^{(s)}(\lambda)$, it is obvious that for any positive p and for any λ

$$
\begin{equation*}
V_{p}^{(s)}(\lambda) \subset V_{p}(\lambda) \tag{9}
\end{equation*}
$$

always holds.
It is clear that (8) and (9) imply

$$
\begin{equation*}
V_{p}^{(s)}(\lambda) \subset H^{\omega} . \tag{10}
\end{equation*}
$$

Secondly we prove that (10) also implies relation (2) for any positive p if (4) holds.

This result is a mild sharpening of the second part of Theorem C for $p \geqq 1$; and by (9) it extends the previous statement for any positive p. The latter result is the more important one.
2. We prove the following results.

Theorem 1. Let $\lambda=\left\{\lambda_{n}\right\}$ be a monotonic sequence of positive numbers. The following embedding relations hold:
and

$$
\begin{equation*}
S_{p}(\lambda) \subset V_{p}^{(s)}(\lambda) \text { if } p \geqq 1 \text { and } \lambda_{n}=O\left(\lambda_{2 n}\right) ; \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
S_{p}(\lambda) \supset V_{p}^{(s)}(\lambda) \text { if } 0<p \leqq 1 \quad \text { and } \quad \lambda_{2 n}=O\left(\lambda_{n}\right) . \tag{12}
\end{equation*}
$$

Theorem 2. Let $\lambda=\left\{\lambda_{n}\right\}$ be a monotonic sequence of positive numbers, furthermore let ω be a modulus of continuity and $p>0$. If there exists a number Q such that $0 \leqq Q<1$ and (4) holds, then the embedding relation (10) implies relation (2).

Theorem C and Theorem 2 convey as an immediate consequence the following result.

Corollary. Under condition (4) the embedding relation (8) implies relation (2) for any positive p.
3. To prove our theorems we require some lemmas.

Lemma 1 ([1]). If $a_{n} \geqq 0$ and the function

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \sin n x
$$

belongs to the class H^{w}, then

$$
\sum_{k=1}^{n} k a_{k}=O\left(n \omega\left(\frac{1}{n}\right)\right)
$$

Lemma 2. If $0<p<\infty, \lambda_{n} \uparrow$ or $\lambda_{n} \downarrow$ and there exists a number $Q, 0 \leqq Q<1$, such that (4) holds, then the function

$$
f(x):=\sum_{n=1}^{\infty} \frac{1}{n}\left(n \lambda_{n}\right)^{-1 / p} \sin n \dot{x}
$$

belongs to the class $V_{p}^{(s)}(\lambda)$.
Proof. It is easy to see that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left(n \lambda_{n}\right)^{-1 / p}=\sum_{n=1}^{\infty} n^{-(1+(1 / p)(1-Q))}\left(n^{Q} \lambda_{n}\right)^{-1 / p}<\infty
$$

so f is a continuous function, and $f(0)=f(\pi)=0$.
To prove that $f \in V_{p}^{(s)}(\lambda)$ we fix $0<x<\pi$ and choose N such that

$$
\frac{1}{N+1}<x \leqq \frac{1}{N}
$$

We make the following estimates:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \lambda_{n}\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}(x)-f(x)\right|\right\}^{p} \leqq \\
\leqq \sum_{n=1}^{N / 2} \lambda_{n}\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left(\left|\sum_{m=k+1}^{N+1} \frac{1}{m}\left(m \lambda_{m}\right)^{-1 / p} \sin m x\right|+\left|\sum_{m=N+2}^{\infty} \frac{1}{m}\left(m \lambda_{n}\right)^{-1 / p} \sin m x\right|\right)\right\}^{p}+ \\
+\sum_{n=N / 2}^{\infty} \lambda_{n}\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|\sum_{m=k+1}^{\infty} \frac{1}{m}\left(m \lambda_{m}\right)^{-1 / p} \sin m x\right|\right\}^{p \cdots \cdots} \equiv \sum_{1}+\sum_{2}
\end{gathered}
$$

where

$$
\begin{aligned}
& \sum_{1} \leqq K \\
& \sum_{n=1}^{N / 2} \lambda_{n}\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|\sum_{m=k+1}^{N+1} \frac{1}{m}\left(m \lambda_{m}\right)^{-1 / p} \sin m x\right|\right\}^{p}+ \\
&+ K \sum_{n=1}^{N / 2} \lambda_{n}\left\{\left.\left.\frac{1}{n} \sum_{k=n+1}^{2 n}\right|_{m=N+2} \sum_{m}^{\infty} \frac{1}{m}\left(m \lambda_{m}\right)^{-1 / p} \sin m x \right\rvert\,\right\}^{p} \equiv \sum_{11}+\sum_{12}
\end{aligned}
$$

First we assume that $\lambda_{n} \downarrow$. By our assumption, we ican choose a positive Q such that $1>Q>1-p$ and $n^{Q} \lambda_{n} 4$. Then $\frac{Q-1}{p}>-1$, so for any $n<k<N$ we have
that

$$
\begin{gathered}
\sum_{m=k+1}^{N+1} \frac{1}{m}\left(m \lambda_{m}\right)^{-1 / p} \sin m x \leqq x \sum_{m=k+1}^{N+1}\left(m \lambda_{m}\right)^{-1 / p}= \\
=x \sum_{m=k+1}^{N+1}\left(m^{Q} \lambda_{m} m^{1-Q}\right)^{-1 / p} \leqq x\left(n^{Q} \lambda_{n}\right)^{-1 / p} \sum_{m=n+1}^{N+1} m^{(Q-1) / p \leqq} \\
\leqq K x\left(n^{Q} \lambda_{n}\right)^{-1 / p} N^{1+(Q-1) / p},
\end{gathered}
$$

whence we get that

$$
\Sigma_{11} \leqq K_{1} \sum_{n=1}^{N / 2} \lambda_{n} x^{p} \lambda_{n}^{-1} n^{-Q} N^{p+Q-1} \leqq K_{2} x^{p} N^{p} \leqq K_{3}
$$

Furthermore

$$
\begin{aligned}
\sum_{12} & \leqq \sum_{n=1}^{N / 2} \lambda_{n}\left|\sum_{m=N+2}^{\infty} \frac{1}{m}\left(m \lambda_{m}\right)^{-1 / p} \sin m x\right|^{p} \leqq \\
& \leqq \sum_{n=1}^{N / 2} \lambda_{n}\left\{\sum_{m=N+2}^{\infty} \frac{1}{m}\left(m^{Q} \lambda_{m} m^{1-Q}\right)^{-1 / p}\right\}^{p} \leqq \\
& \leqq \sum_{n=1}^{N / 2} \lambda_{n}\left\{\left(N^{Q} \lambda_{N}\right)^{-1 / p} \sum_{m=N}^{\infty} m^{-1-(1-Q) / p}\right\}^{p} \leqq \\
& \leqq \sum_{n=1}^{N} \lambda_{n}\left(N^{Q} \lambda_{N}\right)^{-1} N^{-(1-Q)}= \\
& =N^{-1} \lambda_{N}^{1} \sum_{n=1}^{N} n^{Q} \lambda_{n} n^{-Q} \leqq N^{Q-1} \sum_{n=1}^{N} n^{-Q} \leqq K
\end{aligned}
$$

To estimate Σ_{2} we use the following inequality

$$
\left|\sum_{m=k+1}^{\infty} \frac{1}{m}\left(m \lambda_{m}\right)^{-1 / p} \sin m x\right| \leqq \frac{K}{k x}\left(k \lambda_{k}\right)^{-1 / p}
$$

for any $0<x<\pi$. Hence

$$
\sum_{2} \leqq K_{1} \sum_{n=N / 2}^{\infty} \lambda_{n} n^{-p} x^{-p} n^{-1} \lambda_{n}^{-1} \leqq K_{2} \sum_{n=N / 2}^{\infty} n^{-p-1} x^{-p} \leqq K_{3}(x N)^{-p} \leqq K_{4}
$$

Coliecting these estimates we get that $f \in V_{p}^{(s)}(\lambda)$ in the case $\lambda_{n} \downarrow$.
The proof in the case $\lambda_{n} \uparrow$ is easier, then we can simply replace condition (4) by $\lambda_{n} \uparrow$ in some parts of the previous proof. Therefore we omit the details.

The proof is completed.
4. Now we can prove our theorems.

Proof of Theorem 1. For $p \geqq 1$, by Hölder's inequality, the inequality

$$
\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right| \leqq\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|^{p}\right\}^{1 / p}
$$

holds, whence

$$
\begin{gather*}
\sum_{n=1}^{\infty} \lambda_{n}\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|\right\}^{p} \leqq \sum_{n=1}^{\infty} \lambda_{n}\left\{\left.\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|\right|^{p}\right\} \leqq \tag{13}\\
\leqq \sum_{k=2}^{\infty}\left|s_{k}-f\right|^{p} \sum_{n=k / 2}^{k} \lambda_{n} / n \equiv \sum_{3}
\end{gather*}
$$

follows. By $\lambda_{n}=O\left(\lambda_{2 n}\right)$ we have

$$
\begin{equation*}
\Sigma_{3} \leqq K \sum_{k=2}^{\infty} \lambda_{k}\left|s_{k}-f\right|^{p} \tag{14}
\end{equation*}
$$

Inequalities (13) and (14) imply (11).
In the case $0<p \leqq 1$ we use the inequality

$$
\begin{equation*}
\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right| \geqq\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{k}-f\right|^{p^{0}}\right\}^{1 / p}, \tag{15}
\end{equation*}
$$

which can also be proved by Hölder inequality, and the estimate

$$
\begin{equation*}
\lambda_{k}=O\left(\sum_{n=k / 2}^{k-1} \lambda_{n} / n\right), \tag{16}
\end{equation*}
$$

it follows from $\lambda_{2 n}=O\left(\lambda_{n}\right)$. Then, by (15) and (16),

$$
\begin{gathered}
\sum_{n=2}^{\infty} \lambda_{n}\left|s_{n}-f\right|^{p} \leqq K \sum_{n=2}^{\infty}\left(\sum_{k=n / 2}^{n-1} \lambda_{k} / k\right)\left|s_{n}-f\right|^{p} \leqq \\
\leqq K \sum_{k=1}^{\infty} \lambda_{k} / k \sum_{n=k+1}^{2 k}\left|s_{n}-f\right|^{p} \leqq K \sum_{k=1}^{\infty} \lambda_{k}\left(\frac{1}{k_{n=k+1}} \sum_{k n}^{2 k}\left|s_{n}-f\right|\right)^{p}
\end{gathered}
$$

holds, whence (12) clearly follows.
Proof of Theorem 2. Let us consider the function given in Lemma 2, i.e. let

$$
f_{0}(x):=\sum_{n=1}^{\infty} \frac{1}{n}\left(n \lambda_{n}\right)^{-1 / p} \sin n x .
$$

Then, by Lemma 2, $f_{0} \in V_{p}^{(s)}(\lambda)$. The assumption $V_{p}^{(s)}(\lambda) \subset H^{\omega}$ conveys that $f_{0} \in H^{\omega}$ also holds. Hence, using Lemma 1, relation (2) follows, that is, (10) really implies (2).

The proof is completed.

References

[1] V. G. Krotov and L. Leindler, On the strong summability of Fourier series and the class H^{ω}, Acta Sci. Math., 40 (1978), 93-98.
[2] L. Leindler and A. Meir, Embedding theorems and strong approximation, Acta Sci. Math., 47 (1984), 371-375.

BOLYAI INTÉZET
ARADI VÉRTANÚK TERE 1
SZEGED, HUNGARY
H-6720

[^0]: ${ }^{*}$) K, K_{1}, \ldots will denote positive constants, not necessarily the same at each occurence.

