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Embedding results pertaining to strong approximation 

L. LE INDLER 

1. The aim of the paper is to make a step toward answering an open problem of 
our previous paper [2] and to extend another result published in the same paper. 

In order to quote the known results we have to recall some notions and notations. 
Let f(x) be a continuous and 2^-periodic function and let 

CI
 00 

(1) fix) ~ + 2 (an c o s nx + K sin nx) 
n = 1 

be its Fourier series. Let sn=s„(x) = a„(f;x) and T„=T„(X)=T „ ( f x ) denote the 
w-th partial sum and the classical de la Vallée Poussin mean of (1), i.e. 

| 2n 
xn(x) = — 2 sk(x), w = 1,2, .... 

fl k = n+1 

We denote by || • || the usual supremum norm. 
Let £«(<5) be a nondecreasing continuous function on the interval [0,2n] having 

the properties: a>(0)=0, w ( ¿ j + ¿ 2 ) ^ w(<),)+a)(I52) for any 

Such a function is called a modulus of continuity. The modulus of continuity o f/wi l l 
be denoted by co(f; <5). 

W e define the following classes of continuous functions: 

H" := {/: co(f; Ô) = 0 (a ) (5 ) ) } , 

n=0 
and 

KW ••={/•• \\2 n = l 

where /. = { ! „ } is a monotonie sequence of positive numbers and 0 

V. G. KROTOV and the author ([1]) proved the following result. 
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T h e o r e m A. If {A„} is a positive monotonie sequence, co is a modulus of continuity 

and 0</?< then 

(2) = 

implies 

(3) S, (A) c //». 

Conversely, if there exists a number Q such that 0 1 and 

(4) rfiln\, 

then (3) implies (2). 

Since the de la Vallée Poussin means r„ usually approximate the function/, in the 
sup norm, better than the partial sums s„ do, so we may expect that under reasonable 
conditions the following embedding relations will hold 

(5) SP (A) c FP(A) c ¿ T . 

In [2], A . MEIR and me, verified some results pertaining to (5). More precisely 

the following theorems were proved: 

T h e o r e m B. If p=l and {A„} is a monotonie (nondecreasing or nonincreasing) 

sequence of positive numbers satisfying the condition 

(6) XJk^^K*, n = 1,2, . . . , 

then 

(7) SP (A) c VP{X) 

holds. 

T h e o r e m C. Let {Ah} be a monotonie sequence of positive numbers, furthermore 

let (a be a modulus of continuity and Then condition (2) implies 

(8) Vp{X) a H». 

If p^l and there exists a number Q such that 0 g g < l and (4) holds, then, 

conversely, (8) implies (2). 

T o decide whether 5 p ( A ) c ^ ( A ) , i.e. (7), holds when 0 < / ? < l ; it was left as 

an open problem. 
Making many unsuccessful attempts to prove (7) or its converse, at the present 

time, I have the conjecture that neither Sp(Z)czVp(X) nor ^ ( A ) c S p ( A ) hold gene-
rally, but I have not been able to verify this statement. 

*) K, K, will denote positive constants, not necessarily the same at each occurence. 



Embedding results 69 

However it turned out that if one defined a new subclass of VP(X), which one could 

call "strong" J^(A)-class, and denoted by F^s )(A), i.e. 

L U„=I V « ( T = N + I ) II J 

then under restriction (6) S p ( A ) c J ^ s ) ( A ) also holds for pSsl, and S P ( X ) ^ V ^ { X ) 
is already true for 0 1 if 1 2 „ = K X n . First we prove these statements. 

Compare the definitions of VP(X) and V(ps\X), it is obvious that for any positive p 

and for any A 

(9) F/*>(A) (= Vp(A) 

always holds. 
It is clear that (8) and (9) imply 

(10) Vp^(X)<z H'°. 

Secondly we prove that (10) also implies relation (2) for any positive p if (4 ) 
holds. 

This result is a mild sharpening of the second part of Theorem C for p ^ l ; and 
by (9) it extends the previous statement for any positive p. The latter result is the more 
important one. 

2. W e prove the following results. 

T h e o r e m 1. Let A = {!„} be a monotonic sequence of positive numbers. The 

following embedding relations hold: 

(11) S f ( l ) c F W ( l ) if p^ 1 and A„ = 0(A2 „ ) ; 
and 

(12) S P ( A ) 3 Vp(s)(A) if 0 < ^ 1 and A2M = O(?,,). 

T h e o r e m 2. Let A = { A „ } be a monotonic sequence of positive numbers, further-

more let to be a modulus of continuity and p >0 . If there exists a number Q such that 

0 ^ 1 and (4) holds, then the embedding relation (10) implies relation (2). 

Theorem C and Theorem 2 convey as an immediate consequence the following 

result. 

C o r o l l a r y . Under condition (4) the embedding relation (8) implies relation (2) 

for any positive p. 

3. T o prove our theorems we require some lemmas. 

L e m m a 1 ([1]). If a „ £ 0 and the function 

f(x) ~ 2 an sin nx 

B = 1 
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belongs to the class H™, then 

Z kak = O\no) 
* = 1 

L e m m a 2. If 0</ ;<< » , A„t or kj and there exists a number Q, 0 § (?< 1, 
such that (4) holds, then the function 

f(x):= 2 ~ fix 
n = l n 

belongs to the class V^s)(k). 

P r o o f . It is easy to see that 

2 - { n K Y l l v = 2 n - a + U / p K l - Q ) ) ( n a A n ) - V P 
n= l n n = 1 

so / is a continuous function, and / (0 )=/ (7t )=0. 

T o prove that /£F^S ) (A) we fix 0 < x < 7 t and choose N such that 

N+1 N 

W e make the following estimates: 

~ f 1 2n IP 

2 ¿A- 2 K M - / M l ^ 
„ = 1 l n k=n+l J ' 

N/2 f 1 2N /I ¡V + L 1 

* 2 z [\ 2 —(mlJ-V'Sin 
n = l I n k=n +1 V'M=FT + I M 

f 1 2" I ~ J " I I P — ' 
+ — ( « A J r ' / ' s m r n x f = 

n=N/2 I tl k=n+l lm=*+l ttl I) 

+ 2 —(mh)~1/p sin mx 
'm=JV+2 tn 

+ 

where 
JV/2 f 1 2 n 

Zi = K Z An i— 2 

n = 1 " ic=n + ] 

N12 F 1 2N 

n.1 I « * = n + 

JV + 1 J 
2 — (wAm ) ~ ̂ p sin wx 

m = * + l "J 

1 
2 " —(/wAm ) _ 1 / psin mx 

m=N+2 m 

h 
}P = 2 » + 2 

First we assume that A„j. By our assumption, we iCan.choose, a positive Q such 

that and nQ),n\. Then — > — 1, so for any n<k<N we have 
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that 
N+l I N + l 

2 — ("lAJ-V'sin mx^x 2 (wAJ-I/P = 

m=k + l m m=k +1 

N+l N+l = x 2 (mQXmml-V)-1"' xC^AJ-1/" 2 m®-1»": 
m = 4+ l m=n + l 

whence we get that 

N/2 

Furthermore 

2n = Ki 2 ¿„xP^n-ON'+o-1 ^ K2xpNp ^ K3. n=1 

N/2 co 1 |p 
212 = 2 K 2 —(m^m)~ 1 / P

 sin/WX S 
n=l |m=N+2 rn 

JV/2 f oo 1 -|P 
^ 2k\ 2 — (rrfilmtn^yM s 

n= l lm=JV + 2 m J 

JV/2 
^ 2 K{(NqXn)~1Ip 2 m-^-v/ry^ 

2 KiNO^N-^-v = 

= W"1^1 2 rflknn-v s ÍVÖ-1 2 « - G sá K. 

To estimate 2 2 we use the following inequality 

1 
2 —-(mlj-llpsinmx 

m=k +1 f" 

for any 0<X<TE. Hence 

n=NI2 n=NI 2 

Collecting these estimates we get that /€Fp(s)(A) in the case A„J. 
The proof in the case A„f is easier, then we can simply replace condition (4) by 

A„t in some parts of the previous proof. Therefore we omit the details. 
The proof is completed. 
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4. N o w we can prove our theorems. 

P r o o f o f T h e o r e m 1. For p ^ 1, by Holder's inequality, the inequality 

1 2n f I 2n I1/'' 

n k=n +1 i n * = n + l J 

holds, whence 

« f 1 2n IP oo r 1 2n 1 
0 3 ) 2 K \ - 2 s 2 4 2 s 

n = l I " k=n + l J /1 = 1 I n k=n +1 

^ 2 tot-/I' 2 K in = 2 3 
* = 2 n=fc/2 

follows. By An = 0(A2 n ) we have 

(14) 
k = 2 

Inequalities (13) and (14) imply (11). 

In the case we use the inequality 

1 2n f | 2n l1/? 
(15) - 2 K - / I S - 2 W - f l p , 

n k = n + 1 l n k=n +1 J 

\Vp 

\sk-f\p 

n + 1 

which can also be proved by Holder inequality, and the estimate 

(16) h = 0 ( z Kin), 
B=fc/2 

it follows from X2n = 0 ( l „ ) . Then, by (15) and (16), 

i;.„\s,-f\" = k z ( 2 K/k)\s,-f\"S 
n = 2 n=2 fc=rt/2 

~ 2* oo / 1 2 k 
^ K Z k j k z T 2 k . - / l 

* = 1 n=fc+l t = l n = k+1 > 

\p 

v * -

holds, whence (12) clearly follows. 

P r o o f o f T h e o r e m 2. Let us consider the function given in Lemma 2, i.e. let 

/o(-v) := ¿ - ( « A J - ^ s i n n . v . 
n = l n 
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Then, by Lemma 2, f0eV^(A). The assumption Vps) ( 2 ) c Hm conveys that 
fo^H'0 also holds. Hence, using Lemma 1, relation (2) follows, that is, (10) really 
implies (2). 

The proof is completed. 
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