Note on Fourier series with nonnegative coefficients

J. NÉMETH*)

1. Let $f(x)$ be a continuous and 2π-periodic function and let

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{1}
\end{equation*}
$$

be its Fourier series. Denote $s_{n}=s_{n}(x)$ the n-th partial sum of (1). If $\omega(\delta)$ is a nondecreasing continuous function on the interval $[0,2 \pi]$ having the properties

$$
\omega(0)=0, \quad \omega\left(\delta_{1}+\delta_{2}\right) \leqq \omega\left(\delta_{1}\right)+\omega\left(\delta_{2}\right)
$$

for any $0 \leqq \delta_{1} \leqq \delta_{2} \leqq \delta_{1}+\delta_{2} \leqq 2 \pi$, then it will be called modulus of continuity.
Define the following classes of functions

$$
\begin{gather*}
H^{\omega}=\{f:\|f(x+h)-f(x)\|=O(\omega(h))\} \tag{2}\\
\left(H^{\omega}\right)^{*}=\{f:\|f(x+h)+f(x-h)-2 f(x)\|=O(\omega(h))\} \tag{3}
\end{gather*}
$$

where $\|\cdot\|$ denotes the usual maximum norm. If $\omega(\delta)=\delta^{\alpha}$ then we write $\operatorname{Lip} \alpha$ instead of $H^{\delta \alpha}$.

In 1948 G. G. Lorentz [7] proved a theorem containing a coefficient-condition for $f \in \operatorname{Lip} \alpha$ in the case if the sequence of the Fourier coefficients is monotonic. Namely he proved the following result.

Theorem A ([7]). Let $\lambda_{n} 10$ and let λ_{n} be the Fourier sine or cosine coefficients of φ. Then $\varphi \in \operatorname{Lip} a(0<\alpha<1)$ if and only if $\lambda_{n}=O\left(n^{-1-\alpha}\right)$.

Later this result was generalized by R. P. Boas.[1] in 1967 as follows:

[^0]Theorem B ([1]). Let $\lambda_{n} \geqq 0$ and let λ_{n} be the sine or cosine coefficients of φ. Then $\varphi \in \operatorname{Lip} \alpha \quad(0<\alpha<1)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty} \lambda_{k}=O\left(n^{-x}\right) \tag{4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{k=1}^{n} k \lambda_{k}=O\left(n^{1-x}\right) \tag{5}
\end{equation*}
$$

In 1980 L. Leindler in connection with certain investigations in the theory of strong approximation by Fourier series, defined some function classes which are more general than $\operatorname{Lip} \alpha$ but narrower than H^{ω}. Namely he gave the following definition.

Let $\omega_{\alpha}(\delta)(0 \leqq \alpha \leqq 1)$ denote a modulus of continuity having the following properties:
(i) for any $\alpha^{\prime}>\alpha$ there exists a natural number $\mu=\mu\left(\alpha^{\prime}\right)$ such that

$$
\begin{equation*}
2^{\mu z^{\prime}} \omega_{\alpha}\left(2^{-n-\mu}\right)>2 \omega_{z}\left(2^{-n}\right) \text { holds for all } n \geqq 1 ; \tag{6}
\end{equation*}
$$

(ii) for every natural number v there exists a natural number $N(v)$ süch that

$$
\begin{equation*}
2^{v a} \omega_{a}\left(2^{-n-v}\right) \leqq 2 \omega_{a}\left(2^{-n}\right) \quad \text { if } \quad n>N(v) \tag{7}
\end{equation*}
$$

Using $\omega_{\alpha}(\delta)$ L. Leindler defined the function class Lip ω_{α} in the following way

$$
\operatorname{Lip} \omega_{\alpha}=\left\{f:\|f(x+h)-f(x)\|=O\left(\omega_{a}(h)\right)\right\} .
$$

Recently the author of the present paper generalized the result of R. P. Boas formulated in Theorem B and some other ones for $\operatorname{Lip} \omega_{z}$ instead of $\operatorname{Lip} \alpha$.

For example we proved the following
Theorem C ([8]). Let $\lambda_{n} \geqq 0$ and λ_{n} be the Fourier sine or cosine coefficients of ‘. Then

$$
\varphi \in \operatorname{Lip} \omega_{\alpha} \quad(0<\alpha<1)
$$

if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty} \lambda_{n}=O\left(\omega_{\alpha}\left(\frac{1}{n}\right)\right) \tag{8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sum_{k=1}^{n} k \lambda_{k}=O\left(n \omega_{a}\left(\frac{1}{n}\right)\right): \tag{9}
\end{equation*}
$$

The question of further generalizations for arbitrary $\omega(\delta)$ and H^{ω} can naturally be arisen.

The first results in this direction were already given by A. I. Rubinstein ([9]) for cosine series, furthermore V. G. Krotov and L. L'EINpler ([3], see also in [6]) for the sine case. Their results read as follows

Theorem D ([9]). Let f be an even function belonging to H^{ω} and let a_{n} be its Fourier coefficients with $a_{n} \geqq 0(n=1,2, \ldots)$. Then

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} k a_{k}=O\left(\frac{1}{n} \int_{1 / n}^{\delta_{0}} \frac{\omega(t)}{t^{2}} d t\right) \tag{11}
\end{equation*}
$$

hold for some fix $\delta_{0}>0$.
If ω satisfies the condition

$$
\begin{equation*}
\delta \int_{\delta}^{\delta_{0}} \frac{\omega(t)}{t^{2}} d t=O(\omega(\delta)) \tag{12}
\end{equation*}
$$

then conditions (10) and (11) are sufficient for

$$
f \in H^{\omega} .
$$

It should be noted that (10) implies (11) for any ω, namely

$$
\sum_{k=1}^{n} k a_{k}=\sum_{k=1}^{n} \sum_{i=k}^{n} a_{i}=O(1) \sum_{k=1}^{n} \omega\left(\frac{1}{k}\right)=O(1) \int_{1 / n}^{\delta_{0}} \frac{\omega(t)}{t^{2}} d t
$$

and thus for the special moduli of continuity ω satisfying relation (12) the condition (10) itself is a sufficient condition.

Theorem E ([3] Lemma 3, see also in [6]). If $\lambda_{n} \geqq 0$ and

$$
g(x)=\sum_{n=1}^{\infty} \lambda_{n} \sin n x
$$

belongs to the class H^{ω} then

$$
\begin{equation*}
\sum_{k=1}^{n} k \lambda_{k}^{\prime}=O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{13}
\end{equation*}
$$

The aim of this paper is to show that neither (10) nor (13) is sufficient for the corresponding function to be in H^{ω}; furthermore to give sufficient condition for $f \in H^{\omega}$ in both cases. We also show that (10) is a necessary and sufficient condition for f to belong to the class $\left(H^{\omega}\right)^{*}$ (which is broader than H^{ω}, so this result in this sense is a little sharper than that of Rubinstein). Finally it will be proved that (10) and (13), respectively, is not only a necessary but also sufficient condition for $f \in H^{\omega}$ and .$g \in H^{\omega}$, if the coefficients a_{k} and b_{k} form monotonically decreasing sequences.
2. Now we formulate our results.

Theorem 1. If $\lambda_{n} \geqq 0$ and λ_{n} are the Fourier sine or cosine coefficients of φ, then the conditions

$$
\begin{equation*}
\sum_{k=1}^{n} k \lambda_{k}=O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=n}^{\infty} \lambda_{k}=O\left(\omega\left(\frac{1}{n}\right)\right) \tag{15}
\end{equation*}
$$

imply

$$
\begin{equation*}
\varphi \in H^{\omega} . \tag{16}
\end{equation*}
$$

Remark. The well-known Weierstrass function

$$
f(x)=\sum_{n=1}^{\infty} \frac{\cos 2^{n} x}{2^{n}}
$$

shows that (15) itself is not sufficient for $\varphi \in H^{\omega}$ (since $f \notin H^{\omega}$ if $\omega(\delta)=\delta$ and (15) is obviously satisfied).

The example

$$
g(x)=\sum_{k=1}^{\infty} \frac{1}{4 k^{2}} \sin 3^{4 k=} x
$$

proves that from (14) alone (16) does not follow. This function was constructed by A. I. Rubinstein ([9]) in connection with lacunary series. He proved that $g \notin H^{\omega}$, for $\omega(\delta)=\frac{1}{\left|\log _{3} \delta\right|}$. At the same time it can easily be checked that (14) holds.

Theorem 2. If $a_{k} \geqq 0$ and a_{k} are the Fourier cosine coefficients of f then

$$
\begin{equation*}
f \in\left(H^{\omega}\right)^{*} \tag{17a}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right) \tag{17b}
\end{equation*}
$$

Remark. Notice that (17b) implies

$$
\begin{equation*}
\sum_{k=1}^{n} k a_{k} \leqq K \sum_{k=1}^{n} \omega\left(\frac{1}{k}\right) \tag{18}
\end{equation*}
$$

and using the standard estimation we have that (18) implies

$$
f \in H^{\omega_{*}}
$$

where

$$
\omega_{*}(t):=t \sum_{k=1}^{[1 / t]} \omega\left(\frac{1}{k}\right) .
$$

In fact, since from (17a) (18) follows we have that

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right) \tag{19}
\end{equation*}
$$

implies $f \in H^{\omega_{*}}$ and Theorem 2 gives that the same condition (17a) implies

$$
f \in\left(H^{\omega}\right)^{*}
$$

too. Thus the following question can be arisen: whether

$$
\begin{equation*}
f \in H^{\omega_{*}} \Leftrightarrow f \in\left(H^{\omega}\right)^{*} \tag{20}
\end{equation*}
$$

or not.
We can prove that

$$
\begin{equation*}
f \in\left(H^{\omega}\right)^{*} \Rightarrow f \in H^{\omega_{*}} \tag{21}
\end{equation*}
$$

but the converse is false. Really, from Theorem 2 we have that

$$
f \in\left(H^{\omega}\right)^{*} \Rightarrow \sum_{k=n}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right)
$$

which assures that $f \in H^{\omega_{*}}$, so (21) is proved. In order to prove that

$$
\begin{equation*}
f \in H^{\omega_{*}} \nRightarrow f \in\left(H^{\omega}\right)^{*} \tag{22}
\end{equation*}
$$

we consider the following function

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty} \frac{\log n}{n^{2}} \cos n x \tag{23}
\end{equation*}
$$

and let $\omega(t)=t$, that is, $\omega_{*}(t)=t \log t$. From Theorem 4 of [8] it follows that

$$
f \in H^{\delta \log \delta} \quad\left(=H^{\omega_{*}}\right)
$$

because both
and

$$
\begin{equation*}
\sum_{h=n}^{\infty} \frac{\log k}{k^{2}}=O\left(\frac{\log n}{n}\right) \tag{24}
\end{equation*}
$$

hold. And at the same time

$$
f \not\left(H^{\delta}\right)^{*}=\left(H^{\omega}\right)^{*},
$$

because

$$
\begin{aligned}
& \frac{1}{2}|f(0+2 h)+f(0-2 h)-2 f(0)|=\sum_{n=1}^{\infty} \frac{\log n}{n^{2}}(1-\cos 2 n h)= \\
& \quad=2 \sum_{n=1}^{\infty} \frac{\log n}{n^{2}} \sin ^{2} n h \geqq 2 h^{2} \sum_{n=1}^{[1 / h]} \log n \frac{\sin ^{2} n h}{n^{2} h^{2}} \geqq 2 h|\log h|,
\end{aligned}
$$

which gives that

$$
\|f(x+h)+f(x-h)--2 f(x)\| \neq O(h)
$$

that is, $f \not \ddagger\left(H^{\delta}\right)^{*}$ and so (22) is proved.
Theorem 3. If $b_{k} \not 0$ and $g(x)=\sum_{k=1}^{\infty} b_{k} \sin k x$ then
(26a)

$$
g \in H^{\omega}
$$

if and only if

$$
\begin{equation*}
\sum_{k=1}^{n} k b_{k}=O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{26b}
\end{equation*}
$$

Theorem 4. If $a_{k} \nmid 0$ and $f(x)=\sum_{k=1}^{\infty} a_{k} \cos k x$ then

$$
\begin{equation*}
f \in H^{\omega} \tag{27a}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right) \tag{27b}
\end{equation*}
$$

3. We require the following lemmas.

Lemma 1. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative numbers and ω be a modulus of continuity. Then

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right) \tag{28}
\end{equation*}
$$

implies

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2} a_{k}=O\left(n^{2} \omega\left(\frac{1}{n}\right)\right) \tag{29}
\end{equation*}
$$

Proof.*) Using (28) we have

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2} a_{k}=\sum_{k=1}^{n}(2 k-1) \sum_{i=k}^{n} a_{i} \leqq 2 \sum_{k=1}^{n} k \omega\left(\frac{1}{k}\right)=1 . \tag{30}
\end{equation*}
$$

Since for any ω the inequality

$$
\begin{equation*}
\frac{\omega\left(x_{1}\right)}{x_{1}} \leqq 2 \frac{\omega\left(x_{2}\right)}{x_{2}} \quad\left(0<x_{2} \leqq x_{1}\right) \tag{31}
\end{equation*}
$$

[^1](see for example [11] p. 103) holds I can be estimated as follows
\[

$$
\begin{equation*}
I \leqq 2 n \cdot 2 n \omega\left(\frac{1}{n}\right)=4 n^{2} \omega\left(\frac{1}{n}\right) . \tag{32}
\end{equation*}
$$

\]

Thus (30) and (32) give (29).
Lemma 2. Let $a_{k} \geqq 0$ and a_{k} be the Fourier cosine coefficients of f. Then

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right) \quad \text { and } \quad\left\|\sum_{k=1}^{n} k a_{k} \sin k x\right\|=O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{33}
\end{equation*}
$$

imply

$$
\begin{equation*}
f \in H^{\omega} . \tag{34}
\end{equation*}
$$

This lemma can be proved in the same way as Theorem 4 in [8] for $\omega_{1}(\delta)$.

4. Proofs.

Proof of Theorem 1. We detail the proof just for cosine series. Set

$$
\begin{align*}
& |f(x+2 h)-f(x)|=2\left|\sum_{k=1}^{\infty} \lambda_{k} \sin k(x+h) \sin k h\right| \leqq \tag{35}\\
& \leqq 2\left(\sum_{k=1}^{[1 / /]]} \lambda_{k} \sin k h+\sum_{k=[1 / / h]}^{\infty} \lambda_{k}\right)=I+I I .
\end{align*}
$$

Since

$$
\begin{equation*}
I \leqq K h \sum_{k=1}^{[1 / h]} k \lambda_{k} \frac{\sin k h}{k h} \leqq K_{1} h \sum_{k=1}^{[1 / h]} k \lambda_{k}, \tag{36}
\end{equation*}
$$

from (14) it follows that

$$
\begin{equation*}
I=O(\omega(h)) . \tag{37}
\end{equation*}
$$

By using (15) we have that

$$
\begin{equation*}
I I=O(\omega(h)) \tag{38}
\end{equation*}
$$

So (35), (36), (37) and (38) give that

$$
f \in H^{\omega} .
$$

Theorem 1 is completed.
Proof of Theorem 2. Suppose that (17b) holds. Then

$$
\begin{align*}
& |f(x+2 h)+f(x-2 h)-2 f(x)|=4\left|\sum_{k=1}^{\infty} a_{k} \sin ^{2} k h \cos k x\right| \leqq \tag{39}\\
& \leqq 4 \sum_{k=1}^{\infty} a_{k} \sin ^{2} k h=4 h^{2} \sum_{k=1}^{11 / h]} k^{2} a_{k} \frac{\sin ^{2} k h}{k^{2} h^{2}}+\sum_{k=11 / h]}^{\infty} a_{k} .
\end{align*}
$$

The first item of the last formula does not exceed $O(\omega(h))$ because of Lemma 1 ; and from (17b) we get that the second one is also $O(\omega(h))$. So (17b) $\Rightarrow(17 \mathrm{a})$ is proved.

Turning to prove (17a) $\Rightarrow(17 \mathrm{~b})$ first we note that the proof will be led by the same way as A. I. Rubinstein did in [9]. Let $I_{n}(x, g)$ be the Jackson polynomial defined by

$$
\begin{equation*}
I_{n}(x, g)=\frac{3}{2 n \pi\left(2 n^{2}+1\right)} \int_{-\pi}^{\pi} g(t)\left(\frac{\sin n \frac{t-x}{2}}{\sin \frac{t-x}{2}}\right)^{4} d t \tag{40}
\end{equation*}
$$

This polynomial can be written in the following form

$$
\begin{equation*}
I_{n}(x, g)=\frac{a_{0}}{2}+\sum_{k=1}^{2 n-2} \varrho_{k}^{(n)}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{41}
\end{equation*}
$$

where a_{k}, b_{k} are the Fourier coefficients of g and $\varrho_{k}^{(n)}$ are defined as follows

$$
\begin{align*}
& \varrho_{k}^{(n)}=\frac{1}{2 n\left(2 n^{2}+1\right)}\left[\frac{(2 n-k+1)!}{(2 n-k-2)!}-4 \frac{(n-k+1)!}{(n-k-2)!}\right] \text { for } 1 \leqq k \leqq n-2 \tag{42}\\
& \varrho_{k}^{(n)}=\frac{1}{2 n\left(2 n^{2}+1\right)} \frac{(2 n-k+1)!}{(2 n-k-2)!} \text { for } n-2<k \leqq 2 n-2
\end{align*}
$$

Formula (42) was given by G. P. Safrianova ([10]).
Consider the following difference for

$$
\begin{gather*}
f(x)=\sum_{k=1}^{\infty} a_{k} \cos k x \\
f(0)-I_{n}(0 ; f)=\sum_{k=1}^{2 n-2}\left(1-\varrho_{k}^{(n)}\right) a_{k}+\sum_{k=2 n-1}^{\infty} a_{k} \tag{43}
\end{gather*}
$$

It can be proved that the order of approximation by polynomial (40) is $O\left(\omega\left(\frac{1}{n}\right)\right)$ for

$$
g \in\left(H^{\omega}\right)^{*}
$$

(see for example [2] pp. 496-497).
Using this fact and that $1-\varrho_{k}^{(n)} \geqq 0$ we have from (43)

$$
\sum_{k=2 n-1}^{\infty} a_{k}=O\left(\omega\left(\frac{1}{n}\right)\right)
$$

which was to be proved.
Theorem 2 is completed.
Proof of Theorem 3. The statement (26a) \Rightarrow (26b) was proved by V. G. Krotov and L. Leindler (see Theorem E). Now we suppose (26b). It is obvious that to
prove (26a) it is sufficient to show

$$
\begin{equation*}
|g(h)-g(0)| \leqq K_{1} \cdot \omega(h) \tag{44}
\end{equation*}
$$

and
(45) $\quad|g(x)-g(x+h)| \leqq K_{2} \omega(h), \quad$ for $\quad 0<h \leqq x \leqq \pi$.

First we prove (44).
Set

$$
\begin{equation*}
|g(h)-g(0)| \leqq\left|\sum_{k=1}^{[1 / h]} b_{k} \sin k h\right|+\left|\sum_{k=[1 / h]}^{\infty} b_{k} \sin k h\right|=\mathrm{I}+\mathrm{II} . \tag{46}
\end{equation*}
$$

Using (26b) we can estimate I as follows

$$
\begin{equation*}
\mathrm{I} \leqq h \sum_{k=1}^{[1 / h]} k b_{k} \frac{\sin k h}{k h} \leqq K h \sum_{k=1}^{[1 / h]} k b_{k}=O(\omega(h)) \tag{47}
\end{equation*}
$$

From the well-known inequality

$$
\begin{equation*}
\left|\sum_{k=n}^{m} a_{k} \sin k x\right| \leqq \frac{4}{x} a_{n} \quad\left(a_{n} \downarrow, x \in(0, \pi)\right) \tag{48}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\mathrm{II} \leqq 4 \frac{1}{h} b_{[1 / h]} . \tag{49}
\end{equation*}
$$

But taking into account that $b_{k} \downarrow$, from (26b) we have

$$
\begin{equation*}
b_{n}=O\left(\frac{\omega\left(\frac{1}{n}\right)}{n}\right) \tag{50}
\end{equation*}
$$

From (49) and (50) we get

$$
\begin{equation*}
\mathrm{II}=O(\omega(h)) \tag{51}
\end{equation*}
$$

Using (46), (47) and (51) we obtain (44).
Now we verify (45). Consider

$$
\begin{gather*}
|g(x+h)-g(x)|=\left|\sum_{k=1}^{\infty} b_{k}(\sin k x-\sin k(x+h))\right| \leqq \tag{52}\\
\leqq\left|\sum_{k=1}^{[1 / h]} b_{k} \cos k(x+h) \sin k h\right|+\left|\sum_{k=[1 / h]}^{\infty} b_{k} \sin k x-\sin k(x+h)\right| \leqq \\
\leqq\left|\sum_{k=1}^{[1 / h]} b_{k} \sin k h\right|+\left|\sum_{k=[1 / h]}^{\infty} b_{k} \sin k x\right|+\left|\sum_{k=[1 / h]}^{\infty} b_{k} \sin k(x+h)\right|=\mathrm{I}+\mathrm{II}^{\prime}+\mathrm{II}^{\prime \prime} .
\end{gather*}
$$

By (47) we have

$$
\begin{equation*}
\mathrm{I}=O(\omega(h)) \tag{53}
\end{equation*}
$$

Taking into account again (48), (49) and the condition $0<h \leqq x$ we have that the magnitude of either II^{\prime} or $\mathrm{II}^{\prime \prime}$ is $O(\omega(h)$), that is,

$$
\begin{equation*}
\mathrm{II}^{\prime}+\mathrm{II}^{\prime \prime}=O(\omega(h)) \tag{54}
\end{equation*}
$$

Thus (52), (53) and (54) give (45) which is the desired statement.
Theorem 3 is completed.
Proof of Theorem 4. Using Theorem 2 and the fact that $H^{\omega} \subset\left(H^{\omega}\right)^{*}$ the statement (27a) $\Rightarrow(27 \mathrm{~b})$ can immediately be obtained. Concerning the opposite direction, by Lemma 2, it is enough to show that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} k a_{k} \sin k x\right\| \leqq K \cdot n \omega\left(\frac{1}{n}\right) . \tag{55}
\end{equation*}
$$

Let $x \in(0, \pi)$ be fixed and let v denote $\left[\frac{1}{x}\right]$; if $n>\frac{1}{x}$, then split up the left hand side of (55) into two parts as follows

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} k a_{k} \sin k x\right\| \leqq\left\|\sum_{k=1}^{v} k a_{k} \sin k x\right\|+\left\|\sum_{k=v=1}^{n} k a_{k} \sin k x\right\|=\mathrm{I}+\mathrm{II} . \tag{56}
\end{equation*}
$$

Estimating I we get

$$
\begin{equation*}
\mathrm{I} \leqq K_{1} x \sum_{k=1}^{\nu} k^{2} a_{k} . \tag{57}
\end{equation*}
$$

Taking into account the monotonity of a_{k} and (27b) we have

$$
\begin{equation*}
k a_{k}=O\left(\omega\left(\frac{1}{k}\right)\right) \tag{58}
\end{equation*}
$$

From (58) it follows that

$$
\begin{equation*}
x \sum_{k=1}^{\nu} k^{2} a_{k} \leqq K_{2} x \sum_{k=1}^{\nu} k \omega\left(\frac{1}{k}\right) \leqq K_{3} n \omega\left(\frac{1}{n}\right) . \tag{59}
\end{equation*}
$$

In the last step we used again inequality (31) and $n>v$.
Thus from (57) and (59)

$$
\begin{equation*}
\mathrm{I} \doteq O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{60}
\end{equation*}
$$

can be obtained.
Now we estimate the second item in (56). Since

$$
\begin{equation*}
\mathrm{II}=\left\|\sum_{k=v}^{n} k a_{k} \sin k x\right\| \leqq\left\|\sum_{k=v}^{n} \sum_{i=k}^{n} a_{i} \sin i x\right\|+v \sum_{i=v}^{n} a_{i}=\mathrm{II}^{\prime}+\mathrm{II}^{\prime \prime} \tag{61}
\end{equation*}
$$

and using again (48) and (58)

$$
\begin{equation*}
\mathrm{II}^{\prime} \leqq K \sum_{k=v}^{n} \frac{a_{k}}{x} \leqq K_{1} v \sum_{k=v}^{n} k \omega\left(\frac{1}{k}\right) \frac{1}{k^{2}} \leqq K_{2} n \omega\left(\frac{1}{n}\right) . \tag{62}
\end{equation*}
$$

And for II" using (58) we immediately obtain that

$$
\begin{equation*}
\mathrm{II}^{\prime \prime} \leqq K_{3} n \omega\left(\frac{1}{n}\right) \tag{63}
\end{equation*}
$$

and (61), (62), (63) give that

$$
\begin{equation*}
\mathrm{II}=O\left(n \omega\left(\frac{1}{n}\right)\right) \tag{64}
\end{equation*}
$$

Thus (60) and (64) together give (56) which was to be proved.
Theorem 4 is completed.

References

[1] R. P. Boas, Fourier series with positive coefficients, J. Math. Anal., 17 (1967), 463-483.
[2] D. Jackson, On approximation by trigonometric sums and polynomials, Trans. Amer. Math: Soc., 14 (1912), 491-515.
[3] V. G. Krotov and L. Leindler, On the strong summability of Fourier series and the classes H^{ω}, Acta Sci. Math., 40 (1978), 93-98.
[4] L. Leindler, Strong approximation and generalized Lipschitz classes, in Proceedings of Conference in Oberwolfach, 1980, pp. 343-350.
[5] L. Leindler, Strong approximation and generalized Zygmund class, Acta Sci. Math., 43 (1981), 301-309.
[6] L. Leindler, Strong Approximation by Fourier Series, Akadémiai Kidó (Budapest, 1985).
[7] G. G. Lorentz, Fourier-Koeffizienten und Funktionenklassen, Math. Z., 51 (1948), 135-149.
[8] J. Németh, Fourier series with positive coefficients and generalized Lipschitz classes, Acta Sci. Math., 54 (1990), 291-304.
[9] А. И. Рубинштейн, Об ω-лакунарных рядах и о функциях классов H^{ω}, Матем. сб.. 65 (1964), 239-271.
[10] Г. П. Сафронова, О методе суммирования расходящихся рядов, связанном с сингулярным интегралом Джексона, Докл. AH СССР, 73 (1950), 277-278.
[11] A. F. Timan, Theory of Approximation of Functions of a Real Variable (Oxford, 1963).

[^0]: *) This result was partly obtained while the author visited to the Ohio State University, Columbus, U.S.A. in the academic years 1985-86 and 1986-87.

 Received July 4, 1988.

[^1]: ${ }^{*}$) This very elegant proof is due to \mathbf{L}. Leindler; the author's original one was much more complicated.

