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Pointwise limits of nets of multilinear maps 

Á R P Á D SZÁZ 

Introduction. Motivated by the fact that most of the standard integrals are 
pointwise limits of the nets of their approximating sums which are either linear or 
bilinear maps (see [7] and [8]), we establish the most important algebraic and topolo-
gical properties of the pointwise limit of a net of multilinear maps. 

More concretely, using our former results on bounded nets [14] and multi-
preseminorms [15], we show that the pointwise limit of a net of multilinear maps 
being equicontinuous at the origin is a selectionally boundedly uniformly continuous 
multilinear relation whose domain is a closed set whenever the range space is complete. 

Having had the necessary definitions, it becomes clear that particular cases of 
this assertion greatly improve a useful continuity criterion for multilinear maps [3, 
(18.2) Theorem], a general convergence theorem for net integrals [7, Theorem 3.8] 
and a part of a generalized Banach—Steinhaus theorem [1, 7. (5)]. 

1. Prerequisites. Instead of topological vector spaces, it is often more convenient 
to use preseminormed spaces [9]. A preseminormed space over K = R or C is an or-
dered pair XÍ&)=(X, 3?) consisting of a vector space X over K and a nonvoid family 
& o f preseminorms on X. A preseminorm on X is a subadditive real-valued function 
p on X such that p(lx)Sp(x) for all ^ 1 and x€X, and lim p(/.x)=0 for all 
x£X. Note that these latter properties imply, in particular, that p(0)=0 and 
p(Xx)^p(px) for all |A|==|ju| and x£X. 

I f X(3?) is a preseminormed space, then because of [4, Theorem 6.3], the family 
of all surroundings 

Brp = {(x, y): p(x-y) < /-}, 

where p^SP and /•>0, is a subbase for a uniformly on X. However, this fact is 
only of minor importance for us now since among ^ and the various structures on X 

induced by ^ we shall actually need only the induced net convergence l i m ^ ^ l i m ^ 
which can also be naturally derived directly from 
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I f X{3?) is a preseminormed space, then lim^, is a relation between nets (x a ) 
and points x in X such that, after a customary convention in the notation, we have 
x^lim? xx if and only if lim/?(xa—x) = 0 for all p£0>. As usual a net ( x j in X(0>) 

<1 a 
is called a convergent net (a null net) if lim^ (Oglim^ x j . Moreover, two nets 

x a 
( x j and (j>J in X(0>) are called coherent [12] if (xx—yj is a null net. Note that 
several useful properties of the convergence lim^ can be easily derived from the usual 
properties of the convergence of nets of real numbers by using the above properties 
of preseminorms. 

On the other hand, a net ( x j in is called a bounded net (a Cauchy net) if 

limlim p(/A" ) = 0 (lim p(x,—xn) — 0) 

for all p^SP. In [14], we have proved that all Cauchy nets in X{0" ) are bounded. And 
a net (xx) in X(£?) is a bounded net (a Cauchy net) if and only if for any subnet (yp) 

of ( x j and any null net of scalars (/.¡¡y^) is a null net (any two subnets (z v ) and 
(wv ) of ( x j are coherent). 

Another remarkable feature of this new definition of bounded nets is that a 
nonvoid subset A of X(SP) may henceforth be called bounded if the identity function 
( x ) x 6 A of A is bounded as a net whenever A is considered to be directed such that 
xSy for all x, y£A. Note that A is therefore bounded if and only if 

lim sup p(Xx) = 0 
xiA 

for all p f . ^ . And thus nets contained in bounded subsets of X ( & ) are necessarily 
bounded. 

Having the above definition of bounded nets, we may also define a function / 
from a subset D of X(gP) into another preseminormed space Y(Q) to be boundedly 
uniformly continuous if (f(xx)) and (/ ( j ' J ) are coherent nets in Y(O) whenever ( x j 
and ( j ^ ) are bounded coherent nets in D. No te that / may be called uniformly 
continuous if it maps coherent nets into coherent nets. Thus, i f / is uniformly conti-
nuous, then / is also boundedly uniformly continuous. On the other hand, if / is 
boundedly uniformly continuous, then / is necessarily continuous and the restric-
tions o f / to bounded subsets of D are uniformly continuous. 

In the sequel, we shall also need a straightforward notion of a product presemi-
normed space from [10]. If X{(J?t) is a preseminormed space for each i in a nonvoid 
set /, and moreover 

X=XX{ and 9 = \ } 9 i O n i % 
HI iii 

where 7r,- is the projection of X onto X{ and {pon/. then the prese-
minormed space X{0") is called the Cartesian product of the spaces X, {2?,) and the 
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notation 
X(0>) = X 

is used. An important consequence of this definition is that a net (x2 ) in X{Sf) is 
convergent, Cauchy, resp. bounded if and only if each of its coordinate nets (x,,-) 
has the corresponding property. 

n 
Finally, a real-valued function p on a product vector space X = X Xc is called 

<=i 

a multi-preseminorm [15] if it is a preseminorm in each of its variables separately, 
and moreover 

p(xi, •••, Xj-!, Xxt, + ..., x„) = p(xy, ..., xk_x, Xxk, xk + 1, ..., xn) 

for all x = (xt)£X, scalar X and i, k= 1,2, ..., n. The importance of this notion 
lies mainly in the fact that a multilinear map / from a product preseminormed 
space 

X(&) = X XA&.) 
i = 1 

into an arbitrary preseminormed space Y ( l ) is boundedly uniformly continuous if 
and only if the multi-preseminorm qof is continuous at the origin of X(&) for all 

2. Multilinear relations. Since the pointwise limit of a net of multilinear maps is, 
in general, only a relation which need not be defined on the whole product space, the 
usual concept of a multilinear map [3, p. 72] has to be subtantially extended. 

For this, we need a straightforward notion of a linear relation from [17] which is 
mainly motivated by the fact that the inverse of a linear function is a linear relation. 

D e f i n i t i o n 2.1. A relat ion/from a vector space X over K into another Y is 
called linear if 

f(x)+f(y) + and Xf(x)^f(Xx) 

for all x,y£X and AgK. 

R e m a r k 1.2. Note that, in other words, this means only that / is a linear sub-
space of the product space XXY such that the set fix) — {y: (.v, >)£/} is not empty 
for all x£X. 

After having this self-evident definition now we can easily define a sufficiently 
general notion of a multilinear relation whose insufficient particular case has already 
been considered in [18]. 
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D e f i n i t i o n 2.3. Let X b e a vector space over K for all < = 1, 2, ..., « , and 

X = X X,. 
<=i 

For each x= (x , )C A' and < = 1,2, ...,n, denote by (pxi the function defined on Xi 

by 

(PxAO = (Xl, t,X,- + 1, ...,X„). 

A subset D of X will be called multilinear if the set 

Dxi = <Pu{D) 

is a linear subspace of X{ for all x£X and / = 1, 2, ..., n. 

A relation/from a multilinear subset D of A'into a vector space Y over K will be 
called multilinear if the partial relation 

f x i =f°<Pxi 

is a linear relation from Dxi into Y for all x£X and « '=1 ,2 , . . . , « . 

R e m a r k 2.4. Instead of "x£X" we might only write "x£D" in the above 
definition. However, this would lead to a further generalization which we do not 
need here. 

Moreover, instead of "multilinear" we may also say "«-linear". Thus, " l inear" 
and "bilinear" can be identified as "1-linear" and "2-linear", respectively. 

Concerning multilinear sets and relations, we will only list here a few basic 
theorems without proofs. 

T h e o r e m 2.5. If X is as in Definition 2.3, then 

X0 = {x£X: x\ = 0 for some i = 1, 2, ..., « } 

is the smallest multilinear subset of X. 

n 
T h e o r e m 2.6. If D is a multilinear subset of X = X then 

¿=i 

D = U LJ ( K * i ) X • • • XCKx. - i )XZ» * . - X ( K x , + 1 ) X . . . X ( K x „ ) . 
xZX «=1 

R e m a r k 2.7. This latter theorem, which is also true under a more general defi-
nition of multilinear sets, has been pointed out to me by György Szabó. 

T h e or em 2.8. I f f is a multilinear relation from a multilinear subset D of X into Y, 

then /(0) is a linear subspace of Y and f(x)=f(0) for all x£X0. 
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T h e o r e m 2.9. If f is a multilinear relation from X into Y, then there exists a 

multilinear function cp from X into Y such that 

f{x) = cp(x)+f( 0) 

for all x£X. 

R e m a r k 2.10. Note that if <p is a multilinear function from a multilinear subset 
D of X into Y and M is a linear subspace of 7, then the relation / defined on D by 
f(x)=<p(x)+M is also multilinear. 

By an immediate application of the above assertions, we can at once state the 
next simple 

E x a m p l e 2.11. A subset D of K" is multilinear if and only if either D=(K")0 

or D = K". 
A relation / f r o m D = K" or (K")0 into Y is multilinear if and only if there exist 

a vector y£ Y and a linear subspace M of Y such that 

fix) = ( f l y + M for all x£D. 

More difficult examples for multilinear sets and relations can be easily obtained 
from the following obvious, but important theorem which needs only a few properties 
of convergent nets in preseminormed spaces. 

/i 
T h e o r e m 1.12. If (/J is a net of multilinear maps from X= X X{ into a pre-

<=i 

seminormed space Y (SI), then the set 

D = {x£X: ( f { x ) ) converges in Y(£)} 

is a multilinear subset of X and the relation f defined on D by 

fix) = \\m9fa(x) 
a 

is a multilinear relation from D into Y. 

R e m a r k 2.13. Note that f is a function if and only if Y(H) is separated in the 
sense that for each y£Y with y^O there exists J such that q(y)?±0. 

Therefore, in separated preseminormed spaces we may usually restrict ourselves 
to multilinear functions. But, unfortunately separated preseminormed spaces are 
often insufficient. 

3. Equicontinuity. Before defining a suitable new notion of equicontinuity, 
which is necessary to rightly state our main results about the pointwise limit of a 
net ¡of multilinear maps, we shall briefly deal with a corresponding concept of point-
wise boundedness. 
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D e f i n i t i o n 3.1. A net ( f x ) of functions from a set X into a preseminormed space 
will be called pointwise bounded if (/Ax)) is a bounded net in 7 ( J ) for all 

x£X. 

R e m a r k 3.2. A nonvoid set { / J a g r of functions from X into Y(£) may hence-
forth be called pointwise bounded if the family ( f x ) x € r is pointwise bounded as a net 
whenever f is considered to be directed such that a S /? for all a, /?Ç/\ 

For a preliminary illustration of the appropriateness of these unusual definitions, 
we can now easily prove a useful characterization of pointwise boundedness in 
terms of multi-preseminorms. 

n 
T h e o r e m 3.3. If ( f x ) is a net of multilinear maps from X= X X{ into Y (¿2), 

i=4 

then the following assertions are equivalent: 

(i) ( / J is pointwise bounded; 

(ii) Mq = lim qofx is a multi-preseminorm on X for all 

P r o o f . Because of the fact that qofx is a multi-preseminorm on X for all a 
and some of the basic properties of upper limit, it is clear that Mq is always multi-
subadditive and 

Mq (q>xi (kx.)) = Mq (x) and Mq (cpxi (fix/)) = Mq (<pxl (jixt)) 

for all fiç.K, x£X and ¿ ,/£=1,2, . . . , « . 

Moreover, since 
Mq(cpxi(?.x$ = lim q{)fx(x)) 

for all ÀÇK, x£X and ¿—\,2,...,n, it is also clear that 

lim Mq((pxi(Xxt)) = 0 

for all q£J2, x£X and / = 1 , 2 , . . . , « if and only if ( i ) holds. Thus, it remains only to 
show that Mq is necessarily real-valued for all q£ 2, if ( i ) holds. For this, note that if 
x£X and p = Mqo(pxl, then 

Mq(x) = p(xJ = p(m(m~1x)) S mp(m~1x1) 

for all m6 N, whence because of 

lim p(m_1x) = 0, 

it is evident that Mq (x) < » . 

R e m a r k 3.4. Hence, it is clear that a nonvoid set {/, } of multilinear maps from 
A'into Y(3) is pointwise bounded if and only if Mq= sup qofx is a multi-preseminorm 

on X for all q£M. 



Pointwise limits of nets 109 

Having in mind a particular case of the last statement of Section 1 and our basic 
concept of boundedness of a net, it seems now quite reasonable to introduce a sui-
table new notion of equicontinuity. 

D e f i n i t i o n 3.5. A net ( f x ) of multilinear maps from a product preseminormed 
space 

X{&) = X X№.) 
€=1 

into another preseminormed space Y(M) will be called equicontinuous at the origin of 

X(&>) if the function 
Mq = lim qofx 

a 

is continuous at the origin of X(2P) for all qd J. 

R e m a r k 3.6. A nonvoid set { / J a € r of multilinear maps from X(3P) into Y(Q) 

may henceforth be called equicontinuous at the origin of X(3?) if the family ( / J a € r 

is equicontinuous at the origin of X(l?) as a net whenever r is considered to be 
directed such that a^/? for all a, fi^T. 

To let the reader feel the appropriateness of these apparently very strange defi-
nitions, we first show that this particular equicontinuity does already imply point-
wise boundedness. 

T h e o r e m 3.7. If ( f a ) is a net of multilinear maps from 

X(0>) = X 
¿=i 

into Y(£) such that ( f x ) is equicontinuous at the origin of X(8P), then (/J is pointwise 

bounded. 

P r o o f . I f x£X and q(L£, then we clearly have 

q(lf(x)) q(\).\fa(x)) = q{fx(^\T\x1, .... 

and hence 

E5 q{)fAx)) SS Mq(fiT\x1, .... "/pi*.) 

tx 

for all K. Hence, because of the continuity of Mq at 0, 

lim Em q(?fa(x)) = 0 
follows. And this shows that (/J is pointwise bounded. 
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R e m a r k 3.8. Hence, it is clear that if { /J is a set of multilinear maps from XiSP) 
into Y{£) such that {/, } is equicontinuous at the origin of X(SF) then {/, } is point-
wise bounded. 

Next, we prove a useful characterization of equicontinuity which, together with 
Theorem 3.3, provides subtantial motivation for introducing and studying multi-
preseminorms. 

T h e o r e m 3.9. If ( f x ) is a net of multilinear maps from 

x(&) = X X-(^) 
«•=i 

into Y(2), then the following assertions are equivalent: 

( i ) (/J is equicontinuous at the origin of X(3?)\ 

(ii) Mq = lim qof is a boundedly uniformly continuous multi-preseminorm on 

X(0>) for all qd£. 

P r o o f . I f ( i ) holds, then by Theorem 3.7, (/J is pointwise bounded. Thus, by 

Theorem 3.3, Mq= lim qofa is a multi-preseminorm on X for all On the other 

hand, by [15, Theorem 2.7] a multi-preseminorm which is continuous at the origin 

is necessarily boundedly uniformly continuous. Therefore, (ii) also holds. 
The converse implication (ii)=>(i) is trivial since bounded uniform continuity 

always implies continuity. 

R e m a r k 3.10. Hence, it is clear that a nonvoid set {/<,} of multilinear maps from 
X(0) into Y(£) is equicontinuous at the origin of X(&>) if and only if Mq— sup qofx 

a. 

is a boundedly uniformly continuous multi-preseminorm on X(&) for all q£Sl. 

4. Main results. To easily prove our main results about the topological pro-
perties of the pointwise limit of an equicontinuous net of multilinear maps, we also 
neeed a somewhat deeper characterization of equicontinuity. 

T h e o r e m 4.1. //"(/J is a net of multilinear maps from 

X(&) = X X-(^) 
«•=i 

into y(J), then the following assertions are equivalent: 

( i ) (/,) is equicontinuous at the origin of X(&*)', 

(ii) lim lim q(fa{xv)—f(yv))=0 for all whenever (xv) and (j>v) are bounded 

coherent nets in X(&>). 

P r o o f . Assume that ( i ) is true, and moreover (x v ) and (yv) are bounded coherent 
nets in and q££. I f / = { 1 , 2, ..., n} and %A is the characteristic function o f 
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A d I, then according to [3, (18.3) Lemma], we have 

fa(Xv)-fa(yv) = 2 f (?.A (*v - X.) HXl~ 1A) J'V) 
O^AczI 

for all a and v, where the multiplication is taken in the usual pointwise sense. Hence, 

because o f the subadditivity o f q and lim, it follows that 

H E q ( f x (xv) - f x ( v v ) ) 2 M I (/.A (XV-YV) + (XI-XA) y v ) 
* 0piAa/ 

for all v, where again M — lim qofx. y
 a 

On the other hand, if fi^AcI, then by our former results mentioned in 

Section 1, it is clear that 

( .XA(x v -y v ) + (X i -XA ) y » ) and ( ( / / - x J j ' v ) 

are bounded coherent nets in X(&>). Moreover, since f x ( { X i — — 0 for all a 

and v, it is also clear that 

Mq((xi-xA)y,) = o 

for all v. Thus, by a particular case of Theorem 3.9, we also have 

lim Mq (xA (xv - yv) + (/, -y.A)y,) = 0 

for all Q ^ A c z I . Using these latter equalities, from our previous inequality, we can 

immediately infer that 

lim lim q(fx(xv)-fx(yv)) = 0, 
v a 

which shows that (i i ) is also true. 

T o prove the converse implication (ii)=>(i), note that if (xv) is a null net in 

then by defining yv=0 for all v, we can at once state that (x v ) and ( y v ) are 

bounded coherent nets in X{3?) such that / a ( j > v ) =0 for all a and v. Therefore, if 

( i i ) holds, then we also have 

lim lim q(fx(xv)) = 0 
v a 

for all q£M. Consequently, the function M „ = ITm qof is continuous at the origin 
a 

o f X(3P) for all q£2., and thus ( i ) also holds. 

R e m a r k 4.2. Hence, it is clear that a nonvoid set {/„} of multilinear maps f rom 

X(3?) into Y{3) is equicontinuous at the origin of X(S?) if and oly if lim sup q(fx(xv)— 

—f(yv))=0 f o r all q££> whenever (x v ) and ( j v ) are bounded coherent nets in X{S?). 

T o partly express a very strong continuity property of the pointwise limit o f an 

equicontinuous net o f multilinear maps, we also need the next straightforward 
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D e f i n i t i o n 4.3. A relation/from a subset D o f a preseminormed space 
into another preseminormed space Y(£) will be called selectionally boundedly uni-

formly continuous if each selection function <p for / is boundedly uniformly conti-
nuous. 

R e m a r k 4.4. Note that a selectionally boundedly uniformly continuous rela-
tion is, in particular, lower semicontinuous in the usual topological sense [6, p. 32]. 

Now, having all the necessary preparations, we can easily state and prove the 
following important addition to Theorem 2.12 which greatly improve the second 
assertion of [16]. 

T h e o r e m 4.5. If (/J is a net of multilinear maps from 

X(&) = X XA&A 
<=i 

into Y(3) which is equicontinuous at the origin of Y(0>), then the relation f defined by 

fix) = Wmsfa(x) 
a 

is a selectionally boundedly uniformly continuous relation from its domain D into Y(£l). 

P r o o f . Assume that cp is a selection function for/and (x v ) and (_yv) are bounded 
coherent nets in D. I f then because of the subadditivity of q and the assump-
tion that (¡»(x)6 l im 3 / a ( x ) for all x£D, we clearly have 

a 

q (cp (x v ) - (p O v ) ) S q(<p (xv)-fa (xv)) + q ( f a ( x v ) - f x ( j v ) ) + q ( f a ( j v ) - <p (y v ) ) 

and 
lim q(tp (x v ) - f (x v ) ) = 0 and lim q {My,) - <p ( j v ) ) = 0 
a a 

for all a and v, respectively. Hence, it follows that 

q(<p ( x v ) - < p ^ lim q(f ( x v ) - f (y,)) 

<X 

for all v. Hence, by Theorem 4.1, it is clear that 

lim q(<p(xy)-q>(yv)) = 0. 

Consequently, <p is a boundedly uniformly continuous function of D into F ( ^ ) , 
and thus the selectional bounded uniform continuity of f is proved. 

Since each preseminormed space can be naturally embedded into a complete 
one, we may usually assume that Y(l) is complete. In this particular case, the above 
theorem can be supplemented by the next important 
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T h e o r e m 4.6. I f ( f x ) is a net of multilinear maps from 

X(SP) = X X,(&>.) 
i=1 

into Y(3) which is equicontinuous at the origin of X(3P), and Y{2) is, in addition, 

complete, then the set 

D = {xeX: ( f ( x ) ) converges in Y(Q)} 

is a closed subset of X{3P). 

P r o o f . Assume that x£X and (x v ) is a net in D such that 

x£\im9 x v . 
V 

If then because o f the subadditivity o f q and Em, we clearly have 

Jim q(fx(x)-fi,(x)) s Em q ( f j x ) - f ( x ( x v ) ) + 

+ Em q (/« (*,) - f p ( * , ) ) + Em q {fp C O - f „ ( x ) ) tat, p) 

for all v, where (a, /?) runs in the corresponding product directed set. Moreover, 

since convergent nets are Cauchy nets, we also have 

I ' m q { f a ( x . ) - f e { x S ) = 0 
(ot.p) 

for all v. On the other hand, because of q{—y)—q(y) and the definition of upper 
limit, it is also clear that 

Em q{fx(x)~f{xv)) = Em - / , ( * ) ) = Em q { f a ( x v ) - f ( x ) ) 

for all v. Consequently, we have 

lim q ( f ( x ) ~ f p ( x ) ) ^ 2 E m q ( f a ( x y ) - f a ( x ) ) 

for all v. Hence, by noticing that ( x v ) and ( x ) are bounded coherent nets in X(3?) and 
thus by Theorem 4.1 

lim Em q { f a ( x , ) - f { x j ) = 0, 
v (or, P) 

we can infer that 
l jm q { f ( x ) - f p ( x ) ) = 0. 

This shows that ( f ( x ) ) 

is a Cauchy net in Y(£t). Hence, by the completeness o f Y (Q) , 

it is clear that x£D . And thus, we have proved that D is closed in X(&). 

R e m a r k 4.7. Particular cases o f Theorems 4.5 and 4.6 can be used to derive 

some essential extensions o f a general convergence theorem for net integrals [7, 

Theorem 3.8]. 

8 
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However, to realize the usefulness of Theorems 4.5 and 4.6 in integration, the 
reader is rather advised to derive first a uniform convergence theorem for the classical 
Reimann—Stieltjes integral. 

5. Supplements. By using Theorem 4.1, we can also easily prove a remarkable 
characterization of equicontinuity of a net ( f x ) of multilinear maps from X{SP) into 
Y(£>) in terms of the induced uniformities ^ and 

T h e o r e m 5.1. If ( f x ) is a net of multilinear maps from 

X(&>) = X X(3?,) 
<=i 

into y (J), then the following assertions are equivalent: 

(0 ( / J ' s equicontinuous at the origin of X(SP)\ 

(ii) lim ( / " 1 o V o f )(x) is a neighbourhood of x in X(éP) for all V£%s and 

x£X. 

P r o o f . I f (ii) does not hold, then because of the definition of the induced uni-
formities and [9, Remark 3.9], there exist x£X, and £ > 0 such that the ball 

is not contained in the set 

!im ( A - ' o B ^ o f J i x ) = u n 
a a p^z 

for all and m£N. Thus, for each v=(p, m)£A = ^ * X N there exists 
xy£B"f\x) such that 

îîm q ( f ( x , ) - f , ( x ) ) S £. 
Z 

Hence, it is clear that (x v ) v € J is a net in X(2P) such that xÇl im^x v , but 

îîm îîm q(fx (xv ) —fx (x ) ) S e, 
v a 

and thus (i) cannot hold because of Theorem 4.1. 
Thus, we have proved that (i) implies (ii). To prove the converse implication, 

note that even the particular case of (ii) when x = 0 does already imply (i). 

R e m a r k 5.2. Hence, it is clear that a nonvoid set { /J of multilinear maps from 
X(0>, into Y(£) is equicontinuos at the origin of X{SP) if and only if F| (/^OFO/JÇY ) 

a 

is a neighbourhood of x in X f o r all and xÇ_X. 

R e m a r k 5.3. By using the topological refinement 

4lg, = {R c XxX: 'ix£X: 3 U(x) c R(x)} 

of aU9 [13], the assertions of Theorem 5.1 and Remark 5.2 can be rephrased in the 
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more instructive form that the net (/J (set { /J ) is equicontinuous at the origin o f 
X(&>) if and only if 

Jim / . - ' o K c i ( П / Г ' о Г о / . € « ? » ) 

for all V€WS . 

Note that the "only if parts" of the above assertions are much weaker then the 
corresponding parts of Theorems 3.9 and 4.1 and Remarks 3.10 and 4.2. In principle, 
lim^ and should be equivalent tools in X(&). However, actually we do not even 
know that which subfamily of could be used to express the bounded uniform 
continuity of a function / from Х(ё?) ino 7 (2 ) . 

Whenever the net (/J of multilinear maps from X(SP) into Y(£) is pointwise 
convergent in the usual sense that the net ( f i x ) ) converges in Y($) for all x£X, 

then the converse of Theorem 4.5 is also true. In fact, in this particular case, we can 
even prove a little more. 

T h e o r e m 5.4. If (fa) is a pointwise convergent net of multilinear maps from 

X(Sfi) = X Х,{ЗР?) 

into Y (J) and f is the relation defined on X by 

fix) = l im3/a (x), 
a 

then the following assertions are equivalent: 

( i ) (/J is equicontinuous at the origin of X(0>); 

(ii) f is selectionally boundedly uniformly continuous; 

(iii) / is lower semicontinuous at the origin of X(3P). 

P r o o f . Because of Theorem 4.5 and Remark 4.4, we need only show that (iii) 
also implies (i). For this, assume that (iii) holds, and let and M„— ITm qof 

a 
If £>0, then by the definition of the ball B*(0) is a neighbourhood of 0 in 
7(J2). Thus, because of 0<E/(0) and (iii), the set и=У~ г {В\ (0 ) ) is a neighbourhood of 
0 in X(0>). I f x£U, then by the definition of U, there exists y€Beq(0) such that 
y£f(x). Hence, it is clear that 

чШх)) ^ q{fx(x)-y) + q(y) q { f ( x ) - y ) + c 

for all a, and 
\\mq{Ux)-y) = 0. 

a 
Consequently, we have 

Mq(x) = lim (j ( f i x ) ) =i e. 

8' 
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Hence, it is clear that Mq is continuous at the origin of X{dP), and thus by Definition 

3.5, ( i ) also holds. 

R e m a r k 5.5. Note that to obtain (i) we have only used a particular case of (iii). 
As an immediate consequence of Theorem 5.4, we can easily get the essential 

improvement of [3, (18.2) Theorem] proved directly in [15]. 

C o r o l l a r y 5.6. If f is a multilinear map from 

X{0>) = X X(^) 
¿=i 

into Y(£), then the following assertions are equivalent: 

( i ) / is boundedly uniformly continuous; 

(ii) / is continuous at the origin of X(3?); 

(iii) qof is continuous at the origin of X(3?) for all q£2.. 

P r o o f . T o apply Theorem 5.4, note that/is a selection function for the relation 
F defined on X by 

F{x) = lim ¡¡fix), 
a 

where a runs in an arbitrary nonvoid directed set. 
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