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AF-algebras with unique trace 

A N D R E I TÖRÖK 

An A F C*-algebra is, by definition, the norm closure of an increasing sequence of 
finite dimensional C*-algebras. In some sense, these are the simplest noncommutative 
infinite dimensional C*-algebras. 

Our interest in AF-algebras with unique trace is related to the problem of 
constructing subfactors with a given index of the hyperfinite type von Neumann 
factor R. For this, one is led to find a sequence of increasing finite dimensional C*-
algebras and to take their weak closure in the GNS representation given by a tracial 
state. I f there is only one tracial state, the finite hyperfinite von Neumann algebra one 
obtains is a factor, hence it is R if it is infinite dimensional. 

One way to guarantee the uniqueness of the trace is to fit the situation described 
in Remark 3: one can apply then either the quoted theorem of Elliott (stated in K -
theoretic language) or the Perron—Frobenius theory on matrices with positive 
entries. 

Our approach gives the desired conclusion for a wider class of A F algebras (the 
matrix given in Remark 2 is not primitive) and establishes some additional properties. 

Statement of the result 

Let A be a unital A F C*-algebra, inductive limit of the finite dimensional al-
gebras C - l c ^ c A c ^ c . . . (1 is the unit of A). 

W e denote by mk—{m![, m\, ..., mkcJ the dimension vector of the algebra Ak 

and by R k = ( r k j ) i = 1 Ck. j = 1 Cfc+i the inclusion matrix for AkaAk+1 (A;Sl ) . 
In particular, 'R kwtk—+1. 

I f w is a real vector, w feO means that its entries are nonnegative. 
For w—(w1, ..., w„)6R", wfeO, w^0 , we define 

X(w) := ( I n ) ' 1 min { 2 w,\l c {1, 2, ..., n}, card (/ ) fe n/2}. 
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130 A. Török 

W e consider the multiplicative group G= |J %(Ak) and its action on A by 
k = l 

inner automorphisms. 

g£G i—~ Ad g€ Int {A) c A u t ( ^ ) 

g ( x ) = (Ad £ ) (x ) = gxg'1 (g£G, x£A). 

W e prove the following 
T h e o r e m . With the notations introduced above, let 

e k : = . min x ( ( » i i J (k ^ 1). 
}=' ck+I 

CO 

( * ) ' 2Ek=°°> 
k=1 

then: 

(a) there is a unique normalized trace, denoted by T, on A; 

(b) r is faithful if and only if A is simple; 

(c) the action 0 is mixing with respect to the trace i, i.e. 

{-i)x,y£Ah, ( 3 ) g n i G (n£N) such that lim T(gn(x)y) = T(x)r(y). 

There are conditions which imply ( * ) and depend only on the inclusion matri-
ces Rk. 

C o r o l l a r y . With the Rk's introduced above, let 

Sk min /•£-/max r*. (/ = 1, ..., ck; j = 1, ..., ck+1) 
i, J i, j 

and 

h '•= m i " z ( 0 o - ) , = i J -
J — l, ..., cfc + 1 

If 
OO 

(1) 
k = 2 

or 

(2 ) ¿ < 5 * - A = ~ , 
k = 2 

then: 

( i ) ¿/¡e algebra A is simple and has a unique normalized trace r, which is faithful; 

(ii) the action 0 is mixing with respect to the trace x. 

Namely, we shall prove that (2)=>(1)=» (* ) . 
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R e m a r k 1. Condition ( * ) depends effectively on the particular sequence o f 

algebras A„ defining A. Indeed, let m 1 = ( l , 1, 1, 1), and fo r 

•̂ 24 + 1 — 

'1 1 0 0" ' i 0 1 0 

1 1 0 0 
J Rîk — 

0 1 0 1 

0 0 1 1 J Rîk — 1 0 1 0 

,0 0 1 1 . ,0 1 0 I 

hence R2k-iR2k = 

Then the sum in ( * ) is zero for the sequence AxaA 

the sequence 
2*—A3c 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 , 

but it is infinite for 

R e m a r k 2. Condition ( * ) does not imply any of the equivalent conditions in (b ) : 

let m1=(l, 1, 1), and 

f l 1 2 
for all fcsl. Rk 0 1 0 

2 1 1 

Then e f t = 1/2, but the (unique) trace on A has the weights ( ( l/2)3- f c + 1 , 0, ( l/2)3- f c + 1 ) 

on Ak, hence it is not faithful. One can also see f rom the Bratteli diagram that A is 

not simple. 

R e m a r k 3. As a special case of the Corollary (part (i) ), we can treat the situation 

dealt with in a theorem of ELLIOTT (Th. 6.1. in [2]), namely when Rk—R for all k, 

where R is a primitive matrix, i.e. there is a nonzero p such that Rp has positive 

entries. Indeed, if we consider the sequence 

A •Ap-i-i cz A2P+i c: A3p+1 a ... 

(which also defines A), the inclusion matrices will be constantly R"; hence, the dk s 

will be all equal and nonzero (because R" has no zero entry), and then clearly (2) 

holds. 

The proof o f Elliott fol lows different ideas. 

Notations and steps of the proof 

Let 

A n = e @ A ' a , A ' n ^ Matm„ (C) 

be the factor decomposition of the A„'s. For x£A„, we denote by its A'n -com-

ponent and by ot!n{x) the normalized trace of [x]'n£A'n: 

a U ^ ) = t r ( [ x U ) = ( l / m 7 ) T r ( M 0 

9* 



132 A. Török 

(we denote by Tr the canonical trace on a full matrix algebra — i.e. the sum of all 
diagonal entries — and by tr the normalized one). 

If v=(v1...vk)€C* is a vector, we write QJ(V) for the "oscillation" of v, i.e. 

o)(v) := max I®,-—v.\. 
i, j=1 k 1 

Now for any xdA„, we introduce the vector <xn(x):=(aj,(x), a2(x), ..., a^"(x)) 

and the value w(an (x) ) . We denote 

A „ := U An-
n = l 

The proof will be divided in a sequence of lemmas. 
The first step is to show that for any lim a j (a „ (x ) )=0 , i.e. the entries 

of a„(x) tend to become mutually equal. It is here that we use condition ( * ) . This 
implies that as n goes to infinity, the entries of « „ ( * ) converge to some complex 
number T(X). This result is derived in Lemma 3, using the results of the previous two 
lemmas. 

In Lemma 4 we check that the map x£A„>-+x(x)£C defines a tracial state on A m 

and we show that this is the unique one. So assertion (a) of the Theorem will be 
proved. 

In Lemma 5, using a characterization of simplicity for A F algebras in terms of 
the inclusion matrices, we prove that the above defined trace is faithful if and only if 
the algebra A is simple, i.e. assertion (b) of the Theorem. 

Assertion (c) of the Theorem (that the action <9 is mixing with respect to the trace 
T) is proved in Lemma 6, after some remarks on finite dimensional C*-algebras. 

Finally, in Lemma 7, we show that (2)=>(l)=>-( * ) and that if (1) or (2) hold, then 
the algebra A is simple. Using these facts, the Corollary follows easily f rom the 
Theorem. 

W e emphasize that the whole proof depends on the fact that lim a ) (a „ (x ) )=0 . 
This is deduced from condition ( * ) by the estimate given in Lemma 2. One can look 
for other estimates in order to obtain the same fact from other conditions. Our 
estimates is insensitive to the equality of all rows of Q, when ||<2IL=0, regardless of e 
(see the notations in Lemma 2). W e have chosen it because of its relative simplicity. 
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The proofs 

First of all we clarify how the inclusion matrices Rk and the dimension vectors 
mk allow the computation of a n + 1 ( x ) from a„(x). Let Qn—(<7"j);=i,...,Cn+1; ¡=\,...,c„ 

be the matrix given by g^^m^-Jm"* 1 , i.e. 

m î + 1 0 ' - 1 ml 0 ' 

Q* = 

. 0 
nf+1 

<R n 
0 rril 

c n / 

and l m = ( l , 1, ..., l )€Cm . Note that Qn(lJ= l c„+ 1 because m?+1 = 2 m"kr"kl (/ = 
k=1 

= 1, ..., Cn + 1 ) . 

L e m m a 1. For any xÇJ„ we have 

(a) an+1(x)=Qnan(x), 

(b) min Re ak ( x ) s R e aln+1 (x ) ^ max Re ak (x), 

min ImaJ;(x) ^ Ima^ + 1 ( x ) ^ max I m a k ( x ) for all I = 1, ..., cn+1. 
i s tac„ l s k i e . 

P r o o f , (a) Using the information given by the inclusion matrix, it follows that 

«i+iOO = Tr ([*]<+i)/™?+1 = ( 2 Tr (M;)/iw?+ 1 = ( 2 mïrnkian(x))/m'l + l. 
k=l k=1 

(b) This is a consequence of the relation Q n ( l c J = K n + l and of the fact that Q„ 
has real nonnegative entries (hence aj,+ 1 (x) is a weighted average of the entries o f 
a„(x)). 

Let us study the matrices g = ( 9 j J ) ( = 1 ... „. J = 1 with real nonnegative 
entries which satisfy <2 (1J=1„ . Note that i f uÇÏT and co(u) = 0, then c o ( 0 ( y ) ) =0 
(co(vv)=0 o w is proportional to the vector lm ) . Since a> defines a seminorm on 
any Rp , from the above remark we see that Q induces a linear map Q: Rm/a)^R"/co, 
where Rp/co denotes the quotient space Rp/{u€Rp|co(t;)=0}. Hence, 

IIÔIL := sup{co(Ô(i;))|i;€Rn, œ(v) ' 1} 

is finite. Clearly 

< » ( e ( » ) ) ^ l i e i L f f l ( f ) and IIÔ1Ô2IL ^ IIÔ1LIIÔ2L 

whenever Q1Q2 is defined. 

L e m m a 2. Le i Q=(giJ)i=iy3...i„i /=1,...,m be a matrix with real nonnegative 

entries which satisfies g ( l m ) = l „ . Then ||0||raSl —£, where 

e : = min »>)• 
I =1, ..., n 
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P r o o f . It is enough to show that if o=(i> l5 ..., um)£Rm> IV = (Vi , • wm )£Rm 

m m 
are such that v^O, wsO, 2 vk=^ 2 !> '/XV)=E> / (w )^e , then 

k = 1 k = l 

|<a,v>-<a, w>| ^ ( l - e ) c u ( a ) 

for any a= ( a 1 , ..., a m ) iR m , where ( • , •> stands for the canonical scalar product 
of Rm. The desired result will then follow by considering v=(qik)k=1^m, vv= 

= ( ? a ) * ° I . - . « f o r a 1 1 1 = '>•/="• 
Let a= mina t , b= maxa t , I=[a,b]m. Then ag/, a>(ct)=b—a. Since the map 

k k 

/:/—R, f(u):=(u, v)—(u, vv). is an affine map, / (/ )=co/ ( ex t/ ) , where ext I 

denotes the set of extreme points of / and co stands for convex hull. 
Let p£extl, ..., PJ. Then pk£{a,b} for any k=\, ..., m. Denote 

Ka = ^k^m, pk = a}, Kb = {k\l ^ k == m, pk = b). 

One of the sets Ka and Kb has at least nil elements. Suppose card Ka^nj2. Since 

(P, we have 
/(/?) = (a 2 vk+b 2 Vk)~(P, vv> = 

k£Ka k<LKb 

= [b-(b-a) 2 vk]-(p,w)sb-(b-a)x(v)-a^(l-e)(b-a). 
kiKa 

For v instead of w we also obtain / (/? )&- (1 —s)(b—a). 

The case card Kb^n/2 can be treated similarly and we obtain the same results. 
Thus for any /?£ext/ we have 

_(1 -eXb-a) ^f(p) ^ (1 -e)(b-a), 

hencc 
/(/) c [ - ( 1 -e)(b-d), (1 -e)(b-a)], 

and therefore 
| / ( a ) | S ( f e - f l ) ( l - £ ) = c 0 ( a ) ( l - £ ) . 

oo oo 

Recall that JJ ( l - r i „ ) = 0 whenever O ^ ^ s l and 2 r l n = ca- Therefore, by 
n = l n=1 

condition ( * ) we have 

( * * ) i z ( 1 - O = o ( v ) «o = i -
n=n0 

Note that due to Lemma 1(a), the e„'s defined in the Theorem have the same meaning 
for the matrices Q„ as e for the matric Q in Lemma 2. 

For o= (p l 9 ..., vm)£Cm, define 

I H U : = . max \vk\. 

Now we can prove 
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L e m m a 3. For any we have 

(a) lim co(oc„(x)) = 0, 

( b ) l im | | A „ ( x ) - T ( x ) - L J U = 0 for some T(X)£C. 

P r o o f . Let n^n0. Since both co and || • are seminorms, we can deal separ-

ately with the real and imaginary parts o f a„ (x) . Denote by R e a„ (x ) and Im a„(x) 

the vectors whose entries are the real and the imaginary parts, respectively, o f the 

entries o f a„ (x). By Lemma 1(a), we see that 

Reoc„ + 1 (x ) = <2„(Re <x„(x)), I m a „ + 1 ( x ) = Q„(Ima„(x)). 

Lemma 2 implies that 

c o (Rea „ + 1 ( x ) ) s ! l & , L c « ( R e ajx)) ^ ( 1 -e „ ) a> (Re « „ ( « ) ) . 

Iterating we get 
n 

co(Re a n + 1 ( x ) ) JJ (1 - s k ) co(Re a„0 (x) ) 
k=n0 

and then, by ( * * ) , 
l im co (Re a „ (x ) ) = 0. 

Since 
a) (Rea„(xY) = max R e a ' ( x ) — min R e a ' ( x ) , \ nv ' ! lS!Sc„ ISISc, 

Lemma 1(b) implies that 

lim ||Rea„(x) —a l c 11«, = 0 for some a£R. 

The vectors I m a „ ( x ) can be treated similarly. 

L e m m a 4. (a) The mapping x£A„ I — T ( X ) € C is a continuous normalized trace 

on A„ which can be extended by continuity to the whole A. 

(b ) Any normalized trace on Am equals r. 

P r o o f , (a ) Linearity follows f rom the fact that 

oc„(ax+by) = a<x„(x)+b<x„(y) for any x, y£An and a, b£C. 

I t is easy to see that a n ( l ) = lCn , hence T(1) = 1. Since |tr ([x^)|S[|[x]il|S||x||, we 

see that ||a„(x)||„S||x||, and hence |T(X)|S||X||. Similarly, a „ ( x * x ) ^ 0 , hence 

T (X*X )= ;0 . 

That r is a trace fol lows f rom the relation 

a„ (xy ) = ajyx) for any x, y£An, 

which is a consequence of the definition of a„. 
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(b ) Let n be any normalized trace on A. Since the factors Aln have unique norm-
alized traces, the restriction o f fi to the algebra A„ is described by a nonnegative 

vector / „ = ( £ , C with ¿ / ¡ = 1 . I f xiAa, then 
fc = l 

n(x) = 2tknakn{x). 
k = l 

Then for all x£A„. 

\M(x)-r(x)l = \2 < Ü [ « Ü ( * ) - T ( * ) ] | ^ 2 / Í I I « „ W - t ( x ) 1 J U = L K W - T ( J C ) y . . 
k=1 k = 1 

Hence Lemma 3 (a) implies that p(x)=z{x) for all x£Am. 

L e m m a 5. Suppose ( * ) holds and i is the above defined trace. Then i is faithful if 

and only if the algebra A is simple. 

P r o o f . Denote by e'n the minimal central projection o f A„ corresponding to A'n. 

It is known that A is simple if and only if for any n £ 1 and any 1 there is a 

p>n such that the inclusion matrix Rn,p—(rTjP)i=x,-,c -,j=iy-,c f ° r 

has only nonzero entries on the /-th row (i.e. Aln "enters" in all factor summands o f 
Ap)—just look at the description of the ideals in the Bratteli diagram of A. Since 

* ' P t ó ) = (/•,"•" nift/mf, i = 1, ..., cp , 

we see that the above condition on the inclusion matrix is equivalent to the fact that 
ap(e'n) has only nonzero entries. 

Suppose first that T is faithful. Choose n^l and 1 s l s c „ . Since z(e'J^0, and 

lim \\ctp(eln) — r(eln)lc \\„ = 0, » p 

we infer that for p large enough, all the entries of ap(e'n) are nonzero. Thus by the 
above remark, A must be simple. 

The converse implication is obvious since J \={x£A\i (X*X)=0} is a bilateral 
ideal and 1$/. 

For proving the mixing property o f 0 we need two elementary and possible 
well-known results which we record below. 

For a finite dimensional C*-algebra N, with a fixed system of matrix units and 
x£N, we denote by Diag (x) the set of values which are on the diagonal o f x. 

R e m a r k 4 . Let x6Matn ( C ) s ^ ( C " ) , Then there is a unitary i/£Mat„ (C ) 

such that Diag ( (Ad m)(x)) has only one element (namely tr (x) ) . (This statement 
also holds for x r *x * but its proof would be more intricate.) 

T o see this, notice first that since x=x*, there is an orthogonal basis o f C" with 
respect to which x has diagonal form, hence the corresponding matrix has real entries. 
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I f we consider ( A d u)(x) instead of x, where u is the unitary matrix that describes the 
change of coordinates, we may assume that x€ Mat„ (R) . 

W e shall obtain the assertion by induction. Let n=2, x = ^ ^ j ( ;Mat 2 (R ) . 
W e define 

(cos t sin t \ 

- s i n , c o s J ^ M a t 2 ( R ) ) ' 

Since (Ad u0)(x) = ^ ^ j , (Ad un/2)(x) = | ^ and / ^ ( A d u,)(x) is a con-

tinuous function with values in Mat2 (R) , the Darboux property of it implies that 

there is a ?€[0, it/2] such that (Ad u,)(x) has equal diagonal entries. Moreover, 

(V)/L6R, minja , c/ }^A^max {a , f/}=>(3) n/2], such that 

(3) (Ad i i f ) ( * ) = ( * * ) . 

The statement is proved for n =2. Assume we have proved it for n— 1, nS3. 
Let x = ( a ; j ) € M a t „ (R). I f x has different diagonal entries, one of them, say an, 

differs from tr (x). W e may assume that a u < t r ( x ) . There must be an i ^ l such 
that a i o i o>tr (x). W e may consider i0=2. Due to (3), there is a unitary 

• (u, U ^ 

M~' = l o / „ J € M a t " ( R ) 

such that 
(tr (x) 

x ' : = ( A d t 7 , ) ( x ) = [ # x „ j . . 

where x ' ^ M a t n ^ R ) . By the inductive assumption there is a i i "6Mat„_1 (C) such 
that Diag ( (Ad u")(x")) has only one value, namely tr (x" )- But tr ( x " ) = t r (x), 
hence if 

(I 0, = (o „•) 
then Diag ( (Ad u'ut) (x ) ) has only one value. 

R e m a r k 5. Let N be a finite dimensional C*-algebra with a fixed system o f 
matrix units, and let /i be a normalized trace on N. I f x, N and y has a diagonal 
form, then 

\n(xy)-ii(x)n(y)\^\\y\\AN(x), 

where ^^ ( x ) = max {\a—a'\\a, a ' gD iag (x ) } . 
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This follows by an easy computation. Suppose that N= 0 Mat„ (C ) , and let 
¡=1 ' 

t=(t1, ..., tm) be the vector o f the weights of the minimal projections o f the factor 
m 

summands of N in the trace p (so that niU= Le t the diagonal entries o f x 
¡=1 

and y be a\, a\, ...,a\,a\, . . „ o ^ and b\,b\, ...,b1„i, b{, ..., 

...,b™, ..., b™m, respectively (the upper index indicates the factor summand of N). 

Then 
m- ni m nk m nk 

n(*)=ZhZ<ti, n(y)= 2 tk = 2 h 2 № 
1=1 i = 1 k =1 j=1 k=1 j = 1 

m "i 
(because y has a diagonal form). Since 1 = 2 2 li> 

i=i¡=i 

m m "i "k 
\li{xy)-n{x)n(y)\ = 2 2 2 2 htk{d)b)-a\bkj)\ 

¿ = 1/( = 1 j = l j = l 
m m ni nk 

= ( 2 2 2 2 Uh) max ail max \V)\ = AN(x)\\y\\. 
I=lk = l i = l j = l k,l,i,j k,j 

L e m m a 6. Suppose ( * ) holds and x is the trace on A given in Lemma 4. Then the 

action © is mixing with respect to x. 

P r o o f . Choose the systems of matrix units in the A„'s such that the matrix 

units o f A„ are sums o f matrix units o f An+1 f o r all n. Let x, y€A„, x=x*, y=y*. 

W e may assume x, y€An^. Since y is selfadjoint, there is a u0£W(AnJ such that 

( A d u0)(y) is diagonal in the matrix units system of A„o; moreover, this will hold in 

all A„,n^n0. 

From the Remark 4, we infer that for « S « 0 there is a such that 

Diag ( [ (AdW n ) (x ) ] ; , ) = { t r ( [ x ] y } = { a i ( x ) } for all 1=1, ...,c„. 

Hence J ^ ( ( A d wn ) (x)) = co(a„(x)). Since Iim co (a „ ( x ) ) =0 and x ( (Ad w) (x ) ) = r ( x ) , 

by Remark 5, we see that 

|T((Ad yjMn)(x)J>)—T(X)T(J>)| = 

= |r((Ad w„ ) (x ) (Ad w 0 ) 0 0 ) - T ( ( A d w„ ) ( x ) ) x ( (Ad « 0 ) ( j ) ) [ s 

s ||(Ad m0)0')|| AAn({Ad un)(x)) = M a>(a„(x)) - 0 as n -

So we proved the mixing property for x, y£(AJ)h. That it also holds fo r any 

x, y£ Ah can be proved using an obvious approximation argument. 

L e m m a 7. (a) With the notations of the Corollary, 

1 / 2 ^ - 1 ^ - = ¿fe-1£fc = ( k ^ 2) ; 
hence (2)=>(1)=>(*). 
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(b) If any of (1) or (2) holds, then the algebra A is simple; hence, by Theorem, part 

(b), the unique normalized trace on A is faithful. 

P r o o f , (a) Since mk—'Rk^1mk_1, we see that 

(max T j f 1 ) m l ' 1 ' z ^ m f = rf- =5 (min ft1) 2 m t 1 

'•J /=i ( = i i = i 

for any fixed j= 1, ..., ck. Hence 

(4) min m{/max ml S min rl-f1/ma.x t j f 1 = 
j j i,j i.j 

The result can now be obtained using the following straightforward inequalities: 
for any nonnegative nonzero vectors vv=(vv1, ..., w„), a=(a1, ..., a„) we have 

(1/2)min w,/max w; s x(w); 
i i 

(min ajmax a,)y_(w) ^ '/((aiwi> a2w*> •••> fl»wn))-

The first one of these inequalities gives (l/2)5k^ek, while the second one and (4) 
give ¿ t_1e iS6Jk. 

(b) Both (1) and (2) imply that there is an infinity of Rk s with no zero entries. 
This implies that A is simple, by the same argument as that used in the proof of 
Lemma 5. 

This concludes the proof of the Theorem. 
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