Hyponormal operators on uniformly convex spaces

MUNEO CHŌ
Dedicated to Professor Jun Tomiyama on his 60th birthdy

1. Introduction. Let X be a complex Banach space. We denote by X^{*} the dual space of X and by $B(X)$ the space of all bounded linear operators on X.

Let us set

$$
\pi=\left\{(x, f) \in X \times X^{*}:\|f\|=f(x)=\|x\|=1\right\} .
$$

The spatial numerical range $V(T)$ and the numerical range $V(B(X), T)$ of $T \in B(X)$ are defined by

$$
V(T)=\{f(T x):(x, f) \in \pi\}
$$

and

$$
V(B(X), T)=\left\{F(T): F \in B(X)^{*} \text { and }\|F\|=F(I)=1\right\}
$$

respectively.
Definition 1. If $V(T) \subset \mathbf{R}$, then T is called hermitian. An operator $T \in B(X)$ is called hyponormal if there are hermitian operators H and K such that $T=H+i K$ and the commutator $C=i(H K-K H)$ is non-negative, that is

$$
V(C) \subset \mathbf{R}^{+}=\{a \in \mathbf{R}: a \geqq 0\} .
$$

An operator N is called normal if there are hermitian operators H and K such that $N=H+i K$ and $H K=K H$. A normal operator N on a Banach space X has the following properties:
(1) $\operatorname{co} \sigma(N)=\overline{V(N)}=V(B(X), N)$.
(2) If $N x_{n} \rightarrow 0$ for a bounded sequence $\left\{x_{n}\right\}$ in X, then $H x_{n} \rightarrow 0$ and $K x_{n} \rightarrow 0$.

Definition 2. Let X be Banach space. X will be said to be uniformly convex if to each $\varepsilon>0$ there corresponds a $\delta>0$ such that the conditions $\|x\|=\|y\|=1$ and $\|x-y\| \geqq \varepsilon$ imply $\frac{\|x+y\|}{2} \leqq 1-\delta$.

Received August 11, 1988.
X will be said to be uniformly c-convex if for every $\varepsilon>0$ there is a $\delta>0$ such that $\|y\|<\varepsilon$ whenever $\|x\|=1$ and $\|x+\lambda y\| \leqq 1+\delta$ for all complex numbers λ with $|\lambda| \leqq 1$.
X will be said to be strictly c-convex if $y=0$ whenever $\|x\|=1$ and $\|x+\lambda y\| \leqq 1$ for all complex numbers λ with $|\lambda| \leqq 1$.

All uniformly convex spaces, for example $\mathscr{L}^{p}(S, \Sigma, \mu)$ and $\mathscr{C}_{p}(\mathscr{H})$ for $1<p<\infty$, are uniformly c-convex and all uniformly c-convex spaces are strictly c-convex.
$\mathscr{L}^{1}(S, \Sigma, \mu)$ and the trace class $\mathscr{C}_{1}(\mathscr{H})$ are the typical examples of uniformly c-convex spaces. See [7] and [9].

For an operator $T \in B(X)$, the spectrum, the approximate point spectrum, the point spectrum, the kernel, and the dual of T are denoted by $\sigma(T), \sigma_{\pi}(T), \sigma_{p}(T)$, $\operatorname{Ker}(T)$ and T^{*}, respectively.

For an operator $T=H+i K$ we denote the operator $H-i K$ by \bar{T}.
The following are well-known for $T \in B(X)$:
(1) $\overline{\mathrm{co}} V(T)=V(B(X), T)$, where $\overline{\mathrm{co}} E$ is the closed convex hull of E.
(2) $\cos \sigma(T) \subset \overline{V(T)}$, where co E and \bar{E} are the convex hull and the closure of E, respectively.

We now give a concrete example of a hyponormal operator on a uniformly cconvex space. Let \mathscr{H} be a Hilbert space. Then the trace class $C_{1}(\mathscr{H})$ is a two sided ideal of $B(\mathscr{H})$.

Given $A, B \in B(\mathscr{H})$ we define

$$
\delta_{A, B}(T)=A T-T B \quad\left(T \in \mathscr{C}_{1}(\mathscr{H})\right) .
$$

Then $\delta_{A, B}$ is an operator on a uniformly c-convex space $\mathscr{C}_{1}(\mathscr{H})$. It is easy to see that if A and B^{*} are hyponormal then $\delta_{A, B}$ is a hyponormal operator on $\mathscr{C}_{1}(\mathscr{H})$ (see Theorem 4.3 in [9]).

The following theorem derives from Lemma 20.3 and Corollary 20.10 in [4].
Theorem A. If H is hermitian and $H x=0$ for $x \in X(\|x\|=1)$, then there exists $f \in X^{*}$ such that $(x, f) \in \pi$ and $H^{*} f=0$.
2. Hyponormal operators on uniformly convex spaces. The following theorem was shown by K. Mattila [9].

Theorem B. Let X be uniformly c-convex and let $T=H+i K$ be a hyponormal operator on X. If there exists a sequence $\left\{x_{n}\right\}$ of unit vectors in X such that

$$
(T-(a+i b)) x_{n} \rightarrow 0
$$

then $(H-a) x_{n} \rightarrow 0$ and $(K-b) x_{n} \rightarrow 0$.
We shall show the following (converse to the theorem above):

Theorem 1. Let X be uniformly convex and let $T=H+i K$ be a hyponormal operator on X. (1) If $a \in \sigma(H)$, then there exist some real number b and sequence $\left\{x_{n}\right\}$ of unit vectors for which $(H-a) x_{n} \rightarrow 0$ and $(K-b) x_{n} \rightarrow 0$, so that in particular, $a+i b \in \sigma(T)$. (2) Similarly, if $b^{\prime} \in \sigma(K)$, then there exist some real number a^{\prime} and sequence $\left\{y_{n}\right\}$ of unit vectors for which $\left(H-a^{\prime}\right) y_{n} \rightarrow 0$ and $\left(K-b^{\prime}\right) y_{n} \rightarrow 0$, so that in particular, $a^{\prime}+i b^{\prime} \in \sigma(T)$.

We need the following
Theorem C ([9], Theorem 2.4). Let X be strictly c-convex and let $C \geqq 0$ be hermitian. If $f(C x)=0$ for some $(x, f) \in \pi$, then $C x=0$.

Proof of Theorem 1. (1) Since H is hermitian, so it follows that $a \in \sigma_{\pi}(H)$. Consider the extension space X^{0} of X and the faithful representation $B(X) \rightarrow B\left(X^{0}\right)$: $T \rightarrow T^{0}$ in the sense of de Barra [1]. Then a is an eigenvalue of H^{0}. If x^{0} is in $\operatorname{Ker}\left(H^{0}-a\right)$ such that $\left\|x^{0}\right\|=1$, then by Theorem A there exists $f^{0} \in X^{0^{*}}$ such that $f^{0}\left(x^{0}\right)=\left\|f^{0}\right\|=1$ and $\left(H^{0}-a\right)^{*} f^{0}=0$.

Since T is hyponormal we can let that $C=i(H K-K H) \geqq 0$; then $C^{0} \geqq 0$ and

$$
f^{0}\left(C^{0} x^{0}\right)=i \hat{x}\left(K^{0 *}(H-a)^{0^{*}} f^{0}\right)-i f^{0}\left(K^{0}\left(H^{0}-a\right) x^{0}\right)=0
$$

where \hat{x} is the Gel'fand representation of x. Since the space X^{0} is uniformly convex ([1], Theorem 4), by Theorem C, it follows that $C^{0} x^{0}=0$. Therefore, it is easy to see that $\operatorname{Ker}\left(H^{0}-a\right)$ is invariant for K^{0}. So there exist a sequence $\left\{x_{n}\right\}$ of unit vectors and a real number b such that $(H-a) x_{n} \rightarrow 0$ and $(K-b) x_{n} \rightarrow 0$.
(2) is the same. So the proof is complete.

Theorem 2. Let X be uniformly convex and let $T=H+i K$ be a hyponormal operator on X. Then

$$
\cos \sigma(T)=\overline{V(T)}=V(B(X), T)
$$

Proof. It is well-known that $\operatorname{co} \sigma(T) \subset \overline{V(T)} \subset V(B(X), T)$. We assume that $\operatorname{Re} \sigma(T) \subset\{a \in \mathbf{R}: a \geqq 0\}$. Then, by Theorem 1, it follows that $\sigma(H) \subset\{a \in \mathbf{R}: a \geqq 0\}$. So it follows that $V(B(X), H) \subset\{a \in \mathbf{R}: a \geqq 0\}$ and so $\operatorname{Re} V(B(X), T) \subset\{a \in \mathbf{R}$: $a \geqq 0\}$. Since $\alpha T+\beta$ is hyponormal for every $\alpha, \beta \in \mathbf{C}$, it follows that $\operatorname{co} \sigma(T)=$ $=V(B(X), T)$. So the proof is complete.

Theorem D ([9], Theorem 2.5). Let X be uniformly c-convex and let $C \geqq 0$ be a hermitian operator on X. If there are sequences $\left\{x_{n}\right\} \subset X$ and $\left\{f_{n}\right\} \subset X^{*}$ such that $\left\|x_{n}\right\|=\left\|f_{n}\right\|=1$ for each $n, f_{n}\left(x_{n}\right) \rightarrow 1$ and $f_{n}\left(C x_{n}\right) \rightarrow 0$, then $C x_{n} \rightarrow 0$.

Lemma 3. Let $T=H+i K$ be a hyponormal operator. If $\bar{T} T$ and $T \bar{T}$ are not invertible, then $0 € \partial \sigma(\bar{T} T)$ and $0 \in \partial \sigma(T \bar{T})$, respectively, where ∂ denotes 'the boundary of'.

Proof. We may only prove that $\sigma(\bar{T} T)$ and $\sigma\left(T_{\bar{i}}^{-}\right)$are included in the halfplane $\{\alpha \in \mathbf{C}: \operatorname{Re} \alpha \geqq 0\}$. Since $V\left(H^{2}\right)$ and $V\left(K^{2}\right)$ are included in $\{\alpha \in \mathbf{C}: \operatorname{Re} \alpha \geqq 0\}$, it follows that $V(\bar{T} T)=V\left(H^{2}+K^{2}+C\right) \subset V\left(H^{2}\right)+V\left(K^{2}\right)+V(C) \subset\{\alpha \in \mathbf{C}: \operatorname{Re} \alpha \geqq 0\}$, where $C=i(H K-K H) \geqq 0$. Therefure, $\sigma(\bar{T} T)$ is included in $\{\alpha \in \mathbf{C}: \operatorname{Re} \alpha \geqq 0\}$. Also, since $\sigma(\bar{T} T)-\{0\}=\sigma(T \bar{T})-\{0\}$, it follows that $\sigma(T \bar{T}) \subset\{\alpha \in \mathbf{C}: \operatorname{Re} \alpha \geqq 0\}$.

So the proof is complete.
Lemma 4. Let X be uniformly c-convex and let $T=H+i K$ be a hyponormal operator on X. If $\bar{T} T$ is not invertible, then $T \bar{T}$ is not invertible.

Proof. By Lemma 3, there exists a sequence $\left\{x_{n}\right\}$ of unit vectors in X such that $\bar{T} T x_{n} \rightarrow 0$. We let that $C=i(H K-K H) \geqq 0$. Then, for a sequence $\left\{f_{n}\right\}$ in X^{*} such that $\left(x_{n}, f_{n}\right) \in \pi$, we get that $f_{n}\left(C x_{n}\right) \rightarrow 0$. So, by Theorem $\mathrm{D}, C x_{n} \rightarrow 0$. Therefore, $T \bar{T} x_{n}=\left(H^{2}+K^{2}-C\right) x_{n} \rightarrow 0$.

So the proof is complete.
Theorem 5. Let X and X^{*} be uniformly c-convex and let $T=H+i K$ be a hyponormal operator on X. Then

$$
\sigma(T)=\left\{z \in \mathbf{C}: \bar{z} \in \sigma_{\pi}(\bar{T})\right\}
$$

Proof. Since $T-z$ is hyponormal for every $z \in \mathbf{C}$, it is sufficient to show that $0 \in \sigma(T)$ if and only if $0 \in \sigma_{\pi}(\bar{T})$. Assume that 0 belongs to $\sigma(T)$. By Lemma 4, we may assume that $T \bar{T}$ is not invertible.

Therefore, by Lemma 3, 0 belongs to $\partial \sigma(T \bar{T})$. It follows that there exists a sequence $\left\{x_{n}\right\}$ of unit vectors in X such that $T \bar{T} x_{n} \rightarrow 0$. Since T is hyponormal, by Theorem B it follows that $\bar{T}^{2} x_{n} \rightarrow 0$. By the spectral mapping theorem for approximate point spectrum, 0 belongs to $\sigma_{\pi}(\bar{T})$.

Conversely, assume that 0 belongs to $\sigma_{\pi}(\bar{T})$. Then it follows that $0 \in \sigma(T \bar{T})=$ $=\sigma\left(\bar{T}^{*} T^{*}\right)$. Similarly, 0 belongs to $\sigma_{\pi}\left(\bar{T}^{*} T^{*}\right)$. Here, \bar{T}^{*} is hyponormal on a uniformly c-convex space X^{*}. Therefore, 0 belongs to $\sigma\left(T^{*}\right)=\sigma(T)$.

So the proof is complete.
Theorem 6. Let X be strictly c-convex and let $T=H+i K$ be a hyponormal operator on X. Suppose that λ is an extreme point of $\operatorname{co} \overline{V(T)}$ such that $\lambda \in V(T)$. Let $f(T x)=\lambda$ for some $(x, f) \in \pi$. Then $T x=\lambda x$.

Proof. Each linear mapping $u(z)=\alpha z+\beta \quad(z \in \mathbf{C})$, where $\alpha, \beta \in \mathbf{C}, \alpha \neq 0$, maps $V(T)$ onto $V(u(T))$ and $\overline{V(T)}$ onto $\overline{V(u(T))}$. In addition $u(T)$ is hyponormal. Hence, we can suppose that $\lambda \in \mathbf{R}$ and $\operatorname{Re} z \leqq \lambda(z \in V(T))$. Since $f(H x)=\lambda=$ $=\max \{\alpha: \alpha \in \overline{V(H)}\}$, it follows by Theorem C that $H x=\lambda x$. If $x^{\prime} \in \operatorname{Ker}(H-\lambda)$ such that $\left\|x^{\prime}\right\|=1$, then there exists $f^{\prime} \in X^{*}$ such that $\left(x^{\prime}, f^{\prime}\right) \in \pi$ and $(H-\lambda)^{*} f^{\prime}=0$.

It follows that

$$
f^{\prime}\left(C x^{\prime}\right)=i \hat{x}^{\prime}\left(K^{*}(H-\lambda)^{*} f^{\prime}\right)-i f^{\prime}\left(K(H-\lambda) x^{\prime}\right)=0
$$

where $C=i(H K-K H) \geqq 0$.
By Theorem C, $C x^{\prime}=0$. Hence, it follows that $(H-\lambda) K x^{\prime}=0$. Therefore, it is easy to see that $\operatorname{Ker}(H-\lambda)$ is invariant for K. Let K_{1} be the restriction of K to $\operatorname{Ker}(H-\lambda I)$. Let $y \in \operatorname{Ker}(H-\lambda)$ with $\|y\|=1$ and $g \in(\operatorname{Ker}(H-\lambda))^{*}$ such that $\|g\|=g(y)=1$. Then

$$
T y=\lambda y+i K y=\lambda y+i K_{1} y \in \operatorname{Ker}(H-\lambda)
$$

and

$$
g(T y)=\lambda+i g\left(K_{1} y\right)
$$

Here, $g(T y) \in V(T)$. Since λ is an extreme point of $\operatorname{co} \overline{V(T)}$ and $\operatorname{Re} z \leqq \lambda \quad(z \in V(T))$, it follows that $V\left(K_{1}\right) \subset \mathbf{R}^{+}$or $V\left(-K_{1}\right) \subset \mathbf{R}^{+}$. Let $f_{1}=f \mid \operatorname{Ker}(H-\lambda)$. We have then $f_{1}\left(K_{1} x\right)=f(K x)=0$ and $\left\|f_{1}\right\|=f_{1}(x)=1$. Since $\operatorname{Ker}(H-\lambda)$ is strictly c-convex, it follows that $K_{1} x=K x=0$, by Theorem C.

So the proof is complete.

3. Doubly commuting n-tuples of hyponormal operators

Definition 3. For commuting operators T_{1} and T_{2} such that $T_{j}=H_{j}+i K_{j}$ (H_{j} and K_{j} hermitian, $j=1,2$), T_{1} and T_{2} are called doubly commuting if $\bar{T}_{1} T_{2}=T_{2} \bar{T}_{1}$. If T_{1} and T_{2} are doubly commuting, then H_{j} and K_{j} commute with H_{l} and K_{l} for $j \neq l$.

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a commuting n-tuple of operators on X. Let $\sigma(\mathbf{T})$ be the Taylor joint spectrum of \mathbf{T}. We refer the reader to Taylor [11].

The spatial joint numerical range $V(T)$ and the joint numerical range $V(B(X), \mathbf{T})$ of \mathbf{T} are defined by

$$
V(\mathbf{T})=\left\{\left(f\left(T_{1} x\right), \ldots, f\left(T_{n} x\right)\right) \in \mathbf{C}^{n}:(x, f) \in \pi\right\}
$$

and

$$
V(B(X), \mathrm{T})=\left\{\left(F\left(T_{1}\right), \ldots, F\left(T_{n}\right)\right) \in \mathbf{C}^{n}: F \in B(X)^{*} \text { and }\|F\|=F(I)=1\right\}
$$

The joint numerical radius $v(\mathbf{T})$ and the joint spectral radius $r(\mathbf{T})$ of $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ are defined by

$$
v(\mathbf{T})=\sup \{|z|: z \in V(\mathbf{T})\}
$$

and

$$
r(\mathbf{T})=\sup \{|z|: z \in \sigma(\mathbf{T})\}
$$

Theorem E (V. Wrobel [14], Corollary 2.3). Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a commuting n-tuple of operators. Then

$$
\operatorname{co} \sigma(\mathbf{T}) \subset \overline{V(\mathbf{T})}
$$

Theorem 7. Let X be uniformly convex, and let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on X. Then

$$
\operatorname{co} \sigma(\mathbf{T})=\overline{V(\mathbf{T})}=V(B(X), \mathbf{T})
$$

Proof. By Theorem E, it is clear that $\cos \sigma(\mathbf{T}) \subset \overline{V(T)} \subset V(B(X), \mathbf{T})$. Assume that $\operatorname{co} \sigma(\mathrm{T}) \varsubsetneqq V(B(X), \mathbf{T})$. Suppose that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in V(B(X), \mathbf{T})-\operatorname{co} \sigma(\mathbf{T})$. Then there exists a linear functional Φ on \mathbf{C}^{n} and a real number r such that

$$
\operatorname{Re} \Phi(z)<r<\operatorname{Re} \Phi(\alpha) \quad(z \in \operatorname{co} \sigma(\mathbf{T}))
$$

Let $\Phi(z)=t_{11} z_{1}+\ldots+t_{1 n} z_{n} \quad\left(z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}\right)$, and choose a non-singular $n \times n$ matrix M with $\left(t_{11}, \ldots, t_{1 n}\right)$ as its first row. Then

$$
\operatorname{Re} z_{1}<r<\operatorname{Re} \beta_{1} \quad\left(z=\left(z_{1}, \ldots, z_{n}\right) \in \sigma(M \mathrm{~T})\right)
$$

where $\quad\left(\beta_{1}, \ldots, \beta_{n}\right)=M \alpha$. Therefore, $\quad \operatorname{co} \sigma\left(\Sigma_{j} t_{1 j} T_{j}\right) \nsubseteq V\left(B(X), \Sigma_{j} t_{1 j} T_{j}\right)$. Since $\Sigma_{j} t_{1 j} T_{j}$ is a hyponormal operator on a uniformly convex space, this yields a contradiction to Theorem 2.

So the proof is complete.
Corollary 8. Let X be uniformly convex and let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on X. Then $r(\mathbf{T})=v(\mathbf{T})$.

References

[1] G. de Barra, Generalised limits and uniform convexity, Proc. Roy. Irish Acad., 74 (1974) 73-77:
[2] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111-114.
[3] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press (1971).
[4] F. F. Bonsall and J. Duncan, Numerical ranges II, Cambridge Univ. Press (1973).
[5] M. Сно̄, Joint spectra of operators on Banach spaces, Glasgow Math. J., 28 (1986), 69-72.
[6] M. Снӧ, Joint spectra of commuting normal operators on Banach spaces, Glasgow Math. J., 30 (1988), 339-345.
[7] J. Globevnik, On complex strict and uniform convexity, Proc. Amer. Math. Soc., 47 (1975), 175-178.
[8] K. Mattila, Normal operators and proper boundary points of the spectra of operators on Banach space, Ann. Acad. Sci. Fenn. AI. Math. Dissertationes, 19 (1978).
[9] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Phil. Soc., 96 (1984), 483-493.
[10] K. Matrila, A class of hyponormal operators and weak*-continuity of hermitian operators, Arkiv Mat., 25 (1987), 265-274.
[11] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191.
[12] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38.
[13] E. Thorp and R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc., 18 (1967), 640-646.
[14] V. Wrobel, Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces, Glasgow Math. J., 30 (1988), 145-153.

