Hyponormal operators on uniformly convex spaces

MUNEO CHŌ

Dedicated to Professor Jun Tomiyama on his 60th birthdy

1. Introduction. Let X be a complex Banach space. We denote by X^* the dual space of X and by B(X) the space of all bounded linear operators on X.

Let us set

$$\pi = \{ (x, f) \in X \times X^* \colon ||f|| = f(x) = ||x|| = 1 \}.$$

The spatial numerical range V(T) and the numerical range V(B(X), T) of $T \in B(X)$ are defined by

and

$$V(T) = \{f(Tx): (x, f) \in \pi\}$$

$$V(B(X),T) = \{F(T): F \in B(X)^* \text{ and } ||F|| = F(I) = 1\},\$$

respectively.

Definition 1. If $V(T) \subset \mathbf{R}$, then T is called *hermitian*. An operator $T \in B(X)$ is called *hyponormal* if there are hermitian operators H and K such that T=H+iK and the commutator C=i(HK-KH) is non-negative, that is

$$V(C) \subset \mathbf{R}^+ = \{a \in \mathbf{R} \colon a \ge 0\}.$$

An operator N is called *normal* if there are hermitian operators H and K such that N=H+iK and HK=KH. A normal operator N on a Banach space X has the following properties:

- (1) $\operatorname{co} \sigma(N) = \overline{V(N)} = V(B(X), N).$
- (2) If $Nx_n \rightarrow 0$ for a bounded sequence $\{x_n\}$ in X, then $Hx_n \rightarrow 0$ and $Kx_n \rightarrow 0$.

Definition 2. Let X be Banach space. X will be said to be *uniformly convex* if to each $\varepsilon > 0$ there corresponds a $\delta > 0$ such that the conditions ||x|| = ||y|| = 1 and $||x-y|| \ge \varepsilon$ imply $\frac{||x+y||}{2} \le 1 - \delta$.

Received August 11, 1988.

X will be said to be *uniformly c-convex* if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $||y|| < \varepsilon$ whenever ||x|| = 1 and $||x + \lambda y|| \le 1 + \delta$ for all complex numbers λ with $|\lambda| \le 1$.

X will be said to be strictly c-convex if y=0 whenever ||x||=1 and $||x+\lambda y|| \le 1$ for all complex numbers λ with $|\lambda| \le 1$.

All uniformly convex spaces, for example $\mathscr{L}^p(S, \Sigma, \mu)$ and $\mathscr{C}_p(\mathscr{H})$ for 1 , are uniformly c-convex and all uniformly c-convex spaces are strictly c-convex.

 $\mathscr{L}^1(S, \Sigma, \mu)$ and the trace class $\mathscr{C}_1(\mathscr{H})$ are the typical examples of uniformly c-convex spaces. See [7] and [9].

For an operator $T \in B(X)$, the spectrum, the approximate point spectrum, the point spectrum, the kernel, and the dual of T are denoted by $\sigma(T)$, $\sigma_{\pi}(T)$, $\sigma_{p}(T)$, Ker (T) and T^{*} , respectively.

For an operator T=H+iK we denote the operator H-iK by \overline{T} .

The following are well-known for $T \in B(X)$:

(1) $\overline{\operatorname{co}} V(T) = V(B(X), T)$, where $\overline{\operatorname{co}} E$ is the closed convex hull of E.

(2) co $\sigma(T) \subset \overline{V(T)}$, where co *E* and \overline{E} are the convex hull and the closure of *E*, respectively.

We now give a concrete example of a hyponormal operator on a uniformly cconvex space. Let \mathcal{H} be a Hilbert space. Then the trace class $C_1(\mathcal{H})$ is a two sided ideal of $B(\mathcal{H})$.

Given $A, B \in B(\mathcal{H})$ we define

$$\delta_{A,B}(T) = AT - TB \quad (T \in \mathscr{C}_1(\mathscr{H})).$$

Then $\delta_{A,B}$ is an operator on a uniformly c-convex space $\mathscr{C}_1(\mathscr{H})$. It is easy to see that if A and B^* are hyponormal then $\delta_{A,B}$ is a hyponormal operator on $\mathscr{C}_1(\mathscr{H})$ (see Theorem 4.3 in [9]).

The following theorem derives from Lemma 20.3 and Corollary 20.10 in [4].

Theorem A. If H is hermitian and Hx=0 for $x \in X$ (||x||=1), then there exists $f \in X^*$ such that $(x, f) \in \pi$ and $H^*f=0$.

2. Hyponormal operators on uniformly convex spaces. The following theorem was shown by K. MATTILA [9].

Theorem B. Let X be uniformly c-convex and let T=H+iK be a hyponormal operator on X. If there exists a sequence $\{x_n\}$ of unit vectors in X such that

$$(T-(a+ib))x_n \to 0,$$

then $(H-a)x_n \rightarrow 0$ and $(K-b)x_n \rightarrow 0$.

We shall show the following (converse to the theorem above):

Theorem 1. Let X be uniformly convex and let T=H+iK be a hyponormal operator on X. (1) If $a \in \sigma(H)$, then there exist some real number b and sequence $\{x_n\}$ of unit vectors for which $(H-a)x_n \to 0$ and $(K-b)x_n \to 0$, so that in particular, $a+ib\in\sigma(T)$. (2) Similarly, if $b'\in\sigma(K)$, then there exist some real number a' and sequence $\{y_n\}$ of unit vectors for which $(H-a')y_n \to 0$ and $(K-b')y_n \to 0$, so that in particular, $a'+ib'\in\sigma(T)$.

We need the following

Theorem C ([9], Theorem 2.4). Let X be strictly c-convex and let $C \ge 0$ be hermitian. If f(Cx)=0 for some $(x,f)\in\pi$, then Cx=0.

Proof of Theorem 1. (1) Since H is hermitian, so it follows that $a \in \sigma_{\pi}(H)$. Consider the extension space X^0 of X and the faithful representation $B(X) \rightarrow B(X^0)$: $T \rightarrow T^0$ in the sense of DE BARRA [1]. Then a is an eigenvalue of H^0 . If x^0 is in Ker $(H^0 - a)$ such that $||x^0|| = 1$, then by Theorem A there exists $f^0 \in X^{0*}$ such that $f^0(x^0) = ||f^0|| = 1$ and $(H^0 - a)^* f^0 = 0$.

Since T is hyponormal we can let that $C=i(HK-KH)\geq 0$; then $C^{0}\geq 0$ and

$$f^{0}(C^{0}x^{0}) = i\hat{x}(K^{0*}(H-a)^{0*}f^{0}) - if^{0}(K^{0}(H^{0}-a)x^{0}) = 0,$$

where \hat{x} is the Gel'fand representation of x. Since the space X^0 is uniformly convex ([1], Theorem 4), by Theorem C, it follows that $C^0x^0=0$. Therefore, it is easy to see that Ker (H^0-a) is invariant for K^0 . So there exist a sequence $\{x_n\}$ of unit vectors and a real number b such that $(H-a)x_n \to 0$ and $(K-b)x_n \to 0$.

(2) is the same. So the proof is complete.

Theorem 2. Let X be uniformly convex and let T=H+iK be a hyponormal operator on X. Then

$$\cos \sigma(T) = \overline{V(T)} = V(B(X), T).$$

Proof. It is well-known that $\operatorname{co} \sigma(T) \subset \overline{V(T)} \subset V(B(X), T)$. We assume that $\operatorname{Re} \sigma(T) \subset \{a \in \mathbb{R} : a \ge 0\}$. Then, by Theorem 1, it follows that $\sigma(H) \subset \{a \in \mathbb{R} : a \ge 0\}$. So it follows that $V(B(X), H) \subset \{a \in \mathbb{R} : a \ge 0\}$ and so $\operatorname{Re} V(B(X), T) \subset \{a \in \mathbb{R} : a \ge 0\}$. Since $\alpha T + \beta$ is hyponormal for every $\alpha, \beta \in \mathbb{C}$, it follows that $\operatorname{co} \sigma(T) = = V(B(X), T)$. So the proof is complete.

Theorem D ([9], Theorem 2.5). Let X be uniformly c-convex and let $C \ge 0$ be a hermitian operator on X. If there are sequences $\{x_n\} \subset X$ and $\{f_n\} \subset X^*$ such that $\|x_n\| = \|f_n\| = 1$ for each n, $f_n(x_n) \to 1$ and $f_n(Cx_n) \to 0$, then $Cx_n \to 0$.

Lemma 3. Let T=H+iK be a hyponormal operator. If $\overline{T}T$ and $T\overline{T}$ are not invertible, then $0 \in \partial \sigma(\overline{T}T)$ and $0 \in \partial \sigma(T\overline{T})$, respectively, where ∂ denotes 'the boundary of'.

Proof. We may only prove that $\sigma(\overline{T}T)$ and $\sigma(T\overline{T})$ are included in the halfplane { $\alpha \in \mathbb{C}$: Re $\alpha \ge 0$ }. Since $V(H^2)$ and $V(K^2)$ are included in { $\alpha \in \mathbb{C}$: Re $\alpha \ge 0$ }, it follows that $V(\overline{T}T) = V(H^2 + K^2 + C) \subset V(H^2) + V(K^2) + V(C) \subset \{\alpha \in \mathbb{C} : \text{Re } \alpha \ge 0\}$, where $C = i(HK - KH) \ge 0$. Therefore, $\sigma(\overline{T}T)$ is included in { $\alpha \in \mathbb{C} : \text{Re } \alpha \ge 0$ }. Also, since $\sigma(\overline{T}T) - \{0\} = \sigma(T\overline{T}) - \{0\}$, it follows that $\sigma(T\overline{T}) \subset \{\alpha \in \mathbb{C} : \text{Re } \alpha \ge 0\}$. So the proof is complete.

Lemma 4. Let X be uniformly c-convex and let T=H+iK be a hyponormal operator on X. If \overline{TT} is not invertible, then $T\overline{T}$ is not invertible.

Proof. By Lemma 3, there exists a sequence $\{x_n\}$ of unit vectors in X such that $\overline{T}Tx_n \rightarrow 0$. We let that $C=i(HK-KH) \ge 0$. Then, for a sequence $\{f_n\}$ in X^* such that $(x_n, f_n) \in \pi$, we get that $f_n(Cx_n) \rightarrow 0$. So, by Theorem D, $Cx_n \rightarrow 0$. Therefore, $T\overline{T}x_n = (H^2 + K^2 - C)x_n \rightarrow 0$.

So the proof is complete.

Theorem 5. Let X and X^* be uniformly c-convex and let T=H+iK be a hyponormal operator on X. Then

$$\sigma(T) = \{ z \in \mathbf{C} \colon \overline{z} \in \sigma_{\pi}(\overline{T}) \}.$$

Proof. Since T-z is hyponormal for every $z \in \mathbb{C}$, it is sufficient to show that $0 \in \sigma(T)$ if and only if $0 \in \sigma_{\pi}(\overline{T})$. Assume that 0 belongs to $\sigma(T)$. By Lemma 4, we may assume that $T\overline{T}$ is not invertible.

Therefore, by Lemma 3, 0 belongs to $\partial \sigma(T\overline{T})$. It follows that there exists a sequence $\{x_n\}$ of unit vectors in X such that $T\overline{T}x_n \rightarrow 0$. Since T is hyponormal, by Theorem B it follows that $\overline{T}^2x_n \rightarrow 0$. By the spectral mapping theorem for approximate point spectrum, 0 belongs to $\sigma_{\pi}(\overline{T})$.

Conversely, assume that 0 belongs to $\sigma_{\pi}(\overline{T})$. Then it follows that $0 \in \sigma(T\overline{T}) = = \sigma(\overline{T}^*T^*)$. Similarly, 0 belongs to $\sigma_{\pi}(\overline{T}^*T^*)$. Here, \overline{T}^* is hyponormal on a uniformly c-convex space X^* . Therefore, 0 belongs to $\sigma(T^*) = \sigma(T)$.

So the proof is complete.

Theorem 6. Let X be strictly c-convex and let T=H+iK be a hyponormal operator on X. Suppose that λ is an extreme point of $\operatorname{co} \overline{V(T)}$ such that $\lambda \in V(T)$. Let $f(T_X)=\lambda$ for some $(x,f)\in\pi$. Then $T_X=\lambda x$.

Proof. Each linear mapping $u(z) = \alpha z + \beta$ ($z \in \mathbb{C}$), where $\alpha, \beta \in \mathbb{C}, \alpha \neq 0$, maps V(T) onto V(u(T)) and $\overline{V(T)}$ onto $\overline{V(u(T))}$. In addition u(T) is hyponormal. Hence, we can suppose that $\lambda \in \mathbb{R}$ and $\operatorname{Re} z \leq \lambda$ ($z \in V(T)$). Since $f(Hx) = \lambda =$ $= \max \{\alpha : \alpha \in \overline{V(H)}\}$, it follows by Theorem C that $Hx = \lambda x$. If $x' \in \operatorname{Ker} (H - \lambda)$ such that ||x'|| = 1, then there exists $f' \in X^*$ such that $(x', f') \in \pi$ and $(H - \lambda)^* f' = 0$. It follows that

$$f'(Cx') = i\hat{x}'\left(K^*(H-\lambda)^*f'\right) - if'\left(K(H-\lambda)x'\right) = 0$$

where $C = i(HK - KH) \ge 0$.

By Theorem C, Cx'=0. Hence, it follows that $(H-\lambda)Kx'=0$. Therefore, it is easy to see that Ker $(H-\lambda)$ is invariant for K. Let K_1 be the restriction of K to Ker $(H-\lambda I)$. Let $y \in \text{Ker}(H-\lambda)$ with ||y||=1 and $g \in (\text{Ker}(H-\lambda))^*$ such that ||g||=g(y)=1. Then

and

$$Ty = \lambda y + iKy = \lambda y + iK_1 y \in \text{Ker} (H - \lambda)$$
$$g(Ty) = \lambda + ig(K_1 y).$$

Here, $g(Ty) \in V(T)$. Since λ is an extreme point of co $\overline{V(T)}$ and Re $z \leq \lambda$ ($z \in V(T)$), it follows that $V(K_1) \subset \mathbb{R}^+$ or $V(-K_1) \subset \mathbb{R}^+$. Let $f_1 = f|\operatorname{Ker}(H-\lambda)$. We have then $f_1(K_1x) = f(Kx) = 0$ and $||f_1|| = f_1(x) = 1$. Since $\operatorname{Ker}(H-\lambda)$ is strictly c-convex, it follows that $K_1x = Kx = 0$, by Theorem C.

So the proof is complete.

3. Doubly commuting *n*-tuples of hyponormal operators

Definition 3. For commuting operators T_1 and T_2 such that $T_j = H_j + iK_j$ (H_j and K_j hermitian, j=1, 2), T_1 and T_2 are called *doubly commuting* if $\overline{T}_1T_2 = T_2\overline{T}_1$. If T_1 and T_2 are doubly commuting, then H_j and K_j commute with H_l and K_l for $j \neq l$.

Let $\mathbf{T} = (T_1, ..., T_n)$ be a commuting *n*-tuple of operators on X. Let $\sigma(\mathbf{T})$ be the Taylor joint spectrum of **T**. We refer the reader to TAYLOR [11].

The spatial joint numerical range $V(\mathbf{T})$ and the joint numerical range $V(B(X), \mathbf{T})$ of \mathbf{T} are defined by

and

and

$$V(\mathbf{T}) = \{ (f(T_1 x), ..., f(T_n x)) \in \mathbf{C}^n \colon (x, f) \in \pi \}$$

$$V(B(X), \mathbf{T}) = \{ (F(T_1), ..., F(T_n)) \in \mathbf{C}^n \colon F \in B(X)^* \text{ and } \|F\| = F(I) = 1 \}.$$

The joint numerical radius $v(\mathbf{T})$ and the joint spectral radius $r(\mathbf{T})$ of $\mathbf{T} = (T_1, ..., T_n)$ are defined by

$$v(\mathbf{T}) = \sup \{ |z| \colon z \in V(\mathbf{T}) \}$$

$$r(\mathbf{T}) = \sup \{ |z| \colon z \in \sigma(\mathbf{T}) \}.$$

Theorem E (V. WROBEL [14], Corollary 2.3). Let $\mathbf{T} = (T_1, ..., T_n)$ be a commuting *n*-tuple of operators. Then

$$\operatorname{co} \sigma(\mathbf{T}) \subset \overline{V(\mathbf{T})}.$$

10

Theorem 7. Let X be uniformly convex, and let $\mathbf{T} = (T_1, ..., T_n)$ be a doubly commuting n-tuple of hyponormal operators on X. Then

$$\cos \sigma(\mathbf{T}) = \overline{V(\mathbf{T})} = V(B(X), \mathbf{T}).$$

Proof. By Theorem E, it is clear that $\operatorname{co} \sigma(\mathbf{T}) \subset \overline{V(\mathbf{T})} \subset V(B(X), \mathbf{T})$. Assume that $\operatorname{co} \sigma(\mathbf{T}) \subseteq V(B(X), \mathbf{T})$. Suppose that $\alpha = (\alpha_1, \ldots, \alpha_n) \in V(B(X), \mathbf{T}) - \operatorname{co} \sigma(\mathbf{T})$. Then there exists a linear functional Φ on \mathbb{C}^n and a real number r such that

Re
$$\Phi(z) < r < \operatorname{Re} \Phi(\alpha)$$
 $(z \in \operatorname{co} \sigma(\mathbf{T})).$

Let $\Phi(z) = t_{11}z_1 + \ldots + t_{1n}z_n$ $(z = (z_1, \ldots, z_n) \in \mathbb{C}^n)$, and choose a non-singular $n \times n$ matrix M with (t_{11}, \ldots, t_{1n}) as its first row. Then

Re
$$z_1 < r < \text{Re } \beta_1$$
 $(z = (z_1, ..., z_n) \in \sigma(M\mathbf{T})),$

where $(\beta_1, ..., \beta_n) = M\alpha$. Therefore, $\cos \sigma(\Sigma_j t_{1j}T_j) \subseteq V(B(X), \Sigma_j t_{1j}T_j)$. Since $\Sigma_j t_{1j}T_j$ is a hyponormal operator on a uniformly convex space, this yields a contradiction to Theorem 2.

So the proof is complete.

Corollary 8. Let X be uniformly convex and let $\mathbf{T} = (T_1, ..., T_n)$ be a doubly commuting n-tuple of hyponormal operators on X. Then $r(\mathbf{T}) = v(\mathbf{T})$.

References

- [1] G. DE BARRA, Generalised limits and uniform convexity, Proc. Roy. Irish Acad., 74 (1974) 73-77;
- [2] S. K. BERBERIAN, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111-114.
- [3] F. F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press (1971).
- [4] F. F. BONSALL and J. DUNCAN, Numerical ranges II, Cambridge Univ. Press (1973).
- [5] M. CHO, Joint spectra of operators on Banach spaces, Glasgow Math. J., 28 (1986), 69-72.
- [6] M. Chō, Joint spectra of commuting normal operators on Banach spaces, Glasgow Math. J., 30 (1988), 339-345.
- [7] J. GLOBEVNIK, On complex strict and uniform convexity, Proc. Amer. Math. Soc., 47 (1975), 175-178.
- [8] K. MATTILA, Normal operators and proper boundary points of the spectra of operators on Banach space, Ann. Acad. Sci. Fenn. AI. Math. Dissertationes, 19 (1978).
- [9] K. MATTILA, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Phil. Soc., 96 (1984), 483-493.
- [10] K. MATTILA, A class of hyponormal operators and weak*-continuity of hermitian operators, Arkiv Mat., 25 (1987), 265-274.

- [11] J. L. TAYLOR, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191.
- [12] J. L. TAYLOR, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38.
- [13] E. THORP and R. WHITLEY, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc., 18 (1967), 640-646.
- [14] V. WROBEL, Joint spectra and joint numerical ranges for pairwise commuting operators in Banach spaces, *Glasgow Math. J.*, 30 (1988), 145–153.

DEPARTMENT OF MATHEMATICS JOETSU UNIVERSITY OF EDUCATION JOETSU, 943, JAPAN