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On the local spectral radius of a nonnegative element with 
respect to an irreducible operator 

K.-H. FORSTER and B. N A G Y 

1. Introduction 

The local spectral radius of a nonnegative element of a partially ordered Banach 
space with respect to a general positive linear continuous operator has been studied 
in [2]. The main results there gave, among others, sufficient conditions that the local 
spectral radius be a singularity of the local resolvent function, characterized the 
distinguished eigenvalues outside the essential spectrum, and sought positive solutions 
u o f the equation (/ — T)u = x for positive I and positive x. 

If T is a reducible positive operator, then we may, in general, clearly find nonneg-
ative elements x of the space E such that the local spectral radius rT(x) of x with 
respect to T is strictly smaller than the (global) spectral radius r{T) of T. The situation 
is more delicate, if the operator T is irreducible. The first main result of this paper, 
Theorem 7, lists four groups of fairly natural conditions, each of which is sufficient 
for any nonzero x in the positive cone E+ to ensure that rT(x)=r(T), assuming T 

is irreducible. The preceding Propositions 1 through 5 and Remark 6 formulate 
some more general conditions ensuring rT(x)=r(T) even if T is reducible, whereas 
Example 8 shows that the irreducibility of T alone is not sufficient. 

The second main result, Theorem 12, yields three groups of conditions, each of 
which guarantees that the equation ( r ( T ) — T ) u = x has no solution u in all of E, 

assuming that T i s irreducible and x £ 2 s + \ { 0 } . The preliminary results contain also 
here more general conditions. Several examples illustrate the irredundancy of some 
conditions, or that some other group of conditions is not sufficient. 

In the third part of the results we show that if T is irreducible and r(T) > 0 is 
a pole of its resolvent, then some conditions ensure that the equation ( r ( T ) — T)u= 
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= ( 1 — P)x, where P denotes the spectral projection corresponding to the set {/'(7')}, 
has a positive solution u for all xmE+. It is also shown that some extra conditions 
are really needed to ensure the existence of a positive solution u. Further, we show 
that the algebraic eigenspace to the spectral radius of a compact, nonnegative oper-
ator need not have a basis of nonnegative elements, and discuss some connections to 
w o r k s o f U . G . ROTHBLUM [8] , H . D . VICTORY, JR. [11 ] a n d J. KOLSCHE [5 ] . 

2. Preliminaries and notations 

Let £ be a real Banach space and let T be a linear continuous operator f rom E 

into E. By N(T) and R(T) we denote the kernel and the range of T, respectively. As 
usual ([9], p. 261]), we sometimes identify T with its complex extension T . In this 
spirit, e.g., for x in E we define 

rT(x) = lim sup ||T"x||1/n, 
Tl— oo 

QT(x) = {X£C\rT(x)^\X\} 

and 

xT:QT(x)-E with xT(X) = j? X~k~lTkx. 
k = 0 

W e call rT(x) the local spectral radius of the element x with respect to the operator T, 

xT the local resolvent function of the element x with respect to the operator T in 
its main component QT(x). Of course (X—T)xT(X)=x for all Xd QT(x). W e recall 
some results from [2] which will be used several times in this paper. 

Unless explicitely stated otherwise, in the following E will always denote a parti-
ally ordered real Banach space with positive cone E+, and T is a nonnegative oper-
ator in E. I f x ^ O is a nonnegative element in E, then 

(I) rT(x) is a singularity of xT if E+ is normal or there is a pole p of xT with 

\n\ =zrT(x); see [2, Theorems 6 and 10]. 
( I I ) If E + is normal and there exist a u£E+ and a 0 such that (n~T)u = x, 

then rT(x)^n; see [2, Theorem 6]. 
( I I I ) If rT(x) is a pole of xT, then there exist a u£E+ anda /i>0 with (p — T)u — 

= x if and only if rT(x)<p\ see [2, Theorem 10]. 
The proof for the last two assertions depends essentially on the following in-

equality: I f m^O and /¿&0 such that (p.— T)u=x then 

n\ T y j - { X - n f 

for all n = 0, 1, 2, ... and all max {p,rT(x)}. This inequality was proved in [2, 
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Proposition 5] with the help o f the iterated local resolvent; we give here a very 
( — n)" °° (k4-ri\ 

simple proof. From « s 0 it fol lows that -uW(k) = 2 \k~k~"-iTku^Q 
n\ k=o \ n ) 

f o r all n=0, 1,2, ... and all 2>rT(u). F rom ( / i — T ) u = x it fol lows that rT(x)^ 

srT(u)^max {ji, rT(x)} and 

uT(k) = — — y ^ — — for k > max {/i, rT(x)}. 
/ fi 

( - 1 ) " 

Differentiating this equality n times and multiplying by — j — we get fo r 

max {p, rT(x)} 

ô izit̂ a)-- T(~iy - •• 
n\ T " & j\ (k-n)"-J+1 (>--/i)n+1 ~ 

(-1)" x'-FHk) u 

n\ k — fl + (k-fi)n+1 

since each summand in the sum is nonnegative, because ( — i f x s O 

and k>rT(x). The last inequality is equivalent to the wanted inequality. 

3. Results and proofs 

P r o p o s i t i o n 1. Let the spectral radius r(T) be a pole of the resolvent R(- ,T) 

of T, and let xbea quasi-interior point in the sense of[ 9, p. 241] of the positive cone E+. 

Then rT(x)=r(T). 

P r o o f . Let p denote the order o f the pole r = r(T), and let 2 V-~r)kQk 
k=-P 

be the Laurent expansion of R(k, T) around r. It is well-known that Q - P = 0 . As-

sume that rT(x)<r(T). Then < 2 _ p x = 0 and, since x is quasi-interior, we obtain that 

Q-p=0, a contradiction. 

A slightly stronger condition on the spectral radius than in the next proposition 

was used in [10, Lemma 4] fo r similar purposes. 

P r o p o s i t i o n 2. Let E be a Banach lattice. Let r(T) be a limit point of the set 

]— r(T)[C]g(T), and let x be a quasi-interior point of E+. Then rT(x)—r(T). 

P r o o f . Let k0>~rT(x) and z = x r (/.„). Let Ez denote the principal ideal gener-

ated by z. I t is well-known that E, with the cone E0=E+C\EZ is an (AM)-space 

with respect to the norm ||j>||z=inf ( a £ R + : \y\s<xz}. 

The restriction T0 o f T to Ez satisfies 

T0z ' Txj-(A0) = k0x-f(A0)—x = k0z. 
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Hence the z-norm of T0 satisfies and for the corresponding spectral 
radius we have r(TQ)^?.0. 

Assume rT(x)<r{T), and let rT(x)<?.0<r(T). Then z = xT (A0 ) = 

= 2 Xu"~1T"x is also a quasi-interior point of E+, hence the ideal E, above is 
n = 0 

dense in the topology of E. By assumption, there exists p£g(T) such that 
< r ( T ) . The operator T0 above is celarly positive with respect to the cone E0 and 
r (7J)sA0 , hence the resolvent ( / / — a c t i n g in Ez, is also positive with respect 
to E0 • Since £ is a Banach lattice and E, is dense in E, the closure of E0 in the topology 
o f E is E+. Hence the resolvent (/¿— 7*) -1, acting in E, is also positive with respect to 
E+. However, this contradicts n<r(T) and [9, App. 2.3, p. 263]. 

The next result is contained in [7, Theorem 9.1], and can be stated in our ter-
minology as follows. 

P r o p o s i t i o n 3. If x is an interior point of the normal cone E+, then rT(x) = 

= r ( T ) . 

In fact, a bit more is proved in [7]: under the given conditions we have r(T) = 

=Jim ||7,"x||1/" (which is clearly equal to rT(x)). 

The conditions in the next two propositions were used in [6, Theorem 16.2] 
for other purposes. 

P r o p o s i t i o n 4. Let the cone E+ be normal and generating, and the E+ -positive 

operator T be bounded from above by the element v in E+. If x is a quasi-interior point 

of E+, then rT(x) = r(T). 

P r o o f . Let X>-rT(x). Then xT(/.) is also a quasi-interior point of E+, further 
rT(xT(/.)) = rT(x). We have (/.-T)xr(/)=xisO; therefore Txr(/.)^AxT(A). By 
assumption and [6, Theorem 16.2], r(T)^/. for any />rT(x). Hence r(T)SrT(x), 

whereas the converse inequality always holds. 

P r o p o s i t i o n 5. Let the cone E+ be normal and generating, x g £ ' + \ { 0 } , and 

the E+ -positive operator T be bounded from above by the element x. Then rT(x) = 

= r(T). 

P r o o f . Let u£E+. There is a positive number /?=/?(«) such that Tu^fix. 

Hence fiT"~lx for every n=1,2,.... Since E+ is normal, there is y £ R + 

suchthat l i r ^ l l S ^ l i r ' - ^ H for all n. Therefore rr{u)^rT(x) for every u in E+. 

Since E+ is generating, we have by [2, Lemma 4] 

r(T) = max {rT(u): «?£+)} ^ rT(x) s r(T). 

R e m a r k 6. Assume that T is a positive continuous linear operator acting in 
the partially ordered Banach space E, the continuous operator A, acting in E, com-
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mutes with T and the real number A satisfies |A| >rT(x) for some x in E (A and x 
need not be nonnegative). Then rT(Ax)^rT(x) and rT(xT(A))=rT(x). Therefore 
the assertions of Propositions 1 through 5 remain valid (i.e. rT(x)=r{T)) if instead 
of x the element Ax or the element AxT (A) satisfies (together with T and E) the 
respective assumptions. The proofs are slight modifications of those given above, 
thus they will be omitted. 

Note further that if T is irreducible, A=w (T ) and x £ £ + \ { 0 } , then R(X, T) 

commutes with T and 77? (A, T)x is a quasi-interior point in E+. Hence the fol low-
ing theorem is a simple corollary to Propositions 1 through 4 and the remarks 
above (note that the condition in Proposition 5 is of different, i.e. of more individual, 
nature). 

T h e o r e m 7. Assume that the irreducible positive continuous linear operator T 

acting in the partially ordered Banach space E and E Satisfy one of the following condi-

tions: 

( i ) r(T) is a pole of the resolvent R( •, T), 

(ii) r(T) is a limit point of the set ]— r(T)[Clo(T), and E is a Banach lattice, 

(iii) the cone E+ is normal and solid (i.e. has a nonvoid interior), 

( iv) T is bounded from above by an element v in the normal and generating cone E+ _ 

Then for any x in i ? + x \ { 0 } we have rT(x)=r(T). 

The following example will show that the irreducibility of T alone does not 
guarantee that rT(x)=r(T) for every x in E+\{0}. 

E x a m p l e 8 . Let E be the real sequence space l" (1 °=) or c0 with the usual 
cone E+ = {x=(xi)°l1^E: x , s O for /=1 ,2 , . . . } . Then x is quasi-interior in E+ 

if and only if every x ; > 0 . W e shall denote this by xs>0. Let S be the left shift in E 
defined by ( S x ) , = x i + 1 (/=1,2 , . . . ) . Let / £ £ ' act as / x = x 1 ; and let a = ( a ^ E , . 
a»0. Define T: E-E by T=f®a + S, i.e. 

(7x); = + + ! ( / = 1 , 2 , . . . ) . 

T is then a positive irreducible operator. Indeed, for each x in i J + X j O } take 
/¡; = min {/: x,->0}. Then (TJx)i=xi+j ( l s/</c ) , (Tkx)¿=aixk + xi+k^aixk>0 
for every /=1,2, . . . . Thus Tkx^>0, hence T is irreducible. 

It is well known that the Fredholm domain of S is the complement of the unit 
circle. Since T is a one-dimensional perturbation of S, their essential spectra are 
identical (cf. [4, Theorem IV. 5.35]). Hence r ( T ) & 1. 

1 

Now let 0 a n d consider the particular case of the operator T when 

a=(qi)°ll. For any x^E and A£R the equality 7 x = A x is equivalent to 

^ x j + x i + 1 = Ax,- (/ = 1, 2, ...). 
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This holds for if and only if (x,)€£, where 

= ( A ' " 1 - j f ^ A ' - 1 - * ) * ! = + Xl (i = 2 , 3 , . . . ) . 

Let A satisfy and let x x >0 . Then x=(x,)£E, and x:s>0 is an 
eigenvector corresponding to the eigenvalue A < l S r ( T ' ) . Hence rT(x) = /.<r(T) 

as stated. 

P r o p o s i t i o n 9. If the positive cone E+, the element x in E+ and the positive 

operator T satisfy one of the conditions in Propositions 1, 3, 4 or 5, further in the cases 

of Propositions 4 or 5 we have, in addition, r(T)>0, then the equation (r(T)— T)u = x 

has no solution u in E. 

P r o o f . (-P) will denote that we are considering the case when the conditions of 
Proposition P ( P = 1 , 3 , 4, 5) are satisfied. 

(1) Assume that there is a solution u in E, and that R(?., T) = 2 Q~r)kQk 
k=-P 

is the Laurent expansion of the resolvent around the pole r=r(T) o f exact order 
p^l. Then 0, Q - p ^ 0 , and Q - t H T - r f ^ Q ^ for k=\,2,...,p. 

By assumption, Q_px=(r—T)Q-pu= — Q-p_1u=0. Since x is quasi-interior, we 
obtain Q - p = 0 , a contradiction. 

(3) Since the cone E+ is normal and solid, a result of M . Krein and M . Rutman 
(cf. [9, p. 267]) shows that r(T) is an eigenvalue of the dual T' with corresponding 
eigenvector />¿0 in the dual cone E'+. Should a solution u£E exist, then we should 
have (denoting the dual pairing by < • , •> ) </, x)=((r(T)-T')f u)=0, and this 
contradicts the fact that f£E'+, / ^ 0 , and x is an interior point in E+. 

(4) Since /•(T)>0, our assumptions imply that r{T) is an eigenvalue of the 
dual T with eigenvector / in the dual cone (cf. [7, Proof of Theorem 5.5]). The rest 
as in case (3). 

(5) Let Ex denote the linear manifold of x-measurable elements y o f E (cf. [6, 
p. 34], [7, p. 80]), i.e. those satisfying — a x ^ ^ ^ a x for some a £ R + . I f we set 
||^||x=inf { a £ R + : — a x ^ j ^ a x } then, since E+ is a normal cone, Ex is a Banach 
space with respect to the norm || • a n d E+ C\EX is a closed solid normal cone in 
Ex. N o w E+ is generating and T is bounded from above by x, therefore R(T)c.Ex 

and Ex is invariant under T. Assume that there is a solution u, then we obtain from 
r(T)u=Tu+x and r ( T ) > 0 that u£Ex. It is fairly straightforward to show (cf. 
[5, p. 80]) that the spectral radii of the operator T in E and in Ex are identical, so we 
come to the situation of case (3) in the space Ex, and we reach a contradiction. 

C o r o l l a r y 10. If one of the conditions in Proposition 9 is fulfilled, R, and 

the equation ().— T)u=x has a Solution 0, then ).>r(T). 
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P r o o f . By the preceding results, we have rT(x)=r(T), and for X=rT(x) 

there is no solution u in all of E. On the other hand, [2, Theorems 6 and 10] show 
that there is no solution u£E+ under the given conditions if 0 ë A < r T ( x ) . It 
is clear that there is no solution u in E+ for 1 Ç R \ R + . Hence A > r ( r ) . 

R e m a r k 11. If the operator A commutes with T, and the element x=Az satis-
fies (together with T and E) the conditions of Proposition 9, then the equation 
[r(T) — T)u=z has no solution u in all of E. Indeed, assuming the contrary, the 
element Au would satisfy (r(T)—T)Au = x, which is impossible. The case A= — 

identity operator is of interest in the next theorem. 

T h e o r e m 12. Let the positive operator T in E be irreducible, satisfy together 

with E one of the conditions (i), (iii) or (iv) of Theorem 7, in the last case let r(T)>0, 

and let z£E+U(—E+) and z^-O. Then the equation (r(T)—T)u — z has no solution 

u in all of E. 

P r o o f . Let X>r(T) and A = TR(X,T). Then x = Az=TR(X, T)z if z£E+\ 

\ { 0 } and x=-Az=-TR01, T)z if z Ç ( - £ + ) \ { 0 } is a quasi-interior element of 
the cone E+, since T is irreducible. Hence x satisfies conditions (1), (3), or (4) in 
(see the proof! ) Proposition 9, and Remark 11 shows that there is no solution u in 
E to the equation ( r ( T ) - T ) u = z. 

R e m a r k 13. Much stronger conditions on T and E are imposed in [1 ; Theorem 

1.13] to obtain the assertion of Theorem 12. 

It is clear that the assertions of Proposition 9 or Theorem 12 are not valid with-
out extra conditions such as (1), (3), (4) or (5) and (i), (iii) or (iv), respectively. This is 
shown by Example 8, where T is irreducible and there are quasi-interior elements x 

in E+ such that rT(x)<r(T). Then the element u=xT(r(T)) belongs to E+ by 
[2; Lemma 4], and satisfies ( r ( T ) — T ) u = x . 

t 

I f V is the Volterra operator defined by ( F x ) ( i ) = / x(s)ds for x£L 2 (0 , 1), 
o 

then V clearly satisfies condition (4) of Proposition 9 except that we have r ( F ) = 0 . 
The elements M(Î) = —1 and x(t) = t satisfy here (r(V) — V)u=x, and x is quasi-
interior point in the (usual) cone E + . Hence the requirement of the positivity of the 
spectral radius in Proposition 9 is not redundant. 

The following example shows that the conditions in Proposition 2 are not suffi-
cient to ensure that ( r ( T ) — T ) u — x has no solution u in Efor any x in E+. 

E x a m p l e 14. Let X= Q [2n, 2n + l ] c :R and let E=C(i(X) with the usual 
/1 = 0 

positive cone E+. Let T be the operator of multiplication by f(t)=(l + in E. 

Then r{T) = 1, and [ ( 1 - 7 > ] ( i ) = ( l + 0 ~ M 0 - If x ( i ) = ( l + 0 - 1 e ~ ' then x is 

it 
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quasi-interior in E+, and the studied equation has the solution u(t) = e~'. The 

element u is quasi-interior in E+, and the spectrum of the operator T, i.e. the set 

f(X)cz R, clearly satisfies the condition in Proposition 2. 

The next example will show that the series for the main component o f the local 

resolvent function can converge at r~rT{x) for an E+ -positive operator T and a 

quasi-interior point x in E+. Its sum w = 2! r~"~1T"x is then a positive solution o f 

the equation ( r — T ) u = x . "~0 

E x a m p l e 15. Let E=c0 with the usual positive cone E+, let T be the left 

shift in E, and let x = (\/rf)~=i- T h e n I I ^ I H O t + l ) - 2 , hence rT(x)= 1. Further, 

the sum u = 2 T"x exists in E and itsy-th component Uj is 2 The solution 
71 = 0 n = J 

u of ( r — T ) u = x is a quasi-interior point o f E+. 

Let T^O be irreducible, and let r=r(T)>0 be a pole of the resolvent R( •, T). 

Then r is a pole o f order one ([9], App. 3.2]). Therefore the residuum of R(•, T) at r 

is the projection P o f E on N(r— T) along R{r— T), hence the equation (r— T)v = 

= (1 —P)x has solutions v for all x£E. 

P r o p o s i t i o n 16. Let T^0 be irreducible, let r = r(T)>0 be a pole of its 

resolvent and let P be the residuum of R(-, T) at r. If E+ contains interior points, or 

else T is finite dimensional, then the equation (r—T)u = (l—P)x has solutions t/sO 

for all x£E in the first case, and for all x£0 in the second one. 

P r o o f . N(r—T) is one-dimensional and generated by a quasi-interior element 

M0 of E+ ([9, App. 3.2]). Let v be a solution o f (r-T)v = ( l - P ) x , then ( r - T ) • 

• (y + Aw0) = ( l — P)x for all X. I f E+ has interior elements, then u0 is such. In this 

case x can be an arbitrary element o f E, and we can choose X such that is 

an interior point o f E+. 

Consider now the second case, and let i ^ O . There exists a fi with Px = iiu0. 

Then we have 

v + Xuq = — [x + Tv + (Xr—p) j/0] for all A. 

N o w we prove that there exists a A such that Tv + (Xr—//)M0&0. Then v + Xu0^0, 

since x s O . Let R0= |J {z£R(T): —ku0Sz^kuo}. Then R0 is a linear subspace 
ki N 

which is dense in R(T); this fol lows from ru0=Tu0£R(T) and the fact that E0 = 

— U {y^E: —/CM0=J=^hO} is ^-invariant, and is dense in E, since u0 is a quasi-

interior element o f E+. Since T is finite dimensional (i.e. dim R(T)< <=), we have 

R0=P(T) and we can find a A such that Tv + (Xr-p)uc^0. 
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The question naturally arises whether the conditions in Proposition 16 are re-
dundant. W e now give an example of a compact, irreducible operator T such that 
r = r{T)>0, and the equation (r—T)u = (l~ P)x has solutions M^o for some 
x^O, x ^ O , and has no solution u ë 0 for other x^O. A consequence o f 

this example will be discussed at the end of this paper. 

E x a m p l e 17. Let E—c0 or E=F (1 with the cone E+ o f nonne-
gative sequences in E, a = (a,)Ç£" (here we identify E' with the corresponding se-
quence space), and b=(fc ; )€c0 . W e consider the operator 

T = a®e1 + SMb, 

where ek is the sequence with 1 in the /cth position and 0 in the others, S is the right 
shift and Mb is the operator of multiplication by b. W e have for x = (x, )€£ 

(Tx\ 
2 a jX j if / = 1, 

j = i 

bj - iX i - i if / > ] . 

It is well known that Mb is compact and that the weighted shift SMb is compact and 
quasinilpotent [3, Problem 80 for £ = P ] . Therefore T, being a one-dimensional 
perturbation of SMb, js compact. 

Clearly T is non-negative if and only if a ^ O and ¿ s 0. T is irreducible i f 
a - » 0 and 0, i.e. a,>Q and fc,^0 for all i; this follows from 

(Tx\ - 2 OjXj, (Tnx)„ = bn^ . . . . . bATx), for n S 2. 
j = i 

Let X T̂ O be an eigenvalue pf T and v=(v;) be a corresponding eigenvector ^ 0 ; 
this is equivalent to 

a1A-1 + a2b1X-* + ... + aibi_1-... • M"^... = 1 
and 

here and in what follows we put i>, _ x •... • b i f i—1. Since b£c0, we have 
(bi-1-... • b1X~i+1v1)£E for all X^0 and all Uj, and the power series 

/ 0 0 = 2 a¡b-,-1-••.•b1ni 

¡=1 

converges for all /t. Therefore X^0 is an eigenvalue of T if and only i f f ( l / X ) = l. 

Let us assume that a » 0 and 0. Then /(l/X) is strictly decreasing for 

2>0 , l im/(l/A) = «> and Jim/(l//l)=0. Thus there exists exactly one r > 0 with 

f(\/r) = 1. This r is the spectral radius of T, by the Krein—Rutman Theorem, and is a 

pole of multiplicity one of R{-, T), since T is irreducible and compact ([9, App. 
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3.2]). Let P be, as in Proposition 16, the residuum of R(-, T ) at r. Then P is a 
projection on the subspace spanned by v = (bi-1 •...• b1r~'+1)Jl1. I f x = ( x , ) , 
u=(«,) and ( r - T ) u = ( l - P ) x , then for /^2 

u, = ... -V~,+1 O&i-i- •••' + 

where ¿0 is uniquely determined by Px=B0v. I f x 2 > 0 , but x , = 0 for i V2 , then 

x s O , x^O. Therefore ¿ 0 >0 , and 

Ui = b j - x - . . . • b2/- - ' [ rZ>1u1 + /-;c2 — (/— 1 ) £ 0 ] if 

Clearly, it is not possible to choose I/J in such a way that.«,- is non-negative for all i. 

Therefore the equation (R— T)u=(l — P)e2 has no solution MSO. Nearly the same 
argument proves that ( r — T ) w = ( l — P ) x has no solution i/S0 if a; is a "finite 
sequence", x s O , x^O. 

On the other hand, if we take x such that X j = 0 and 

Xi = ¿¡-i •... - b1r~i+1x0 if i > 1 

where x o > 0 , then x^O , x ^ O , and 

Mj = 6 j _ 1 . . . . . f e 1 r - ' [ ' " " x + 0 ' - l ) ( - « o - ^ 6 ) ] ' if i ' = 1 -

W e show that x0>B0 in this case. There exist solutions « of (r— T)u={\ — P)x; for 
the first coordinate in this equation we get using /(1//•) = ! and w; as above, 

and this implies S 0<x 0 - Therefore, for these special x£E we have nonnegative 
solutions u of the equation (V— T ) « = ( 1 — P)x, if we choose a solution with 

This example can also be used to show that the algebraic (or generalized) eigen-
space to the spectral radius o f a compact, non-negative operator need not have a basis 
of non-negative elements. 

E x a m p l e 18. Let E=lpXl" and" 

where 7] is the operator of the last example and SL is a compact, non-negative, non-
zero operator in lp. E is an order continuous Banach lattice, T is compact and non-

negative, and r=/ ( r ) = r ( 7 0 > 0 is a pole of order 2 of R( •, T). Let x = 
then (r-T)2x=0 is equivalent to 2 

( * ) (r-T.fx, = [(r-TJS. + S^r-T^Xz and (r-T.fx, = 0. 

- Z aibi-i-••••b1 r-'(i-l)(x0-50) = x1-S0 =-£< 'o. 
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Since 7i is irreducible and compact, r = r(T1) is a pole of order 1 of R( •, 7\), there-
fore O ) is equivalent to (r-T1)x2=0, (r—7\)2x, = ( r—71)S 1 x 2 , and the last equa-
tion has a solution xx. I f x2^0, then x2 generates N(r— 7^), so we have (r— T1)x1 = 

= S1x2—Äx2=(l — P1)S1x2 for some X, where P1 is the residuum of R( •, 7[) at r. 

Therefore ( r — T ) 2 x = 0 is equivalent to 

(r—T1)x2 = 0 and (r-TJxj = (\-P1)S1x2. 

For each x ^ O in N((r—T)2) with (r—T)x?i0 we have to and may choose x 2 ^ 0 , 
x2 7^0, in N(r—7i), therefore x2 is a quasi-interior element in /p. Since SiSsO, 
SL9£Q, we have S, x2=0, S1X2T£0. N o w we have to look f o r a solution x1=S0 o f 

(r— 7i)xx = ( l — POSVxü. But such a solution does not exist in general, since 7i is 
the operator of the last example and we can obtain each non-negative, non-zero 
element in l" as by an appropriate choice of ^ (as a one dimensional non-nega-
tive operator). 

As a final remark we recall that U. G. ROTHBLUM [8, Theorem 3.1] has shown 
that for a non-negative matrix the algebraic eigenspace to its spectral radius has a 
basis of non-negative elements. Generalizing a result of H. D. VICTORY, JR. [11, 
Theorem 1] on integral operators in //-spaces, J. KÖLSCHE [5, Satz IV. 2.2] has 
proved: Given e > 0 arbitrarily, for a non-negative, eventually compact operator T 

in an order continuous Banach lattice there exists a basis for the algebraic eigenspace 
of T to r(T) such that every vector in this basis has norm 1 but its negative part 
has norm smaller than or equal to e. The last example shows that, in general, e has to 
be positive in this assertion. 
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