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Arithmetical functions satisfying some relations

IMRE KATAI*)

1. Let A(A*) be the set of additive (completely additive) functions, M(M*)
be the set of multiplicative (completely multiplicative) functions. |x||= }‘121%1 |x—k].

Let L,(n):=fo(n)+fi(n+a)+...+fi(n+a), where f,cA* and a,,...,q, are
mutually distinct natural numbers. It is probable that || L (n)]| -0 (n— <) implies
that f;(n)=t;logn+u;(n) (mod 1), with some 7;¢R such that 74+...4+7,=0
and L,(n):=uy(n)+u,(n+1)+...+u.(n+a,) satisfies L,(n):=0 (mod 1) for every
n=1. This question was raised by the author and solved by E. Wirsing in the
special case k=1.

Furthermore we guess that

(1.1) L(n)=0 (mod1) (n=1,2..)

implies that u;(n)=0 (mod 1) for every n€N and for every j. This was proved for
k=3, a,=1, a,=2, a,=3 1in [2]. Marijke van Rossum investigated the solutions of
the relation

(12)  go@)+er(@+ D) +g:(2+2)+25@+3)=0 (mod ) (VacG),

where g, ..., g3 are completely additive functions defined on the set of G of Gaus-
sian integers. She found that (1.2) has only trivial solutions.
The simple idea to prove that a recursion

(1.3) L) = fo(M+A@+ D+ ... +fi(n+k), Lyn)=0 (mod 1)

has only trivial solution, is the following one:

1) Initial step: by taking L (n)=0 (mod 1) for n=1,2, ..., N with a large N,
solving a linear equation system without multiplication and divisions, one con-
clude that f;(n)=0 (mod 1) holds true for all # up to N,.
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2) Induction step: If (1.3) holds and f;(n)=0 (mod 1) holds for k=1,2,...,n,
then it is true for k=n41 as well, assuming that n=N,, where N;=N,.
The initial step can be handled by using computer for a moderate size of k. The
induction could be deduced simply from the following.

Conjecture. For every integer k=1 there exists a constant Cy(k) such that
pmin  max max{P(jQ+)), P(j@—D} < Q
hold for every prime Q=C,(k). Here P(n) denotes the largest prime divisor of n.
This is clearly true, if £=1, by choosing j=1. The conjecture is open for
k=2, and even in the case k=1 if we exclude j=1.
In Section 2 we shall prove the following

Theorem 1. Let a, § be positive integers, f,, fz, f2€ A* such that L(n):=f,(n—a)+
+/£2(n) +f3(n+8) satisfies the relation

14 L(n)=0 (mod 1),

for every integer n=a+1. Assume furthermore that f;(n)=0 (mod 1) for j=1,2,3
and for all n=max (3, a+4). Then f;(n)=0 (mod 1) (j=1,2,3) for all ncN and
j=1,2,3.

Hence immediately follows
Theorem 2. If fi,fs,f:€4* and
(1.5) fin—a)+foi(n)+f3(n+b) =0

holds for all n=a+ 1, then for every prime p=max (3, a+b) the values f,(p), f2(p),
f3(p) are determined by the collection of the values f,(q), f:(q), fs(q) taken on at
primes q=max (3, a+b). Thus the set of solutions (fi, [z, fs) of (1.5) forms a
finite dimensional space.

Let E denote the operator Ex,=x,,; in the linear space of infinite sequences,
and for an arbitrary polynomial P(z)=a,+a,z+...+a,z* let P(E)x,=a,x,+
Fa,x,41+... +a,x, 1, A. SARKOZY [4] determined all fe M which satisfy a linear
recurrence. From his theorem one can deduce immediately the following

Lemma 1. Let B=1 beaninteger, f¢M for which f(n+B)=f(n)(n=1,2,...)
holds. Then either f(n)=0 for all neN, or f(n)=yxa(n) for all n coprime to B,
where xg(n) is a character mod B. Let B=B,B,, (B,, By)=1, B,=p}...p%", where
f(pi)=0 (j=1, ...,r), By=g}...q%, where f(qf")=0. The cases B,=1 or B,=1
areincluded. Let &, be the largest exponent (6,=0) for which f(q?)=0. Then 0=6,<
<B,'(I=1,...,8). Let D=gP%.. . qfs=% Then yg(n)=yxp(n) for (n,B)=1, ¥p
is acharacter mod D. Furthermore f(p")=f(p%) xe(p'™) holds for all p*|B and y=>a.
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All the functions with the above conditions are periodic mod B.

In Section 3 we give all the solutions of V(n+k)=U(n) (n=1,2,...) for
U,VeM under the condition U(n)#0 if (n, k)=1. This equation for completely
multiplicative functions was solved earlier in [1]. We present it now as

Lemma 2. Let G(n+k)=F(n) hold for all neN, F,GeEM*, F(n) be non-
identically zero, F(n)=0 if (n,k)>1. Then

a) F(m)=Gn)=yx,(n) is a solution for an arbitrary nudtiplicative character
1 (mod K),

b) there is no other solution if 4|K or if (2 K)=1,
¢) if K=2R,(R,2)=1, then all further solutions have the form

F(n) = x(n, 8)yYr(n), G(n) = x(n, 4)F(n),
where g(n) is an arbitrary character mod R, x(n,4) is the nonprincipal character
mod 4, and y(n, 8) is the character mod 8 defined by the relations.
1 n=+1 (mod 8)
w={_, -
1 n=43 (mod 8)
1 n=43 (mod 8)
*s(n) = {—1 n=35,7 (mod 8)

if R=1 (mod 4),

if R=—1 (mod 4).

The equation G(n+k)=F(n), F(1)#0 implies that F(n)G(n)=0 for (n, k)=1,
assuming that F and G are completely multiplicative. This is not true if we assume
only that F, GeM.

In Section4 we solve the equation G(n+1)=F(n) for F,Ge¢M without any
additional conditions.

2. Proof of Theorem 1. The case a=b=1 has been proved in [2]. We may
assume that (a, b)=1. Indeed, by substituting #8 into the place of n, observing
that f;(6)=0 (mod 1), we have

H(n—a)+f(m)+fs(n+a) =0 (mod n) (¥n),

and f;(n)=0 (mod 1) (j=1, 2, 3) for every n=max (3, a+b), a=da,, b=5b,.

Let A4, denote the event that f;(n)Z0 (mod 1) holds for at least one j. We
shall prove that under the condition of the theorem there exists no such an integer.
If such an n exists, then n=k+1, furthermore the smallest n for which 4, is true
has to be a prime number P,

Now we distinguish three cases according to the parity of g and b. Let k=a-+b.

Case I: a-and b are odd numbers. Since P is the smallest integer n fbr which 4,
is true, therefore f3(P)=0 (mod1) cannot occur, since f,(P—a)=0 (mod 1),
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b<P.

ﬁ(P—k)EO (mod 1). Similarly, f,(P)=0 (mod 1), since 2|P+b, and

P+a<R

Thus f;(P)=a (£0) (mod 1). Since L(P+a)=0 (mod 1), apd 2lP+a,
Jf2(P+a)=0 (mod 1), therefore f3(P+k)=—e (mod 1).

. k
Let now Olk, 6>1. Since L(P+a)=0 (mod 1), L (P-i-———-b]EO (mod 1),
therefore . B

2.1) £(OP)+ 6P+ a)+f,(6P+k) = 0 (mod 1)

(2.2) f,(P+§+k)+f2(1’+-§—b]+ﬁ,[P+—§-) = 0 mod 1),

fi [P+§—k]§0 (mod 1). If f3(P+k/6)Eﬁ;¢_Q (mod 1), then k/§ is an even
number, since in the opposite case 2|P+k/8, and from %(P+k/6)<P it would
follow f,(-)=0 (mod 1). But then f,(P+k/6—b)=—p#0 (mod 1), P+%—b is
an even number and %[P +—§-—b)<P. This cannot be occur. Thus f(6P+ k)=
=/,(5)+/s [P+§]Eo (mod 1). So we have

2.3) f2(6P+a) = —a (mod 1) whenever dlk, 6 > 1.

Assume first that 3|k. Then, from (2.3) we have f,(3P+a)=—a (mod 1).
Since 2|3P+a, therefore 3P+a=2Q, where Q is a prime number, P<Q<2P,
Since f1(Q@Q—a)+f2(Q)+/3(Q+b)=0 (mod 1), 2|Q—a, 2|Q+b, Q—a<2P, Q+b<
<2(P+k), therefore f,(Q—a)=0 (mod 1), f5(Q+b)=0 (mod 1), and so f,(Q)=
=0 (mod 1), «=0 (mod 1). It remains the case 3{k. Since f;(P+k)=Z0 (mod 1),
and from (2.3), f,(2P+a)#0 (mod 1), thus P, P+k, 2P+a ‘are prime numbers.

Assume first that 3{a. Since P=3, therefore either 3|2P+a or 3|4P+a.
Since f,(2P+a)#0 (mod 1), therefore 3{2P+a, so 3|4P+a. Let us consider now

(2.4) £i(8P)+fo(4P+a) +fo(4P+k) = 0 (mod 1).

We shall prove that f,(4P+a)=0 (mod 1). Since 4P+a=30Q, it is true, if Q is
a composite number. If it is a prime, then we may consider

H@—a)+fo(D+/f:(2+b) = 0 (mod 1),

which by 2|0-+b, 2|Q—a, Q<2P gives that £,(Q)=0 (mod1). So, from (2.4)
we infer fy(4P+k)=—o (mod1). If 4|k, then it cannot be occur, since P+k
is the smallest integer n for which f;(n)20 (mod 1). If k=2l (/,2)=1, then
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f:RQP+D)=—a (mod 1). If k=2I, (/,2)=1, then f3(2P+1)§—a (mod 1). But
(2.5) fHQRP-D+f,2P—1+a)+f;(2P+]) = 0 (mod 1).

Since 2la—I, 2{2P—I+a<2P+a, therefore f,(2P—I14+a)=0 (mod1), and so
f1(2P—1)=a (mod 1).

Since 2P—1, (2P—1)+1=2P, 2P+1 cover all the residue classes mod 3, 3{2P;
thus 3|2P+/ or 3|2—/. Both of these cases imply that «=0 (mod 1).

It remains the case 3la and 3{k. Then k=b (mod 3). Let Q:=P-+k. Then
f:(@)=—a (mod 1). Let us consider f,(20—k)+/:(20—b)+/3(20)=0 (mod 1).
Since 20—-k=20Q—-b (mod 3), 3]20—b, and 2Q—-b<3(P+a), would imply
(20 —b)=0 (mod 1), /,(20—k)=0 (mod 1), thus we may assume that 312Q —b.
But'then P, P+k, 2P+k, are coprime to 3. Since 3k, 3{P, therefore either
P=k (mod 3) or P=—k (mod 3). In both cases, at least one of P, P+k,2P+k
is a multiple of 3. This is a contradiction.

By this the proof of Case I is completed.

Case 1I: a is odd, b is even. Let n=P be the smallest integer for which 4,
holds true. Then n is a prime, P>3, P>k. We can see, similarly as earlier, that
fo(P)=0z20 (mod 1) with some «, f,(P)=0, f,(P)=0 (mod 1). Observe that
Js(m)=0 (mod 1) if n<P+b, and that fy(P+b)=—a (mod 1), which immediately
follows from L(P)=0 (mod 1). Furthermore, we can get that f,(nr)=0 (mod 1),
if n<2P—a. Itis enough to prove this for odd, even for prime number integer n=0Q.
Since L(Q+a)=0 (mod 1), 2|Q+a, 2|Q+k, Q-+a<2P, therefore f,(Q+a)=
=0 (mod 1), f;(0+k)=0 (mod 1), and so f;(Q)=0 (mod 1) as well. Then, for
olb, 6=1, we get that f;(6P+b)=0 (mod 1), and by L({P)=0 (mod 1), that

(2.6) fioP—a)=—a (mod 1) if 46lb and 6= 1.

Let us consider the equation L(3P)=0 (mod 1).

Since 2|3P—a, 3P—a=20Q, Q<2P—a, therefore f,(3P—a)=0 (mod 1). This
implies that either =0 (mod 1), or 31b, furthermore in the second case that
fs(3P+b)=—a (mod 1). Thus 3P+b is a prime number since if it would be
composite then its prime factors would be smaller than P+b. So P, P+b, 3P+b
are prime numbers greater than 3, thus P=b (mod 3).

Since 2|b, thus from (2.6) it follows that 2P ~a is a prime, and so that 312b—a.
1f 4]b, then by (2.6) we get that 4P—a is a prime, and f,(4P—a)=—o (mod 1).
Assume that 2)|b, b=2b, . Since P=b (mod 3), P=2b, (mod 3), from L(2P+b,—b)=
=0 (mod 1), by 2|2P+b,—k<P, 3|12P+b,—b we deduce that f,(2P+b,—k)=
=0 (mod 1), f/,(2P+b,~b)=0 (mod 1), and so that f,(2P+b,)=0 (mod 1). But
then, from L(4P)=0 (mod 1) we have

f1(4P—a)+f2(4P) +f3(2(2P+ b)) = 0 (mod 1),
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and so that f;(4P—a)=—a (mod1). Thus 4P—a is a prime, since in the case
4P-a=30, Q<2P—a would imply f,(4P—a)=0 (mod 1). So P, P+b,2P—a,
4P—a are all prime numbers which can be occur only if 3|a.

It remained to consider the case 3ja, P=b (miod 3). Furthermore f,(4P—a)=
= —a(mod 1). Since 3|2(P+b)—b, 3|12(P+b)—b—a, and L(2(P+b)—b)=0(mod 1),
therefore f,(2(P+b)—b)=0 (mod 1), f,(2(P+b)—b—a)=0 (mod 1), consequently
/£:(2(P+b))=0 (mod 1), which implies a=0 (mod 1).

The proof of Case II is completed.

Case III: a is even, b is odd. Then we have f,(P)=«(z0) (mod 1), fo(P+a)=
= —o (mod 1, P+a is a prime number, Furthermore, f;(#)=0 (mod 1) if n<P+a.
Now we observe that f3(n)=0 (mod 1) for all n<2P+k. Since f,(2)=0 (mod 1),
therefore enough to prove this for odd prime Q. Let Q<2P+k.If f,(Q)Z0 (mod 1),
then by L(Q—b)=0 (mod 1) we have that f,(Q—k)+/,(Q—b)Z0 (mod 1). But
2|0—b, 2{Q—k, and Q—k<2P, Q—b<2(P+a). Consequently f3;(Q)=0 (mod 1).

Let éla and 6>1. By f;(P+4a/6)=0 (mod 1), and L(6P+a)=0 (mod 1)
we deduce that

@7  fGP+k)=—a (mod 1) if 6>1 and dla
k

Let ulk. Since L{uP+a)=0 (mod1) and ﬁ,[uP+u-—]EO (mod 1), therefore
n

2.8) fi(uP+a)y=—a (mod 1) if plk.

Assume now that u>1. Then L(2uP+a)=0 (mod 1), 2uP+k= (u2P+k/u),
2P+ klu<2P+k, f;(2uP+k)=0 (mod 1), and so

2.9) f2QQuP+a)=-—-o (mod 1) if ulk and pu=>1.
So P, P+a,2P+k are prime numbers.

3P+k
Since 2|3P+k, —-—5—-— <2P+k, therefore f;(3P+k)=0 (mod 1), and so, by

L(3P+a)=0 (mod 1) we have f,(3P+a)=—a (mod 1). This implies that either
=0 (mod 1) or 3Ya. Assume that 3{a. Since P, P+a are primes larger than 3,
therefore P=a (mod 3). If 4|a, then f;(4P+k)=—a (mod3) and 3 cannot be
a divisor of 4P+k if a#0 (mod3), consequently 4P+k is a prime number.
If 2|a, a=2a,, then by

fHi@P)+£,(22P+a))+ f5(4P+k) = 0 (mod 1)
fiRP—a)+fa(2P+a)+ fs(2P+a,+b) = 0 (mod 1)

and by taking into account that 3|12P—a,, 2|a,+b, first we deduce that f,(2P—a))=
=0 (mod 1), f3(2P+a,+b)=0 (mod 1) and so that f;(2P+a,)=0 (mod 1), we
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have f;(4P+k)=—o (mod 1). This implies that 4P+k is a prime number. Since
0, 2P, 2.2P are incongruent residues mod 3, therefore so are k, 2P+k,4P+k,
consequently one of them is a multiple of 3. Since 2P+k, 4P+k are primes larger
than 3, only the case 3|k can be occur. Assume that 3|k. Then a=—b (mod 3).
From
f12P+a)+f5(2P+2a) + f3(2P+2a+b) = 0 (mod 1)
we have 3|2P+a, 3|2P+2a+b, which implies that f,(2P+a)=0 (mod 1),
f:(2P+2a+b)=0 (mod 1), and so that f,(P+a)=0 (mod 1), which can be occur
only if a=0 (mod 1).
This completes the proof of Case IlI. The theorem is proved.

3. Let us consider now the equation
3.D Vin+K)=Umn) @©m=12..),

where U, V are multiplicative functions, K is a fixed positive integer. We are in-
terested in to give all the solutions under the condition

(3.2 ' U(n) 0 whenever (n,K) =1

The same equation for completely multiplicative functions was considered in our
earlier paper [1]. We solved (3.1) for K=1 assuming (3.2) in [1]. The case K=1 is
more complicated. Assume that (3.1) and (3.2) hold.

Let
3.3) H(n):=

be defined on the set of integers s, coprime to K. Let furthermore

(3.4) 8,(m) = H(p) H(m) H(m+k) ... H(m+(p—2)K).
If (p,n(n+K))=1, then
_ Vlp(n+k) 1
(3) HO) = —Gomy = Hon+ B B+ (p-DEK)’
ie.
3.6) 0 (pn+K)y=1 if (p,n(n+K))=1

Let p>q,r=p—q+1. Then
8,(m) = H(p)[Hm)H(m+K) ... Hm+(g—2)K)] x
X[H(m+(g—-DK) ... Hm+(p—2)K)] =

Sym) 8,(m+@—1K)
H(q) H(r) ’

= H(p)
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and so
H(@H(r)  9,(m)-6,(m+(@—-1K)~
We should like to give some conditions which imply that the right hand jsigie
equals 1. This holds true if all the next relations are satisfied, with a suitable in-

teger m:

(3.8) m = K(modp); m = K(mod q); m+(q—2)K=0 (modr),
—-K ~DK - -DK

(3.9) (”’p -m+(’;) ) ,p]=1;[qu-m+(‘fI ) ,q]=1, '

(3.10) (’"+("r_2)K- m+(g- l)rK—K“L’K ,r) =1; (pgr,K)=1.

Let
K* = { K if K iseven,
2K if K is odd.

Assume that r is given, (r,K)=1. Let 1 be an integer which will be chosen
later, n:=AK™*. Let p and ¢ by defined by
p=1+mr, g=nr+1
If (3.8), (3.9), (3.10) hold with some m, then

(3.11) H(p) = H(1+AK*)H(r)

is valid.

We shall search m in the form m=pgv+K. The conditions m=K (mod p),
m=K (mod q), m+(q—-2)K=pgv+(g—1K=0 (mod r) are satisfied clearly, the
condition (pgr, K)=1 is equivalent to (r(1+n((yr+1),K)=1 which is true since
(r, K)=1 was assumed.

We have
m;K_ m+(1;— HK ) m;K ) m+(c;—- DK
m+(g—2)K = pgv+(g~ 1)K = [(1+n)qv+1K]r,
m+(g—2)K+rK=[(1+n)gv+ @+ 1)K]r = (1+n)r(qv+K).
So, to satisfy (3.9), (3.10) we have to find such v, for which

(3.12) (gv(gv+K),p) =1, (pv(pv+K),q) =1
(3.13) (((M+ngv+nK)-A+n)(gv+K),r) =1

simultaneously hold.

= pv(pv +K),
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The condition (p, g)=1 will be guaranteed by restricting r to satisfy the re-
lation

(3.19) (rr=1,1+n) =1

Since n is an even number, there exists such an r. Now we prove that (3.14)
implies that (p,q)=1. Assume the contraty. Let §|(p, g), d be a prime number.
Since p=(1+n)r, g=yr+1, therefore &fr, and so é[{1+n. But g=(n+1)r+
+(1—r), whence d]1—r. This case was excluded by (3.14).

Now our conditions can be rewritten in the form

1) (v(pv+K), q) = 1
) (W(gv+K),p) =1
(3) ((T+mgv+nK,r) =1
@ v+ Kr)=1.

Since (2) implies (4), therefore (4) can be omitted. Since p=(1+#)r, then we
may substitute them with

(A) (v(pv+K)q) =1
(B) (v(gv+K),r)=1
© (vi@v+K), (1 +m) =1
(D) (A+mgv+nK,r)=1.

- . Since (p, q)=1, therefore (g,r)=1, consequently ¢, r, 1+n are pairwise
coprime integers. To prove that (A), (B), (C), (D) hold simultaneously with a suit-
able v, it is enough to show that there is a solution of (B) and (D), furthermore that
of (A), and of (C).

Since ¢ and 1+4# are both odd numbers, therefore (A) and (C) can be solved.

Assume that there exist no v for which (B) and (D) would hold simultaneously.
Then there exists a prime divisor Q of r such that for every integer v, either
(v(gv+K), Q)=Q or ((1+n)gv+nK, Q)=0. Let us observe that it can be occur
only if @=3, ie.if 3jr.

If 3jr, then 3K, g=1 (mod 3), thus we have v(gv+K)=v(v+K) (mod 3),
(A+n)gv+nK=(1+n)v+yK (mod 3). If 3|, then the last congruence can be
reduced to =v (mod 3). In this case (B) and (D) can be solved as well.

" We shall exclude the case when 3|r and 31y, i.e. the case: 3|r and n=1 (mod3.)

Since H(p)=H(q)H(r), by (3.9) we have

(3.15) H(1+2K*) = H(1 +ArK*)
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if

(3.16) (rr=1),14+iK*) =1 (r,K)=1
and in the case 3|r, the relation 53 1(3) holds.

‘Lemma 3. If (A, K)=1, (u,K)—I and in the case 31K, IK*#1 (mod3),
uK*#1 (mod 3), then ,

3.17) ' H(1+AK*) = H(1+uK*)
Proof. We can find positive integers r and s such that

(3.18) rd = sp

and

(3.19) (rc—1),1+1K*) =1

(3.20) (s(s—1), 14+ pK*) = 1.

Indeed, if 86=(4, p), A=564;, p=du,, then r=yt, s=At is a solution of
(3.18) for every positive integer 7. Assume that (¢, K)=1. Then (r,K)=(s,K)=1
holds true. Since K is coprime to both of the integers 1+iK*, 14+ pK*, we have
to consider only the solvability of (3.19) and that of (3.20). Both of them have
solutions.

Assume that there exists no ¢ for which (3.19) and (3.20) would be satisfied.
Then there would exist a prime divisor Q@ of (1+2K™* 1+uK*) such that
ity t—1)- A, (A4 t—1)=0 (mod Q) holds for every integer 1.

We have (A u,, Q)=1. Furthermore Q(A—pw)K*, (Q,K*)=1, therefore
Ql6(A4,— ;). Ql6 cannot be occur, thus A, —pu, =0 (mod Q). Consequently our
congruence can be reduced to the form #(4;z—1)=0 (mod Q). But it has at most
two solutions mod Q, consequently there is a ¢ for which both of (3.19), (3.20) holds.
By this we proved our Lemma 3.

Lemma 4. If A=B (mod K*K) and (4, K*)=1, then
(3.21)  H(4) = H(B).

Proof. Let 31K. Assume first that 314 and 3{B or 3|(4, B). In the former
case let 4,=3A4, B,=3B, in the second case A=A,,- B=B,. In both cases
A,=B, (mod 3).

If @ is such an integer for which 4,80=1+K* (mod K*K) holds, then
B,@=1+K* (mod K*K) is satisfied as well. Writing 4,0=14+1K*, B,@=1+
+uK*, AK*#1, puK*#1 obvxously hold. Since the solutions @ give a whole residue
class (mod K*K), which is reduced to the module, we can choose © to be a large
prime. By Lemma 3 we have H(4,@)=H(B,0), which implies that H(A4,)=H(B,),
and so that H(4A)=H(B).
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. If 3|4, 31 B, then the general solution of the congruence BO =1+ K* (mod K*K)
can be written as @=0*+hK*K (h=0, 1,2, :..) ‘where ©* is a particular solu-
tion. Since BO=BO*+hBK*K (mod 3), 3 BK*K, therefore BO® =1 (mod 3) "holds
if h is falling into the appropriate residue class mod 3. Then A4©=0 (mod 3).
We may choose © to be a large prime, and by Lemma 2, H(480)=H(B®) we con-
clude that H(A)=H(B).

In the case 3|K we get the lemma similarly, but without taking care of the
requirements AK*#1, uK*#1 (mod 3).

Let y, be the principal character mod K*K. Since the conditions of Lemma 1
are satisfied for the function f(n):=y,(n)H (n), B=K*K, therefore there exists a
character yg.x such that

(3.22) H(n) = yg+x(n) whenever (n, K*K)= 1.

We distinguish two cases according to the parity of k.
Case K=even. For every m, n integers coprime to X, let

. U@mn)
A0 Gy Oy
1 m
S(m, n) = X(TK—)IQ x(mn+lK),

where y is the character given in (3.22). Since y is periodic mod K2, fherefore
S(m,n) is periodic mod K? in both of its variables m and n. Furthermore,
A(m,n)=1 if m and » are coprimes.
Since

Un)y=Vn+K)=Hn+K)Un+K) = y(n+K)YU(n+K),
consequently
U(nm) = x(mn+K) y(mn+2K) ... x(mn+mK) U(m(n+ K)) = S(m, n)U(m(n + K))-
ie. -
(3.23) A(m,n) = S(m, n)
holds under the condition (mn, K)=1, (myn+K)=1.

Let p be an arbitrary prime, (p, K) 1. Then p is an odd integer. Take m=p°*,
U

upyue’
A(p*, pv) = S(p*, pv)-
Since S(p°% pv) S(p pv+K3)= A(p pv+K¥H=1, we deduced that

U(p**Y) = U(p*)U(p)

n=pv, where (v,p)=1. Then A(p* pv)=

Since (n+K,m)=1
clearly holds, therefore ‘
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valid for all prime pover p* coprime to K. This shows that U is completely multi-
plicative on the set (n, K)=1. Since V'=H-U, and H is completely multiplicativé
on the set (n, K)=1, so is ¥, Therefore, we may apply Lemma 2 for the charac-
terization of the solution (U, V) at least on the set (n, K)=1.

Case K=o0dd. Let n=2v, y=1 and (v, K)=1. Then

_V@v+K)  VPY42K)  UQYH U@

'=—0aw ~oeea)  vouET - vaue TR
Thus we proved that
(3.24) HQ"*'v+K) = D,, forevery (v,2K)=1,
where
(3.25) D, = %% =1

Similarly, we can prove that

(3.26) H2"*'v—K)=E, forevery (v,2K)=1,
UQvQr
(3.27) E., = T(zﬁ_T) y=1

From (3.22) we know that H(n)=x(n) for (n,2K)=1, where y is a character
mod 2K? For odd K we can prove more, namely that H is periodic mod 2K. The
worst case is the case 3{K. Assume that 3{K.

If K*=1 (mod 3), then, by Lemma 2,
H(1+3K*) = H(1+4K*); (A=3,p=4),
if K*= —1 (mod 3), then

HA+2K*)=H(1+3K*) (A =2, pu=23),
consequently, by

H(1+vK*) = fors(1+VK*) = yop:(1+K*)" = H(1+K*)",

we get that H(1+K*)=y(14+K)=1. If 3|K, then we have H(1+K*)=
H(1+2K*), and conclude to the same result. But then H(1+vK*)=yax:(14+vK*)=1
holds for every integer v. If A=B (mod K*) such that (4, K*)=1, then one can
choose a large prime @ such that A@=1 (mod K*), which implies that BO=1
(mod K*), and H(4A®)=H(B®), whence by (A4, ©®)=(B, @)=1, H(©)=0, we
infer H(A)=H(B). So we proved that H is periodic mod 2K; consequently, by
Lemma 1,

(3.28) H@n) = yoe(n) if (n,2K) = 1.
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Let wus consider now (3.24). Observe that if vy, v,; ..., v,, S=@(2K) is a com-
plete reduced residue system mod 2K, then so is 2"*'w;4-K (j=1, ..., §). Indeed,
these numbers are coprime to 2K, and if 2'*'y,+K=2"*'v;+K (mod 2K), for
some suitable i=j, then K|(v,—v,). Since v;, v, are odd numbers, itherefore
2[(vi—v;), so v;=v; (mod 2K), which cannot be occur. It implies that the left-
hand side does not change its value if v run over a reduced residue set, whence we
have that H(n)=1 for every (n, 2K)=1, furthermore that D,=1 and s1m11arly
that E,=1 for every y=1. From the relation D,E,=1 we obtam that

y _ H(2) -
H2*) = D) =1,
which implies that H(22)=1. We shall show that there exists such an integer I
for which H(2")=H(2"+"), which will imply that H(2)=1, and so that H(2")=1
for every y=1.
To do this, let us consider the product

AGs,my = [] H(sm+IK)
=1

defined for positive integers s, n such that (sn, K)=1. Observing that for
(s,n+K)=1 we have

U(sn) = H(sn+K) ... Hsn+sK)U(s(n+ K)) = 4(s, ) U(s) U(n),
consequently, if additionally (s,n)=1, then
A(s,m) = 1.
Assume that the conditions
(3.29) =1 (@G.n+K)=1, (5 K)=0nK)=1

hold for some pairs of integers s, n. They imply that A(s,n)=1. Let us change n
by N=n+RsK, where R is an arbitrary positive integer. Since the conditions
(3.29) will be held replacing n by N, therefore A(s, N)=1 holds for all R=1.
Let A4;=sn+IK, then A4, <A,<...<A,_;. Let I} be so large that 4,_,— A4, <20,
Let us choose R=R, such that 27| 4,+s*R,K. Let by, ..., b,_, be defined as the
exponents of 2, such that 2”1]]A, +52R K (j=2,...,5—1). Itisclear that max b;<I;.
Now we choose an R, such that 27+ 4,+s2R,K. For this choice of R the ex-
ponents of 2in A4;4+s*Ryk (j=2, ...,5—1) are unchanged, 2%|A4;+s*R,K. Thus
we have

s—1 s—i
1 = A(s,n+ R, sK) = HQT) [T H2%) = HQ™Y ] HQ2b%) = A(s, n+ RysK).
1=2 =2
whence we have H(2")=H(2'*!).

3
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So we proved that U(m)=V(n) on the set (n, K)=1. By taking f(n)=
.=xo(n)U(n), where y,(n) is the principal character mod K,- we have f(n+K)=
=f(n) for all (n,K)=1. From Lemma 1 we get that .U(n)=V(n)=yx(n) on the
‘set (n, K)=1. Hence, by Lemma 3, after a simple discussion we shall deduce our

. Theorem 3. Let K=1 be an integer, F, GEM such that G(n+K)=F(n)
holds for every nt¢N, furthermore that F(n)=0 if (n,K)=1. Then the following
assertions hold: 4

(A) F(n)=G(n)=yx(n; K) on the set n,(n, K)= 1',
or '
(B) in the case K=2R, (R,2)=1, .
G(n) = x(n; HF(n); F(n) = x(n; 8)x(n; R),
Jor every n, (n,K)=1, where yx(n;4) is the nonprincipal character mod4; by

) -1 n=+1(mod8)
X(n’S)z{ 1 n=+3(mod?y) ¥ R=1(modd),

1 n=13(mod8)
1(n; 8) = {_1 n = 5,7(mod 8) if R =—1(mod4).

(C) If 6=1 and p**|\K, then F(p®)=0 holds if and only if G(p®)=0 is
satisfied. In the case (A), if p is odd and F(p®)#0 then G(p*)=F(p®) and y(n;K)
is periodic with the period K/p®. In the case (A), if p=2 and F(p®)>0, then y(n;K)
is periodic with the period K/2°~* and G(p®)=y(1+(K/2%); K)F(p®). In the case (B),
if p is odd, then G(p®)=x(p’; DF(p®), and F(p®)s20 implies that y(n;R) is
periodic mod R/p®.

(D) In the case (B), F(2")=G(2)=0 for every y=1.

(E) If p°IK, then F(p*)=0 is true if and only if G(p*})=0 for every Y=o
Jurthermore G(p*)=0 if and only if F(p")=0 is satisfied for every y=>u. If p>2,
then the statement G(p)=0, F(p)=0 are equivalent.

) (F) If p°IK and F(p®)=0 or G(p*)#0, then y(n; K) isinduced by y(n;K,),
‘K=p°K, in case (A), and y(n;R) is induced by y(n;R,), R=p*R, in case (B).

(G) In case (A) let K=B,B,, (B,, B,)=1, where B, is the product of those
‘prime powers p*, p°|K, for which at least one of G(p*)#0, F(p*)=0 holds. Then
x(n; K) is induced by some character y(n; B,), and

G _ F() o
2 By~ By Jreery=9
Fo) G

= or ever x),
By - 2o By =9
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moreover for p#2,
F(p%) = G(p%)
hold.
(H) In the case (B) let R=D,-D,, (D,, D,)=1, where D, is the product of the
prime powers p°, p*|R, for which F(p*)>0, then y(n; R) isinduced by a character
x(n; D,). Then ' .

o) F(p?) .
a(pi 7)== x(P7 8)x(p”;s D) a(ps @)
G(p?)

< )= = b(p:
b(p; y)_ x(p7; 8) x(p"; D») (7:7)

hold for every y=uw, furthermore

G(p") = X(p*; D E(p")
for every y=a.
If F and G is such a pair of functions for which the above conditions hold, then
the relation G(n+K)=F(n) (n€N) is satisfied.

Proof. We shall prove only the necessity of the conditions, the sufficiency
part can be verified easily. (A) and (B) were proved earlier. To prove (E) take n=p?v,
where y=uo, (v, K)=1, and consider only the equations G(p’v+K)=F(p'),
F(p'v—K)=G(p"v). Since p’vEK=p*"(p"~*vtK,), K=p°K,, and (p"~*v£K,, K)=
=1, F(p?*v—K)=0, G(p"*v+K,)=0, and since the same is true if y=0o, p=>2,
for v, (v(v—K,), K)=1, we obtain (E).

Now we prove (C). The assertion that F(p®)=0 iff G(p?)=0 is clear. Con-
sider first the case (A). Assume that F(p®)=0. Let n=p®v, K=p*K,, p°IK, é<u.
Then G(p?)G(v+p*—2K,)=F(p®)F(v), whence

G 2(v; K) .
3.30 a:= = if (v,K)=1.
39 Fo) a0 kn By R
If we write this equation replacing v by v+s p*~'K;, and multiply the equations
for 5=0, ..., v—1, we get that
2= x(v; K)
1 +vp*°Ky; K)°

whence we obtain, that
a’ = I
~ x(1+p* K, K)

is true for every v, (v, K)=1. The right hand side does not depend on v. If 2{/K
we can choose v=1, v=2 and conclude that a=1. If 2|K, then we take v=K—1,

3%
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v=K+1, and deduce that a*=1. In both cases we have

' X(v+2p"°K,, K) = x(v; K) if (v K) =1,
which implies that x(v, K) is periodic with period Zp"’,Kl, and so it is periodic
with (2p*—°K,, K). This implies condition (C) for the case (A).

Now we shall consider case (B). Observe that for the characters given in (B),
the product
x(u;8)
3.31 T, = = -
@3 R0 TR 81 B
for every odd u and for R=+1 (mod 4).

Assume that p=2, p’|R, R=p*R,, p*|R, 6<a. By choosing n=p%ax, starting
from the relation G(p®)G(v+2p*~2R,)=F(p®)F(v), substituting the values for
F(v) and G(v+2p*~®R,) given in (B), after some calculation we obtain

G(»%) _ 5. 5 2(v; R)
F(pa) - —Z(p P} 4)TR(p V) x(v+2p¢_6Rl; R) s
whence, by (3.32) we have that
b= G(pa) _ x(v; R)

(P HEP) T (v +2" R R
for every v, (v,2R)=1. Arguing as at the former case we deduce that b*=1, and
so that x(-,R) is periodic mod4p*~°R,, and so mod (4p" %R, R)=p*~°R,.
But then b=1, G(p®)=yx(p’; 4) F(p®). This proves condition (C).

The next step is to prove (D). Assume that G(2)=0, choose n=2"v, y=2.
Then

GR)G2'"'v+R) = F(2")F(v)

and by using the explicit form of F and G, after some cancellation, we have
(332) G WH+R; )y W+R; )x(27; R) = F(2") x(v; 8).

If y=4, then the left-hand side does not depend on v, while y(v;8) does. It im-
plies that F(2")=0 for y=4, and so G(2)=0. We can prove impossibility of
the case F(2)0 similarly. By (C) the proof of (D) is completed.

Let us prove now (G). By choosing n=p'v, (v, K)=1, y>u, p*|K, K=K,p,
under conditions (A), we have

G _ x(v; K)
333 Fp) - 2K K

which is valid if G(p*)#0. Assume G(p*)#0. Then F(p’)0 holds for y=>a,
and the right-hand side does not depend on v. Let y=2x. Then the denominator
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is periodic modK,, which implies that y(v+K;;K)=x(v;K), consequently
2(v; K)=x(v; K;) with some character mod'K;, and so- the right-hand side is
x(p"~%; K,). This assertion hold for every y=>a, and in the case p><2 even for
y=a. The case F(p")>0- is.similar. Doing this for all p°, p%|B,, we getthat x(n; K)
is periodic mod B,, and this leads to the equations given in (G). We proved the
first part of (F), as well.

Let us finally consider (H). Let G(p*)=0. Let R=p°R,, y>a, n= p'v, (v, K)=1.
Then p=2. From G(p*)G(p"~*v+2R))=F(p’)F(v), we deduce that

Gr) 2% 8) _ 10, B) )
Fo) 1054 22k, B R

which by (3.31) and by choosing y=2a, gives that X(-, R) is periodic mod 2R
and so. mod R. Furthermore the right-hand side equals x(p"~*; R)), for every
y=a. We can deduce a similar formula assuming F(p*)>0. Doing this for every p7,
P°llD,, we can finish the proof rapidly.

By this the proof of our theorem is completed.

4. Let A4,GeM be connected by the equation G(n+1)=F(n). This was
solved in Section 3 under the additional condition F(n)#0 (n=1,2,...). It was
found that F(n)=G(n)=1 identically.

Let now & be such an exponent for which 2*—1=P, where P is a prime power,
P=Q#, allowing thecase f=1. Let G,, F,c M asfollow: F(1)=G(1)=1,G,(2)=1,
G,(2*)=F,(P)=arbitrary nonzero value, E,(n)=0 if n>=1, P; G,(n)=0if n1, 2, 2%
It is clear that F, and G, will be multiplicative functions, and the equation
G, (n+1)=E,®n) (n=1,2, ...). will be true.

It is an open question, whether 2*—1 can be a prime power for infinitely many
a or not. The list of a=2, 3,5 shows that such o values exist.

We shall prove the next ’

Theorem 4. If F,GEM and G(n+1)=F(n) holds for every ncN, then
either F(n)=G(n) are identically zero, or identically one, or there exists an integer
a=2 such that 2*—1=prime power=P, such that G(Q}=F()=G(1)=1, G(29)=
=F(P) and F(n)=0, G(n)=0 holds for all other n€N.

Proof. Let & be the set of those prime powers P for which F(P)=0, and
2 be the set of those powers @ for which G(Q)=0. Let 2, # denote the comple-
ment sets with respect to the whole set of prime powers. If 2 or 2 are empty sets,
then so are # and 2, and these lead to the equation F(n)=G(n) as it was proved in
Section 3. Thus, we' may assume that 2’ and' % are non-empty proper subsets of the
whole set of the prime powers.
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It is well known that all solutions of the Diophantine equation 3*—-2"=1]
are, x=y=1, and x=2, y=3 while 2*—3 =1 implies that x=2, y=1.

Lemma 5. Let P be the smallest integer n, for which F(n)G(n)=0. Then
P=prime power, furthermore P=2,4 or 8; F(P)=0 and G(P)O0.

Proof. It is clear that the smallest integer n for which F(n)G(n)=0 holds,
has to be a prime power P, and G(n)=F(n—1)>20. Thus F(P)=0.

Assume first that P is even, and P>2. Then P=2°. We have G(P+1)=0,
G(2P+2)=F(2P+1)=0. From the minimality of P we have that both of P+1
and 2P+1 are prime powers. Since at least one of them is a multiple of 3, there-
fore either 2°+1=3" or 2°+'4+1=3% which implies that P=4 or P=S8.

Assume that P is an odd number. Then G(P+1)=0, and we can get rapidly
that P+1=2°. If 3|P, then P=3° 2°-3°=1, whence s=2, a=1, ie. P=3
follows. In this case F(2)=0, F(3)=0. But F(2)=0, =G (3)#0, G(6)=F(5)=0,
F(10)=0, G(11)=0, =G (22)=0, =F21)=FQB)F(7)=0, =F(3)>20. This leads to
a contradiction. If 3|P, the 2P+1=0(3), G(2P+1)=0, and we deduce that
2P+1=3%, whence 25t1—3%=1, and so s=1, P=1 follows. This cannot occur.

We finished the proof of our lemma.

Lemma 6. In the notations of Lemma 5, P=4 or P=8 cannot be occur.

Proof.I.Thecase P=8. Then {2,3, 22,5, 7}¢2, {2, 3, 22, 5, 7, 2°}¢ &, whence
G(5-3.-7)=G(105)0, F(104)=F(23)-(13)=0, F(2*)»0, and this is a contra-
diction.

II. The case P=4. Then {2,3}c2, {2,3,22}¢2, and so

7=2-3+1€R, G(71:3) =GR21)=F(20) = F(5-4) =0, ie. F@4) =0,
contrary to our assumption.

Lemma 7. If & contains at least one odd prime powers, then F(n) and G(n)
are nowhere zero.

Proof. Assume that x is the smallest odd prime power in £. »*=3 would
imply that F(2)#0, and this case was treated earlier. Assume that x>3. Then
»—1 is a power of 2, since in the opposite case, x—1=2°4, 4>1 would imply
that F(2°)#0, G(2°+1)#0, and 2°+1<x. Thus x—1=2°€2. Since G(2)=0,
therefore 0#G(2x)=F(2x—1). If 3|x, then %=3% and from the equation 3°—
—2°=1 we deduce that either x=3 (b=1), or x=32 (b=2). If #=3 then 2¢2,
which was considered earlier. If %¥=32%, then

{2,3%}€2, 2%¢2, G(18) # 0, 17€2, F(136) F(8 17) # 0,
137¢®, G(1233) = G(9-137) # 0, F(1232) = F(2*-7-11) = 0, 11¢4,
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G(12)=G(4-3)=0, 3¢ &, which is a contradiction. Assume that 3{x. Then 3|2x—1,

F(2x—1)=0. If 2x—1 is not a power of 3, then 2x—1=3°B, where B>1, 3{B,

consequently B=5, 3°¢P, F(B)=G(B+1)=0, and the odd parts of both.of 3°+1,

B+1 have to be 1, taking into account the minimality of x. But then ¥r1=2

whence b=1, B=2'~1,d=3, and 2(2°+1)—1=3.(2/-1), ie. 2+'-3.29= 4,

which is impossible, since s+1=d=3. '
We finished the proof of our lemma.

Lemma 8. If 2 contains at least two distinct odd prime powers, then & contains
at least one odd number.

Proof. Let Q), 0,¢# be odd numbers. Assume first that (Q,, Q;)=1." If
the lemma fails to hold, then G(Q,+1)#0, G(Q,+1)0, G(Q,Q,+1)%0, and
so Q,+1=2% Q,+1=2° Q,0,+1=2° a=b=2. Then (2°—1)=(2*-1)(2°-1)
and the two sides of this equation are incongruent mod 2°.

It remains the case when Q,=Q", @,=0" with some odd prime Q.Let Q,+1=
=2% Q,+1=2%, a>b=2. Hence we get that Q,=—1 (mod4), ie. that Q=—
—1 (mod4), u, v are both odd numbers. First we observe that Q°+1|0"+1.
But then v»|w, which can be proved easily. Assume that u=kv+r, where O0=r<v, If
k is an even number, k=2h,

Q'+1 = (@™~ 1)+ 0 +1,

which by Q“+1|0* —1 implies that Q°+1|Q"+1, and this cannot occur: If k
is an odd number, then Q“+1=Q"(Q*+1)+(1-Q"), and by Q°+1|Q0*+1,
Q°+1|Q"—1, which implies that r=0.

So we have, u=kv, k is odd. In the same way, starting from Q°|Q", we deduce
that bla, a=bt. So we have

0°+1=2 QF+1=2% t=2f
Then
21 = (1) = —1+(1%.2° (mod 2°+1)

which is impossible for odd k.
The proof of our lemma is completed. By this we proved our theorem.

Remark. The general case G(n+K)=F(n) can be treated similarly, at least
for small fixed values of K, but it involves the knowledge of all solutions of Dio-
phantine equations like a*—b”’=h for some values of a, b, h.
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