Arithmetical functions satisfying some relations

IMRE KÁTAI*)

1. Let $A(A^*)$ be the set of additive (completely additive) functions, $M(M^*)$ be the set of multiplicative (completely multiplicative) functions. $||x|| = \min_{k \in \mathbb{Z}} |x-k|$.

Let $L_f(n):=f_0(n)+f_1(n+a_1)+\ldots+f_k(n+a_k)$, where $f_j \in A^*$ and a_1, \ldots, a_k are mutually distinct natural numbers. It is probable that $||L_f(n)|| \to 0 \ (n \to \infty)$ implies that $f_j(n) \equiv \tau_j \log n + u_j(n) \pmod{1}$, with some $\tau_j \in \mathbb{R}$ such that $\tau_0 + \ldots + \tau_k = 0$ and $L_u(n):=u_0(n)+u_1(n+1)+\ldots+u_k(n+a_k)$ satisfies $L_u(n):\equiv 0 \pmod{1}$ for every $n \ge 1$. This question was raised by the author and solved by E. Wirsing in the special case k=1.

Furthermore we guess that

(1.1)
$$L_{\mu}(n) \equiv 0 \pmod{1} \quad (n = 1, 2...)$$

implies that $u_j(n) \equiv 0 \pmod{1}$ for every $n \in \mathbb{N}$ and for every *j*. This was proved for $k=3, a_1=1, a_2=2, a_3=3$ in [2]. Marijke van Rossum investigated the solutions of the relation

(1.2)
$$g_0(\alpha) + g_1(\alpha+1) + g_2(\alpha+2) + g_3(\alpha+3) \equiv 0 \pmod{1} \quad (\forall \alpha \in G),$$

where $g_0, ..., g_3$ are completely additive functions defined on the set of **G** of Gaussian integers. She found that (1.2) has only trivial solutions.

The simple idea to prove that a recursion

(1.3)
$$L_f(n) = f_0(n) + f_1(n+1) + \dots + f_k(n+k), \quad L_f(n) \equiv 0 \pmod{1}$$

has only trivial solution, is the following one:

1) Initial step: by taking $L_f(n) \equiv 0 \pmod{1}$ for n=1, 2, ..., N with a large N, solving a linear equation system without multiplication and divisions, one conclude that $f_i(n) \equiv 0 \pmod{1}$ holds true for all n up to N_0 .

Received June 16, 1989.

^{*)} This work has been done while the author had a visiting professorship at Temple University, Philadelphia. The work was financially supported by the Hungarian Research Fund No. 907,

2) Induction step: If (1.3) holds and $f_j(n) \equiv 0 \pmod{1}$ holds for k = 1, 2, ..., n, then it is true for k = n+1 as well, assuming that $n \ge N_1$, where $N_1 \le N_0$.

The initial step can be handled by using computer for a moderate size of k. The induction could be deduced simply from the following.

Conjecture. For every integer $k \ge 1$ there exists a constant $C_0(k)$ such that

$$\min_{P(l) < Q} \max_{l=1,\dots,k} \max \{ P(jQ+l), P(jQ-l) \} < Q$$

hold for every prime $Q > C_0(k)$. Here P(n) denotes the largest prime divisor of n.

This is clearly true, if k=1, by choosing j=1. The conjecture is open for $k\geq 2$, and even in the case k=1 if we exclude j=1.

In Section 2 we shall prove the following

Theorem 1. Let a, δ be positive integers, $f_1, f_2, f_3 \in A^*$ such that $L(n) :\equiv f_1(n-a) + f_2(n) + f_3(n+\delta)$ satisfies the relation

$$(1.4) L(n) \equiv 0 \pmod{1},$$

for every integer $n \ge a+1$. Assume furthermore that $f_j(n) \equiv 0 \pmod{1}$ for j=1, 2, 3and for all $n \le \max{(3, a+\delta)}$. Then $f_j(n) \equiv 0 \pmod{1}$ (j=1, 2, 3) for all $n \in \mathbb{N}$ and j=1, 2, 3.

Hence immediately follows

Theorem 2. If $f_1, f_2, f_3 \in A^*$ and

(1.5)
$$f_1(n-a) + f_2(n) + f_3(n+b) = 0$$

holds for all $n \ge a+1$, then for every prime $p > \max(3, a+b)$ the values $f_1(p), f_2(p), f_3(p)$ are determined by the collection of the values $f_1(q), f_2(q), f_3(q)$ taken on at primes $q \le \max(3, a+b)$. Thus the set of solutions (f_1, f_2, f_3) of (1.5) forms a finite dimensional space.

Let *E* denote the operator $Ex_n = x_{n+1}$ in the linear space of infinite sequences, and for an arbitrary polynomial $P(z) = a_0 + a_1 z + ... + a_k z^k$ let $P(E)x_n = a_0 x_n + a_1 x_{n+1} + ... + a_k x_{n+k}$. A. SARKÖZY [4] determined all $f \in M$ which satisfy a linear recurrence. From his theorem one can deduce immediately the following

Lemma 1. Let $B \ge 1$ be an integer, $f \in M$ for which f(n+B) = f(n) (n=1, 2, ...)holds. Then either f(n)=0 for all $n \in \mathbb{N}$, or $f(n)=\chi_B(n)$ for all n coprime to B, where $\chi_B(n)$ is a character mod B. Let $B=B_1B_2$, $(B_1, B_2)=1$, $B_1=p_1^{\alpha_1}...p_r^{\alpha_r}$, where $f(p_j^{\alpha_j}) \ne 0$ (j=1,...,r), $B_2=q_1^{\beta_1}...q_s^{\beta_s}$, where $f(q_1^{\beta_1})=0$. The cases $B_1=1$ or $B_2=1$ are included. Let δ_l be the largest exponent $(\delta_l \ge 0)$ for which $f(q_1^{\delta_l}) \ne 0$. Then $0 \le \delta_l < < \beta_l \cdot (l=1,...,S)$. Let $D=q^{\beta_1-\delta_1}...q^{\beta_s-\delta_s}$. Then $\chi_B(n)=\chi_D(n)$ for (n, B)=1, χ_D is a character mod D. Furthermore $f(p^\gamma)=f(p^\alpha) \chi_E(p^{\gamma\alpha})$ holds for all $p^\alpha ||B$ and $\gamma > \alpha$. All the functions with the above conditions are periodic mod B.

In Section 3 we give all the solutions of V(n+k)=U(n) (n=1, 2, ...) for $U, V \in M$ under the condition $U(n) \neq 0$ if (n, k)=1. This equation for completely multiplicative functions was solved earlier in [1]. We present it now as

Lemma 2. Let G(n+k)=F(n) hold for all $n \in N$, $F, G \in M^*$, F(n) be nonidentically zero, F(n)=0 if (n, k)>1. Then

a) $F(n)=G(n)=\chi_k(n)$ is a solution for an arbitrary multiplicative character $\chi_k \pmod{K}$,

b) there is no other solution if 4|K or if (2, K)=1,

c) if K=2R, (R, 2)=1, then all further solutions have the form

$$F(n) = \chi(n, 8) \psi_R(n), \ G(n) = \chi(n, 4) F(n),$$

where $\psi_R(n)$ is an arbitrary character mod R, $\chi(n, 4)$ is the nonprincipal character mod 4, and $\chi(n, 8)$ is the character mod 8 defined by the relations.

$$\chi_{8}(n) = \begin{cases} 1 & n \equiv \pm 1 \pmod{8} \\ -1 & n \equiv \pm 3 \pmod{8} \end{cases} \text{ if } R \equiv 1 \pmod{4},$$
$$\chi_{8}(n) = \begin{cases} 1 & n \equiv \pm 3 \pmod{8} \\ -1 & n \equiv 5, 7 \pmod{8} \end{cases} \text{ if } R \equiv -1 \pmod{4}.$$

The equation G(n+k)=F(n), $F(1)\neq 0$ implies that $F(n)G(n)\neq 0$ for (n, k)=1, assuming that F and G are completely multiplicative. This is not true if we assume only that $F, G \in M$.

In Section 4 we solve the equation G(n+1)=F(n) for $F, G \in M$ without any additional conditions.

2. Proof of Theorem 1. The case a=b=1 has been proved in [2]. We may assume that (a, b)=1. Indeed, by substituting $n\delta$ into the place of n, observing that $f_i(\delta)\equiv 0 \pmod{1}$, we have

$$f_1(n-a_1) + f_2(n) + f_3(n+a_1) \equiv 0 \pmod{n} \quad (\forall n),$$

and $f_i(n) \equiv 0 \pmod{1}$ (j=1, 2, 3) for every $n \leq \max{(3, a+b)}, a = \delta a_1, b = \delta b_1$.

Let A_n denote the event that $f_j(n) \neq 0 \pmod{1}$ holds for at least one j. We shall prove that under the condition of the theorem there exists no such an integer. If such an n exists, then $n \geq k+1$, furthermore the smallest n for which A_n is true has to be a prime number P.

Now we distinguish three cases according to the parity of a and b. Let k=a+b.

Case I: a and b are odd numbers. Since P is the smallest integer n for which A_n is true, therefore $f_3(P) \equiv 0 \pmod{1}$ cannot occur, since $f_2(P-a) \equiv 0 \pmod{1}$,

 $f_1(P-k)\equiv 0 \pmod{1}$. Similarly, $f_2(P)\equiv 0 \pmod{1}$, since 2|P+b, and $\frac{P+b}{2} < P$. Thus $f_1(P)\equiv \alpha \ (\not\equiv 0) \pmod{1}$. Since $L(P+a)\equiv 0 \pmod{1}$, and 2|P+a, $\frac{P+a}{2} < P$, $f_2(P+a)\equiv 0 \pmod{1}$, therefore $f_3(P+k)\equiv -\alpha \pmod{1}$.

Let now $\delta | k, \delta > 1$. Since $L(P+a) \equiv 0 \pmod{1}$, $L\left(P + \frac{k}{\beta} - b\right) \equiv 0 \pmod{1}$, therefore

(2.1)
$$f_1(\delta P) + f_2(\delta P + a) + f_3(\delta P + k) \equiv 0 \pmod{1}$$

(2.2)
$$f_1\left(P+\frac{k}{\delta}+k\right)+f_2\left(P+\frac{k}{\delta}-b\right)+f_3\left(P+\frac{k}{\delta}\right)\equiv 0 \mod 1,$$

 $f_1\left(P + \frac{k}{\delta} - k\right) \equiv 0 \pmod{1}.$ If $f_3(P + k/\delta) \equiv \beta \not\equiv 0 \pmod{1}$, then k/δ is an even number, since in the opposite case $2|P + k/\delta$, and from $\frac{1}{2}(P + k/\delta) < P$ it would follow $f_3(\cdot) \equiv 0 \pmod{1}$. But then $f_2(P + k/\delta - b) \equiv -\beta \not\equiv 0 \pmod{1}, P + \frac{k}{\delta} - b$ is an even number and $\frac{1}{2}\left(P + \frac{k}{\delta} - b\right) < P$. This cannot be occur. Thus $f_3(\delta P + k) \equiv$ $\equiv f_3(\delta) + f_3\left(P + \frac{k}{\delta}\right) \equiv 0 \pmod{1}$. So we have (2.3) $f_2(\delta P + a) \equiv -\alpha \pmod{1}$ whenever $\delta|k, \delta > 1$.

Assume first that 3|k. Then, from (2.3) we have $f_2(3P+a) \equiv -\alpha \pmod{1}$. Since 2|3P+a, therefore 3P+a=2Q, where Q is a prime number, P < Q < 2P. Since $f_1(Q-a)+f_2(Q)+f_3(Q+b)\equiv 0 \pmod{1}$, 2|Q-a, 2|Q+b, Q-a<2P, Q+b< < 2(P+k), therefore $f_1(Q-a)\equiv 0 \pmod{1}$, $f_3(Q+b)\equiv 0 \pmod{1}$, and so $f_2(Q)\equiv \equiv 0 \pmod{1}$, $\alpha \equiv 0 \pmod{1}$. It remains the case 3|k. Since $f_3(P+k) \not\equiv 0 \pmod{1}$, and from (2.3), $f_2(2P+a)\not\equiv 0 \pmod{1}$, thus P, P+k, 2P+a are prime numbers.

Assume first that $3 \nmid a$. Since P > 3, therefore either $3 \mid 2P + a$ or $3 \mid 4P + a$. Since $f_2(2P+a) \not\equiv 0 \pmod{1}$, therefore $3 \restriction 2P + a$, so $3 \mid 4P + a$. Let us consider now

(2.4)
$$f_1(4P) + f_2(4P+a) + f_3(4P+k) \equiv 0 \pmod{1}.$$

We shall prove that $f_2(4P+a) \equiv 0 \pmod{1}$. Since 4P+a=3Q, it is true, if Q is a composite number. If it is a prime, then we may consider

$$f_1(Q-a) + f_2(Q) + f_3(Q+b) \equiv 0 \pmod{1},$$

which by 2|Q+b, 2|Q-a, Q<2P gives that $f_2(Q)\equiv 0 \pmod{1}$. So, from (2.4) we infer $f_3(4P+k)\equiv -\alpha \pmod{1}$. If 4|k, then it cannot be occur, since P+k is the smallest integer *n* for which $f_3(n)\not\equiv 0 \pmod{1}$. If k=2l, (l, 2)=1, then

$$f_3(2P+l) \equiv -\alpha \pmod{1}. \text{ If } k \equiv 2l, \ (l, 2) \equiv 1, \text{ then } f_3(2P+l) \equiv -\alpha \pmod{1}. \text{ But}$$

$$(2.5) \qquad f_1(2P-l) + f_2(2P-l+a) + f_3(2P+l) \equiv 0 \pmod{1}.$$

Since 2|a-l, 2|2P-l+a<2P+a, therefore $f_2(2P-l+a)\equiv 0 \pmod{1}$, and so $f_1(2P-l)\equiv \alpha \pmod{1}$.

Since 2P-l, (2P-l)+l=2P, 2P+l cover all the residue classes mod 3, $3/2P_i$ thus 3/2P+l or 3/2-l. Both of these cases imply that $\alpha \equiv 0 \pmod{1}$.

It remains the case 3|a and $3\notin k$. Then $k\equiv b \pmod{3}$. Let Q:=P+k. Then $f_3(Q)\equiv -\alpha \pmod{1}$. Let us consider $f_1(2Q-k)+f_2(2Q-b)+f_3(2Q)\equiv 0 \pmod{1}$. Since $2Q-k\equiv 2Q-b \pmod{3}$, 3|2Q-b, and 2Q-b<3(P+a), would imply $f_2(2Q-b)\equiv 0 \pmod{1}$, $f_1(2Q-k)\equiv 0 \pmod{1}$, thus we may assume that $3\restriction 2Q-b$. But then P, P+k, 2P+k, are coprime to 3. Since $3\notin k, 3\notin P$, therefore either $P\equiv k \pmod{3}$ or $P\equiv -k \pmod{3}$. In both cases, at least one of P, P+k, 2P+k is a multiple of 3. This is a contradiction.

By this the proof of Case I is completed.

Case II: a is odd, b is even. Let n=P be the smallest integer for which A_n holds true. Then n is a prime, P>3, P>k. We can see, similarly as earlier, that $f_2(P) \equiv \alpha \not\equiv 0 \pmod{1}$ with some α , $f_1(P) \equiv 0$, $f_3(P) \equiv 0 \pmod{1}$. Observe that $f_3(n) \equiv 0 \pmod{1}$ if n < P+b, and that $f_3(P+b) \equiv -\alpha \pmod{1}$, which immediately follows from $L(P) \equiv 0 \pmod{1}$. Furthermore, we can get that $f_1(n) \equiv 0 \pmod{1}$, if n < 2P-a. It is enough to prove this for odd, even for prime number integer n = Q. Since $L(Q+a) \equiv 0 \pmod{1}$, 2|Q+a, 2|Q+k, Q+a < 2P, therefore $f_2(Q+a) \equiv \equiv 0 \pmod{1}$, $f_3(Q+k) \equiv 0 \pmod{1}$, and so $f_1(Q) \equiv 0 \pmod{1}$ as well. Then, for $\delta|b, \delta>1$, we get that $f_3(\delta P+b) \equiv 0 \pmod{1}$, and by $L(\delta P) \equiv 0 \pmod{1}$, that

(2.6)
$$f_1(\delta P - a) \equiv -\alpha \pmod{1}$$
 if $\delta | b$ and $\delta > 1$.

Let us consider the equation $L(3P) \equiv 0 \pmod{1}$.

Since 2|3P-a, 3P-a=2Q, Q<2P-a, therefore $f_1(3P-a)\equiv 0 \pmod{1}$. This implies that either $\alpha\equiv 0 \pmod{1}$, or $3\nmid b$, furthermore in the second case that $f_3(3P+b)\equiv -\alpha \pmod{1}$. Thus 3P+b is a prime number since if it would be composite then its prime factors would be smaller than P+b. So P, P+b, 3P+b are prime numbers greater than 3, thus $P\equiv b \pmod{3}$.

Since 2|b, thus from (2.6) it follows that 2P-a is a prime, and so that 3/2b-a. If 4|b, then by (2.6) we get that 4P-a is a prime, and $f_1(4P-a) \equiv -\alpha \pmod{1}$. Assume that 2||b, $b=2b_1$. Since $P \equiv b \pmod{3}$, $P \equiv 2b_1 \pmod{3}$, from $L(2P+b_1-b) \equiv \equiv 0 \pmod{1}$, by $2|2P+b_1-k < P$, $3|2P+b_1-b$ we deduce that $f_1(2P+b_1-k) \equiv \equiv 0 \pmod{1}$, $f_2(2P+b_1-b) \equiv 0 \pmod{1}$, and so that $f_3(2P+b_1) \equiv 0 \pmod{1}$. But then, from $L(4P) \equiv 0 \pmod{1}$ we have

$$f_1(4P-a) + f_2(4P) + f_3(2(2P+b_1)) \equiv 0 \pmod{1},$$

and so that $f_1(4P-a) \equiv -\alpha \pmod{1}$. Thus 4P-a is a prime, since in the case 4P-a=3Q, Q<2P-a would imply $f_1(4P-a) \equiv 0 \pmod{1}$. So P, P+b, 2P-a, 4P-a are all prime numbers which can be occur only if 3|a.

It remained to consider the case $3|a, P \equiv b \pmod{3}$. Furthermore $f_1(4P-a) \equiv \equiv -\alpha \pmod{1}$. Since $3|2(P+b)-b, 3|2(P+b)-b-a, \text{ and } L(2(P+b)-b) \equiv 0 \pmod{1}$, therefore $f_1(2(P+b)-b) \equiv 0 \pmod{1}$, $f_2(2(P+b)-b-a) \equiv 0 \pmod{1}$, consequently $f_3(2(P+b)) \equiv 0 \pmod{1}$, which implies $\alpha \equiv 0 \pmod{1}$.

The proof of Case II is completed.

Case III: a is even, b is odd. Then we have $f_1(P) \equiv \alpha (\neq 0) \pmod{1}$, $f_2(P+a) \equiv \equiv -\alpha \pmod{1}$, P+a is a prime number. Furthermore, $f_2(n) \equiv 0 \pmod{1}$ if n < P+a. Now we observe that $f_3(n) \equiv 0 \pmod{1}$ for all n < 2P+k. Since $f_3(2) \equiv 0 \pmod{1}$, therefore enough to prove this for odd prime Q. Let Q < 2P+k. If $f_3(Q) \neq 0 \pmod{1}$, then by $L(Q-b) \equiv 0 \pmod{1}$ we have that $f_1(Q-k) + f_2(Q-b) \neq 0 \pmod{1}$. But 2|Q-b, 2|Q-k, and Q-k < 2P, Q-b < 2(P+a). Consequently $f_3(Q) \equiv 0 \pmod{1}$.

Let $\delta | a$ and $\delta > 1$. By $f_2(P+a/\delta) \equiv 0 \pmod{1}$, and $L(\delta P+a) \equiv 0 \pmod{1}$ we deduce that

(2.7)
$$f_3(\delta P+k) \equiv -\alpha \pmod{1}$$
 if $\delta > 1$ and δ/a .

Let $\mu|k$. Since $L(\mu P+a)\equiv 0 \pmod{1}$ and $f_3\left(\mu P+\mu \cdot \frac{k}{\mu}\right)\equiv 0 \pmod{1}$, therefore

(2.8)
$$f_2(\mu P + a) \equiv -\alpha \pmod{1} \quad \text{if} \quad \mu | k.$$

Assume now that $\mu > 1$. Then $L(2\mu P + a) \equiv 0 \pmod{1}$, $2\mu P + k = (\mu 2P + k/\mu)$, $2P + k/\mu < 2P + k$, $f_3(2\mu P + k) \equiv 0 \pmod{1}$, and so

(2.9)
$$f_2(2\mu P+a) \equiv -\alpha \pmod{1}$$
 if $\mu | k \text{ and } \mu > 1$.

So P, P+a, 2P+k are prime numbers.

Since $2|3P+k, \frac{3P+k}{2} < 2P+k$, therefore $f_3(3P+k) \equiv 0 \pmod{1}$, and so, by

 $L(3P+a)\equiv 0 \pmod{1}$ we have $f_2(3P+a)\equiv -\alpha \pmod{1}$. This implies that either $\alpha\equiv 0 \pmod{1}$ or $3\nmid a$. Assume that $3\restriction a$. Since P, P+a are primes larger than 3, therefore $P\equiv a \pmod{3}$. If $4\mid a$, then $f_3(4P+k)\equiv -\alpha \pmod{3}$ and 3 cannot be a divisor of 4P+k if $\alpha \not\equiv 0 \pmod{3}$, consequently 4P+k is a prime number. If $2\mid a, a=2a_1$, then by

$$f_1(4P) + f_2(2(2P+a_1)) + f_3(4P+k) \equiv 0 \pmod{1}$$
$$f_1(2P-a_1) + f_2(2P+a_1) + f_3(2P+a_1+b) \equiv 0 \pmod{1}$$

and by taking into account that $3|2P-a_1, 2|a_1+b$, first we deduce that $f_1(2P-a_1) \equiv \equiv 0 \pmod{1}$, $f_3(2P+a_1+b) \equiv 0 \pmod{1}$ and so that $f_2(2P+a_1) \equiv 0 \pmod{1}$, we

have $f_3(4P+k) \equiv -\alpha \pmod{1}$. This implies that 4P+k is a prime number. Since 0, 2P, 2 · 2P are incongruent residues mod 3, therefore so are k, 2P+k, 4P+k, consequently one of them is a multiple of 3. Since 2P+k, 4P+k are primes larger than 3, only the case 3|k can be occur. Assume that 3|k. Then $a \equiv -b \pmod{3}$. From

$$f_1(2P+a) + f_2(2P+2a) + f_3(2P+2a+b) \equiv 0 \pmod{1}$$

we have 3|2P+a, 3|2P+2a+b, which implies that $f_1(2P+a) \equiv 0 \pmod{1}$, $f_3(2P+2a+b) \equiv 0 \pmod{1}$, and so that $f_2(P+a) \equiv 0 \pmod{1}$, which can be occur only if $\alpha \equiv 0 \pmod{1}$.

This completes the proof of Case III. The theorem is proved.

3. Let us consider now the equation

(3.1)
$$V(n+K) = U(n) \quad (n = 1, 2, ...),$$

where U, V are multiplicative functions, K is a fixed positive integer. We are interested in to give all the solutions under the condition

(3.2)
$$U(n) \neq 0$$
 whenever $(n, K) = 1$.

The same equation for completely multiplicative functions was considered in our earlier paper [1]. We solved (3.1) for K=1 assuming (3.2) in [1]. The case K>1 is more complicated. Assume that (3.1) and (3.2) hold.

Let

ų

$$H(n) := \frac{V(n)}{U(n)}$$

be defined on the set of integers n, coprime to K. Let furthermore

(3.4)
$$\delta_p(m) := H(p)H(m)H(m+k)\dots H(m+(p-2)K).$$

If (p, n(n+K))=1, then

(3.5)
$$H(p) = \frac{V(p(n+k))}{U(pn)} = \frac{1}{H(pn+K)\dots H(pn+(p-1)K)},$$

(3.6)
$$\delta_p(pn+K) = 1$$
 if $(p, n(n+K)) = 1$

Let p > q, r = p - q + 1. Then

$$\delta_{p}(m) = H(p) [H(m) H(m+K) \dots H(m+(q-2)K)] \times \\ \times [H(m+(q-1)K) \dots H(m+(p-2)K)] = \\ = H(p) \frac{\delta_{q}(m)}{H(q)} \cdot \frac{\delta_{r}(m+(q-1)K)}{H(r)},$$

Imre Kátai

and so

(3.7)
$$\frac{H(p)}{H(q)H(r)} = \frac{\delta_p(m)}{\delta_q(m) \cdot \delta_r(m+(q-1)K)}.$$

We should like to give some conditions which imply that the right hand side equals 1. This holds true if all the next relations are satisfied, with a suitable integer m:

$$(3.8) m \equiv K \pmod{p}; \ m \equiv K \pmod{q}; \ m + (q-2) K \equiv 0 \pmod{r},$$

(3.9)
$$\left(\frac{m-K}{p} \cdot \frac{m+(p-1)K}{p}, p\right) = 1; \left(\frac{m-K}{q} \cdot \frac{m+(q-1)K}{q}, q\right) = 1,$$

(3.10)
$$\left(\frac{m+(q-2)K}{r}\cdot\frac{m+(q-1)K-K+rK}{r},r\right)=1; (pqr,K)=1.$$

Let

$$K^* = \begin{cases} K & \text{if } K & \text{is even,} \\ 2K & \text{if } K & \text{is odd.} \end{cases}$$

Assume that r is given, (r, K)=1. Let λ be an integer which will be chosen later, $\eta := \lambda K^*$. Let p and q by defined by

$$p = (1 + \eta)r, q = \eta r + 1.$$

If (3.8), (3.9), (3.10) hold with some *m*, then

(3.11) $H(p) = H(1 + \lambda K^*)H(r)$

is valid.

We shall search m in the form m = pq v + K. The conditions $m \equiv K \pmod{p}$, $m \equiv K \pmod{q}$, $m + (q-2)K \equiv pq v + (q-1)K \equiv 0 \pmod{r}$ are satisfied clearly, the condition (pqr, K) = 1 is equivalent to $(r(1 + \eta((\eta r + 1), K)) = 1)$ which is true since (r, K) = 1 was assumed.

We have

$$\frac{m-K}{p} \cdot \frac{m+(p-1)K}{p} = qv(qv+K), \frac{m-K}{q} \cdot \frac{m+(q-1)K}{q} = pv(pv+K),$$
$$m+(q-2)K = pqv+(q-1)K = [(1+\eta)qv+\eta K]r,$$
$$m+(q-2)K+rK = [(1+\eta)qv+(\eta+1)K]r = (1+\eta)r(qv+K).$$

So, to satisfy (3.9), (3.10) we have to find such v, for which

(3.12)
$$(qv(qv+K), p) = 1, (pv(pv+K), q) = 1$$

(3.13)
$$(((1+\eta)qv + \eta K) \cdot (1+\eta)(qv + K), r) = 1$$

simultaneously hold.

The condition (p, q)=1 will be guaranteed by restricting r to satisfy the relation

(3.14)
$$(r(r-1), 1+\eta) = 1.$$

Since η is an even number, there exists such an r. Now we prove that (3.14) implies that (p,q)=1. Assume the contrary. Let $\delta|(p,q)$, δ be a prime number. Since $p=(1+\eta)r$, $q=\eta r+1$, therefore $\delta|r$, and so $\delta|1+\eta$. But $q=(\eta+1)r+$ +(1-r), whence $\delta|1-r$. This case was excluded by (3.14).

Now our conditions can be rewritten in the form

(1)
$$(v(pv+K),q) = 1$$

(2)
$$(v(qv+K), p) = 1$$

(3)
$$((1+\eta)qv+\eta K,r)=1$$

$$(4) \qquad (qv+K,r)=1.$$

Since (2) implies (4), therefore (4) can be omitted. Since $p=(1+\eta)r$, then we may substitute them with

(A)
$$(v(pv+K),q)=1$$

(B)
$$(v(qv+K),r) = 1$$

(C)
$$(v(qv+K), (1+\eta)) = 1$$

(D)
$$((1+\eta)qv+\eta K, r) = 1.$$

Since (p, q)=1, therefore (q, r)=1, consequently $q, r, 1+\eta$ are pairwise coprime integers. To prove that (A), (B), (C), (D) hold simultaneously with a suitable v, it is enough to show that there is a solution of (B) and (D), furthermore that of (A), and of (C).

Since q and $1+\eta$ are both odd numbers, therefore (A) and (C) can be solved.

Assume that there exist no v for which (B) and (D) would hold simultaneously. Then there exists a prime divisor Q of r such that for every integer v, either (v(qv+K), Q)=Q or $((1+\eta)qv+\eta K, Q)=Q$. Let us observe that it can be occur only if Q=3, i.e. if 3|r.

If 3|r, then $3\nmid K$, $q \equiv 1 \pmod{3}$, thus we have $v(qv+K) \equiv v(v+K) \pmod{3}$, $(1+\eta)qv+\eta K \equiv (1+\eta)v+\eta K \pmod{3}$. If $3|\eta$, then the last congruence can be reduced to $\equiv v \pmod{3}$. In this case (B) and (D) can be solved as well.

We shall exclude the case when 3|r and $3|\eta$, i.e. the case: 3|r and $\eta \equiv 1 \pmod{3}$. Since H(p)=H(q)H(r), by (3.9) we have

$$(3.15) H(1+\lambda K^*) = H(1+\lambda r K^*)$$

if

(3.16)
$$(r(r-1), 1+\lambda K^*) = 1$$
 $(r, K) = 1$

and in the case 3|r, the relation $\eta \neq 1(3)$ holds.

Lemma 3. If $(\lambda, K) = 1$, $(\mu, K) = 1$ and in the case $3 \nmid K$, $\lambda K^* \not\equiv 1 \pmod{3}$, $\mu K^* \not\equiv 1 \pmod{3}$, then

(3.17) $H(1 + \lambda K^*) = H(1 + \mu K^*)$

Proof. We can find positive integers r and s such that

$$(3.18) r\lambda = s\mu$$
 and

(3.19) $(r(r-1), 1+\lambda K^*) = 1$

(3.20) $(s(s-1), 1+\mu K^*) = 1.$

Indeed, if $\delta = (\lambda, \mu)$, $\lambda = \delta \lambda_1$, $\mu = \delta \mu_1$, then $r = \mu_1 t$, $s = \lambda_1 t$ is a solution of (3.18) for every positive integer t. Assume that (t, K) = 1. Then (r, K) = (s, K) = 1 holds true. Since K is coprime to both of the integers $1 + \lambda K^*$, $1 + \mu K^*$, we have to consider only the solvability of (3.19) and that of (3.20). Both of them have solutions.

Assume that there exists no t for which (3.19) and (3.20) would be satisfied. Then there would exist a prime divisor Q of $(1+\lambda K^*, 1+\mu K^*)$ such that $\mu_1 t(\mu_1 t-1) \cdot \lambda_1 t \cdot (\lambda_1 t-1) \equiv 0 \pmod{Q}$ holds for every integer t.

We have $(\lambda_1\mu_1, Q)=1$. Furthermore $Q|(\lambda-\mu)K^*$, $(Q, K^*)=1$, therefore $Q|\delta(\lambda_1-\mu_1)$. $Q|\delta$ cannot be occur, thus $\lambda_1-\mu_1\equiv 0 \pmod{Q}$. Consequently our congruence can be reduced to the form $t(\lambda_1t-1)\equiv 0 \pmod{Q}$. But it has at most two solutions mod Q, consequently there is a t for which both of (3.19), (3.20) holds. By this we proved our Lemma 3.

Lemma 4. If $A \equiv B \pmod{K^*K}$ and $(A, K^*) = 1$, then (3.21) H(A) = H(B).

Proof. Let $3\nmid K$. Assume first that $3\restriction A$ and $3\restriction B$ or $3\mid (A, B)$. In the former case let $A_1=3A$, $B_1=3B$, in the second case $A=A_1$, $B=B_1$. In both cases $A_1=B_1 \pmod{3}$.

If Θ is such an integer for which $A_1 \Theta \equiv 1 + K^* \pmod{K^*K}$ holds, then $B_1 \Theta \equiv 1 + K^* \pmod{K^*K}$ is satisfied as well. Writing $A_1 \Theta = 1 + \lambda K^*$, $B_1 \Theta = 1 + \mu K^*$, $\lambda K^* \not\equiv 1$, $\mu K^* \not\equiv 1$ obviously hold. Since the solutions Θ give a whole residue class (mod K^*K), which is reduced to the module, we can choose Θ to be a large prime. By Lemma 3 we have $H(A_1 \Theta) = H(B_1 \Theta)$, which implies that $H(A_1) = H(B_1)$, and so that H(A) = H(B).

If 3|A, 3|B, then the general solution of the congruence $B\Theta \equiv 1+K^* \pmod{K^*K}$ can be written as $\Theta \equiv \Theta^* + hK^*K$ (h=0, 1, 2, ...) where Θ^* is a particular solution. Since $B\Theta \equiv B\Theta^* + hBK^*K \pmod{3}$, $3|BK^*K$, therefore $B\Theta \equiv 1 \pmod{3}$ holds if h is falling into the appropriate residue class mod 3. Then $A\Theta \equiv 0 \pmod{3}$. We may choose Θ to be a large prime, and by Lemma 2, $H(A\Theta) = H(B\Theta)$ we conclude that H(A) = H(B).

In the case 3|K we get the lemma similarly, but without taking care of the requirements $\lambda K^* \neq 1$, $\mu K^* \neq 1 \pmod{3}$.

Let χ_0 be the principal character mod K^*K . Since the conditions of Lemma 1 are satisfied for the function $f(n) := \chi_0(n) H(n)$, $B = K^*K$, therefore there exists a character χ_{K^*K} such that

(3.22)
$$H(n) = \chi_{K^*K}(n)$$
 whenever $(n, K^*K) = 1$.

We distinguish two cases according to the parity of k. Case K=even. For every m, n integers coprime to K, let

$$A(m, n) := \frac{U(mn)}{U(m)U(n)},$$
$$S(m, n) := \frac{1}{\chi(n+K)} \prod_{l=1}^{m} \chi(mn+lK)$$

where χ is the character given in (3.22). Since χ is periodic mod K^2 , therefore S(m, n) is periodic mod K^2 in both of its variables m and n. Furthermore, A(m, n)=1 if m and n are coprimes.

Since

$$U(n) = V(n+K) = H(n+K)U(n+K) = \chi(n+K)U(n+K),$$

consequently

 $U(nm) = \chi(mn + K)\chi(mn + 2K) \dots \chi(mn + mK)U(m(n + K)) = S(m, n)U(m(n + K)),$ i.e.

(3.23) A(m, n) = S(m, n)

holds under the condition (mn, K) = 1, (m, n+K) = 1.

Let p be an arbitrary prime, (p, K)=1. Then p is an odd integer. Take $m=p^{\alpha}$, n=pv, where (v, p)=1. Then $A(p^{\alpha}, pv)=\frac{U(p^{\alpha+1})}{U(p)U(p^{\alpha})}$. Since (n+K, m)=1clearly holds, therefore $A(p^{\alpha}, pv) = S(p^{\alpha}, pv)$.

Since $S(p^{\alpha}, pv) = S(p^{\alpha}, pv+K^2) = A(p^{\alpha}, pv+K^2) = 1$, we deduced that

$$U(p^{\alpha+1}) = U(p^{\alpha})U(p)$$

valid for all prime pover p^x coprime to K. This shows that U is completely multiplicative on the set (n, K)=1. Since $V=H \cdot U$, and H is completely multiplicative on the set (n, K)=1, so is V. Therefore, we may apply Lemma 2 for the characterization of the solution (U, V) at least on the set (n, K)=1.

Case K = odd. Let $n = 2^{\gamma} v$, $\gamma \ge 1$ and (v, K) = 1. Then

$$1 = \frac{V(2^{\gamma}\nu + K)}{U(2^{\gamma}\nu)} = \frac{V(2^{\gamma+1}\nu + 2K)}{U(\nu(U(2^{\gamma}))} \cdot \frac{U(2^{\gamma+1})}{V(2)U(2^{\gamma+1})} = \frac{U(2^{\gamma+1})}{V(2)U(2^{\gamma})} H(2^{\gamma+1}\gamma + K).$$

Thus we proved that

(3.24)
$$H(2^{\nu+1}\nu+K) = D_{\nu}$$
, for every $(\nu, 2K) = 1$,

where

(3.25)
$$D_{\gamma} = \frac{U(2^{\gamma+1})}{V(2)U(2^{\gamma})}, \quad (\gamma \ge 1)$$

Similarly, we can prove that

(3.26)
$$H(2^{\gamma+1}v-K) = E_{\gamma}$$
 for every $(v, 2K) = 1$,

(3.27)
$$E_{\gamma} = \frac{U(2)V(2^{\gamma})}{V(2^{\gamma+1})} \quad \gamma \ge 1$$

From (3.22) we know that $H(n) = \chi(n)$ for (n, 2K) = 1, where χ is a character mod $2K^2$ For odd K we can prove more, namely that H is periodic mod 2K. The worst case is the case 3/K. Assume that 3/K.

If $K^* \equiv 1 \pmod{3}$, then, by Lemma 2,

$$H(1+3K^*) = H(1+4K^*); \quad (\lambda = 3, \mu = 4),$$

if $K^* \equiv -1 \pmod{3}$, then

$$H(1+2K^*) = H(1+3K^*)$$
 ($\lambda = 2, \mu = 3$),

consequently, by

$$H(1+\nu K^*) = \chi_{2K^2}(1+\nu K^*) = \chi_{2K^2}(1+K^*)^{\nu} = H(1+K^*)^{\nu},$$

we get that $H(1+K^*)=\chi_{2K^*}(1+K)=1$. If 3|K, then we have $H(1+K^*)=H(1+2K^*)$, and conclude to the same result. But then $H(1+\nu K^*)=\chi_{2K^*}(1+\nu K^*)=1$ holds for every integer ν . If $A \equiv B \pmod{K^*}$ such that $(A, K^*)=1$, then one can choose a large prime Θ such that $A\Theta \equiv 1 \pmod{K^*}$, which implies that $B\Theta \equiv 1 \pmod{K^*}$, and $H(A\Theta)=H(B\Theta)$, whence by $(A, \Theta)=(B, \Theta)=1$, $H(\Theta)\neq 0$, we infer H(A)=H(B). So we proved that H is periodic mod 2K; consequently, by Lemma 1,

(3.28)
$$H(n) = \chi_{2K}(n)$$
 if $(n, 2K) = 1$.

Arithmetical functions

Let us consider now (3.24). Observe that if $v_1, v_2, ..., v_s$, $S = \varphi(2K)$ is a complete reduced residue system mod 2K, then so is $2^{\gamma+1}v_j + K$ (j=1,...,S). Indeed, these numbers are coprime to 2K, and if $2^{\gamma+1}v_i + K \equiv 2^{\gamma+1}v_j + K \pmod{2K}$, for some suitable $i \neq j$, then $K|(v_i - v_j)$. Since v_i, v_j are odd numbers, therefore $2|(v_i - v_j)$, so $v_i \equiv v_j \pmod{2K}$, which cannot be occur. It implies that the left-hand side does not change its value if v run over a reduced residue set, whence we have that H(n)=1 for every (n, 2K)=1, furthermore that $D_{\gamma}=1$ and similarly that $E_{\gamma}=1$ for every $\gamma \geq 1$. From the relation $D_{\gamma}E_{\gamma}=1$ we obtain that

$$H(2^{\gamma+1}) = \frac{H(2^{\gamma})}{H(2)} \quad (\gamma \ge 1),$$

which implies that $H(2^2)=1$. We shall show that there exists such an integer Γ for which $H(2^{\Gamma})=H(2^{\Gamma+1})$, which will imply that H(2)=1, and so that $H(2^{\gamma})=1$ for every $\gamma \ge 1$.

To do this, let us consider the product

$$\Delta(s,n) = \prod_{l=1}^{s-1} H(sn+lK)$$

defined for positive integers s, n such that (sn, K)=1. Observing that for (s, n+K)=1 we have

$$U(sn) = H(sn+K) \dots H(sn+sK) U(s(n+K)) = \Delta(s, n) U(s) U(n),$$

consequently, if additionally (s, n) = 1, then

$$\Delta(s,n)=1.$$

Assume that the conditions

$$(3.29) (s, n) = 1, (s, n+K) = 1, (s, K) = (n, K) = 1$$

hold for some pairs of integers s, n. They imply that $\Delta(s, n)=1$. Let us change n by N=n+RsK, where R is an arbitrary positive integer. Since the conditions (3.29) will be held replacing n by N, therefore $\Delta(s, N)=1$ holds for all $R \ge 1$. Let $A_1=sn+lK$, then $A_1 < A_2 < ... < A_{s-1}$. Let Γ_0 be so large that $A_{s-1}-A_1 < 2^{\Gamma_0}$. Let us choose $R=R_1$ such that $2^{\Gamma} ||A_0+s^2 R_1 K$. Let $b_2, ..., b_{s-1}$ be defined as the exponents of 2, such that $2^{b_j} ||A_j+s^2 R_1 K$ (j=2, ..., s-1). It is clear that max $b_j < \Gamma_0$. Now we choose an R_2 such that $2^{\Gamma+1} ||A_0+s^2 R_2 K$. For this choice of R the exponents of 2 in $A_j+s^2 R_2 k$ (j=2, ..., s-1) are unchanged, $2^{b_j} ||A_j+s^2 R_2 K$. Thus we have

$$1 = \Delta(s, n+R_1sK) = H(2^{\Gamma}) \prod_{i=2}^{s-1} H(2^{b_i}) = H(2^{\Gamma+1}) \prod_{i=2}^{s-1} H(2^{b_i}) = \Delta(s, n+R_2sK).$$

whence we have $H(2^{r}) = H(2^{r+1})$.

Imre Kátai

So we proved that U(n)=V(n) on the set (n, K)=1. By taking f(n)= $=\chi_0(n)U(n)$, where $\chi_0(n)$ is the principal character mod K, we have f(n+K)==f(n) for all (n, K)=1. From Lemma 1 we get that $U(n)=V(n)=\chi_K(n)$ on the set (n, K)=1. Hence, by Lemma 3, after a simple discussion we shall deduce our

Theorem 3. Let $K \ge 1$ be an integer, $F, G \in M$ such that G(n+K) = F(n) holds for every $n \in \mathbb{N}$, furthermore that $F(n) \ne 0$ if (n, K) = 1. Then the following assertions hold:

(A)
$$F(n) = G(n) = \chi(n; K)$$
 on the set $n, (n, K) = 1$,

or

(B) in the case K=2R, (R, 2)=1,

$$G(n) = \chi(n; 4)F(n); F(n) = \chi(n; 8)\chi(n; R),$$

for every n, (n, K) = 1, where $\chi(n; 4)$ is the nonprincipal character mod 4; by

$$\chi(n; 8) = \begin{cases} -1 & n \equiv \pm 1 \pmod{8} \\ 1 & n \equiv \pm 3 \pmod{8} \end{cases} \quad if \quad R \equiv 1 \pmod{4},$$

$$\chi(n; 8) = \begin{cases} 1 & n \equiv 1,3 \pmod{8} \\ -1 & n \equiv 5,7 \pmod{8} \end{cases} \quad if \quad R \equiv -1 \pmod{4}.$$

(C) If $\delta \ge 1$ and $p^{\delta+1}|K$, then $F(p^{\delta})=0$ holds if and only if $G(p^{\delta})=0$ is satisfied. In the case (A), if p is odd and $F(p^{\delta})\neq 0$ then $G(p^{\delta})=F(p^{\delta})$ and $\chi(n;K)$ is periodic with the period K/p^{δ} . In the case (A), if p=2 and $F(p^{\delta})\neq 0$, then $\chi(n;K)$ is periodic with the period $K/2^{\delta-1}$ and $G(p^{\delta})=\chi(1+(K/2^{\delta});K)F(p^{\delta})$. In the case (B), if p is odd, then $G(p^{\delta})=\chi(p^{\delta};4)F(p^{\delta})$, and $F(p^{\delta})\neq 0$ implies that $\chi(n;R)$ is periodic mod R/p^{δ} .

(D) In the case (B), $F(2^{\gamma})=G(2^{\gamma})=0$ for every $\gamma \ge 1$.

(E) If $p^{\alpha} || K$, then $F(p^{\alpha})=0$ is true if and only if $G(p^{\gamma})=0$ for every $\gamma > \alpha$ furthermore $G(p^{\alpha})=0$ if and only if $F(p^{\gamma})=0$ is satisfied for every $\gamma > \alpha$. If p>2, then the statement G(p)=0, F(p)=0 are equivalent.

(F) If $p^{\alpha} || K$ and $F(p^{\alpha}) \neq 0$ or $G(p^{\alpha}) \neq 0$, then $\chi(n; K)$ is induced by $\chi(n; K_1)$, $K = p^{\alpha} K_1$ in case (A), and $\chi(n; R)$ is induced by $\chi(n; R_1)$, $R = p^{\alpha} R_1$ in case (B).

(G) In case (A) let $K=B_1B_2$, $(B_1, B_2)=1$, where B_1 is the product of those prime powers p^{α} , $p^{\alpha}||K$, for which at least one of $G(p^{\alpha})\neq 0$, $F(p^{\alpha})\neq 0$ holds. Then $\chi(n; K)$ is induced by some character $\chi(n; B_2)$, and

$$\frac{G(p^{\alpha})}{\chi(p^{\alpha}; B_{2})} = \frac{F(p^{\gamma})}{\chi(p^{\gamma}; B_{2})} \quad (for \ every \ \gamma > \alpha)$$
$$\frac{F(p^{\alpha})}{\chi(p^{\alpha}; B_{2})} = \frac{G(p^{\gamma})}{\chi(p^{\gamma}; B_{2})} \quad (for \ every \ \gamma > \alpha),$$

moreover for $p \neq 2$,

$$F(p^{\alpha}) = G(p^{\alpha})$$

hold.

(H) In the case (B) let $R = D_1 \cdot D_2$, $(D_1, D_2) = 1$, where D_1 is the product of the prime powers p^{α} , $p^{\alpha} || R$, for which $F(p^{\alpha}) \neq 0$, then $\chi(n; R)$ is induced by a character $\chi(n; D_2)$. Then

$$a(p; \gamma) := \frac{F(p^{\gamma})}{\chi(p^{\gamma}; 8)\chi(p^{\gamma}; D_2)} = a(p; \alpha)$$
$$b(p; \gamma) := \frac{G(p^{\gamma})}{\chi(p^{\gamma}; 8)\chi(p^{\gamma}; D_2)} = b(p; \gamma)$$

hold for every $\gamma > \alpha$, furthermore

$$G(p^{\gamma}) = X(p^{\alpha}; 4) F(p^{\gamma})$$

for every $\gamma \ge \alpha$.

If F and G is such a pair of functions for which the above conditions hold, then the relation G(n+K)=F(n) $(n \in N)$ is satisfied.

Proof. We shall prove only the necessity of the conditions, the sufficiency part can be verified easily. (A) and (B) were proved earlier. To prove (E) take $n=p^{\gamma}v$, where $\gamma > \alpha$, (v, K) = 1, and consider only the equations $G(p^{\gamma}v+K) = F(p^{\gamma}v)$, $F(p^{\gamma}v-K) = G(p^{\gamma}v)$. Since $p^{\gamma}v \pm K = p^{\alpha}(p^{\gamma-\alpha}v \pm K_1)$, $K = p^{\alpha}K_1$, and $(p^{\gamma-\alpha}v \pm K_1, K) =$ = 1, $F(p^{\gamma-\alpha}v-K_1) \neq 0$, $G(p^{\gamma-\alpha}v+K_1) \neq 0$, and since the same is true if $\gamma = \alpha$, p > 2, for v, $(v(v-K_1), K) = 1$, we obtain (E).

Now we prove (C). The assertion that $F(p^{\delta})=0$ iff $G(p^{\delta})=0$ is clear. Consider first the case (A). Assume that $F(p^{\delta})\neq 0$. Let $n=p^{\delta}v$, $K=p^{\alpha}K_1$, $p^{\alpha}||K, \delta < \alpha$. Then $G(p^{\delta})G(v+p^{\alpha-\delta}K_1)=F(p^{\delta})F(v)$, whence

(3.30)
$$a := \frac{G(p^{\delta})}{F(p^{\delta})} = \frac{\chi(v; K)}{\chi(v+p^{\alpha-\delta}K_1; K)} \quad \text{if} \quad (v, K) = 1.$$

If we write this equation replacing v by $v+s p^{\alpha-1}K_1$, and multiply the equations for s=0, ..., v-1, we get that

$$a^{\nu} = \frac{\chi(\nu; K)}{\chi(\nu + \nu p^{\alpha - \delta} K_1; K)}$$

whence we obtain, that

$$a^{\nu}=\frac{1}{\chi(1+p^{\alpha-\delta}K_1,K)}$$

is true for every v, (v, K) = 1. The right hand side does not depend on v. If $2 \nmid K$ we can choose v = 1, v = 2 and conclude that a = 1. If $2 \mid K$, then we take v = K - 1,

v = K + 1, and deduce that $a^2 = 1$. In both cases we have

$$\chi(v+2p^{\alpha-\delta}K_1, K) = \chi(v; K)$$
 if $(v, K) = 1$,

which implies that $\chi(v, K)$ is periodic with period $2p^{\alpha-\delta}K_1$, and so it is periodic with $(2p^{\alpha-\delta}K_1, K)$. This implies condition (C) for the case (A).

Now we shall consider case (B). Observe that for the characters given in (B), the product

(3.31)
$$T_R(\mu) := \frac{\chi(\mu; 8)}{\chi(\mu + 2R; 8)\chi(\mu; 4)} = -1$$

for every odd μ and for $R \equiv \pm 1 \pmod{4}$.

Assume that $p \neq 2$, $p^{\delta} | R$, $R = p^{\alpha} R_1$, $p^{\alpha} | R$, $\delta < \alpha$. By choosing $n = p^{\delta} \alpha$, starting from the relation $G(p^{\delta})G(v+2p^{\alpha-\delta}R_1) = F(p^{\delta})F(v)$, substituting the values for F(v) and $G(v+2p^{\alpha-\delta}R_1)$ given in (B), after some calculation we obtain

$$\frac{G(p^{\delta})}{F(p^{\delta})} = -\chi(p^{\delta}; 4) T_R(p^{\delta}v) \frac{\chi(v; R)}{\chi(v+2p^{\alpha-\delta}R_1; R)}$$

whence, by (3.32) we have that

$$b := \frac{G(p^{\delta})}{(p^{\delta}; 4)F(p^{\delta})} = \frac{\chi(v; R)}{\chi(v+2p^{\alpha-\delta}R_1; R)},$$

for every v, (v, 2R) = 1. Arguing as at the former case we deduce that $b^2 = 1$, and so that $\chi(\cdot, R)$ is periodic mod $4p^{\alpha-\delta}R_1$, and so mod $(4p^{\alpha-\delta}R_1, R) = p^{\alpha-\delta}R_1$. But then b=1, $G(p^{\delta}) = \chi(p^{\delta}; 4)F(p^{\delta})$. This proves condition (C).

The next step is to prove (D). Assume that $G(2) \neq 0$, choose $n=2^{\gamma}v, \gamma \ge 2$. Then

$$G(2)G(2^{\gamma-1}\nu + R) = F(2^{\gamma})F(\nu)$$

and by using the explicit form of F and G, after some cancellation, we have

$$(3.32) \qquad G(2)\chi(2^{\gamma-1}\nu+R; 4)\chi(2^{\gamma-1}\nu+R; 8)\chi(2^{\gamma-1}; R) = F(2^{\gamma})\chi(\nu; 8).$$

If $\gamma \ge 4$, then the left-hand side does not depend on ν , while $\chi(\nu; 8)$ does. It implies that $F(2^{\gamma})=0$ for $\gamma \ge 4$, and so G(2)=0. We can prove impossibility of the case $F(2) \ne 0$ similarly. By (C) the proof of (D) is completed.

Let us prove now (G). By choosing $n=p^{\gamma}v$, (v, K)=1, $\gamma > \alpha$, $p^{\alpha}||K$, $K=K_1p^{\alpha}$, under conditions (A), we have

(3.33)
$$\frac{G(p^{\alpha})}{F(p^{\gamma})} = \frac{\chi(\nu; K)}{\chi(p^{\gamma-\alpha}\nu + K_1; K)},$$

which is valid if $G(p^{\alpha}) \neq 0$. Assume $G(p^{\alpha}) \neq 0$. Then $F(p^{\gamma}) \neq 0$ holds for $\gamma > \alpha$, and the right-hand side does not depend on v. Let $\gamma \ge 2\alpha$. Then the denominator

Arithmetical functions

is periodic mod K_1 , which implies that $\chi(\nu+K_1; K) = \chi(\nu; K)$, consequently $\chi(\nu; K) = \chi(\nu; K_1)$ with some character mod K_1 , and so the right-hand side is $\chi(p^{\gamma-\alpha}; K_1)$. This assertion hold for every $\gamma > \alpha$, and in the case $p \neq 2$ even for $\gamma = \alpha$. The case $F(p^{\alpha}) \neq 0$ is similar. Doing this for all p^{α} , $p^{\alpha} || B_1$, we get that $\chi(n; K)$ is periodic mod B_2 , and this leads to the equations given in (G). We proved the first part of (F), as well.

Let us finally consider (H). Let $G(p^{\alpha}) \neq 0$. Let $R = p^{\alpha} R_1, \gamma > \alpha, n = p^{\gamma} \nu, (\nu, K) = 1$. Then p > 2. From $G(p^{\alpha})G(p^{\gamma-\alpha}\nu+2R_1)=F(p^{\gamma})F(\nu)$, we deduce that

$$\frac{G(p^{\alpha})}{F(p^{\gamma})} \cdot \frac{\chi(p^{\gamma-\alpha}; 8)}{\chi(p^{\alpha}; 4)} = -\frac{\chi(\nu, R)}{\chi(p^{\gamma-\alpha}\nu+2R_1, R)} \cdot T_R(p^{\gamma}\nu),$$

which by (3.31) and by choosing $\gamma \ge 2\alpha$, gives that $X(\cdot, R)$ is periodic mod 2Rand so mod R. Furthermore the right-hand side equals $\chi(p^{\gamma-\alpha}; R_1)$, for every $\gamma \ge \alpha$. We can deduce a similar formula assuming $F(p^{\alpha}) \ne 0$. Doing this for every p^{α} , $p^{\alpha} || D_1$, we can finish the proof rapidly.

By this the proof of our theorem is completed.

4. Let $A, G \in M$ be connected by the equation G(n+1)=F(n). This was solved in Section 3 under the additional condition $F(n) \neq 0$ (n=1, 2, ...). It was found that F(n)=G(n)=1 identically.

Let now α be such an exponent for which $2^{\alpha} - 1 = P$, where P is a prime power, $P = Q^{\beta}$, allowing the case $\beta = 1$. Let $G_{\alpha}, F_{\alpha} \in M$ as follow: $F(1) = G(1) = 1, G_{\alpha}(2) = 1$, $G_{\alpha}(2^{\alpha}) = F_{\alpha}(P) =$ arbitrary nonzero value, $F_{\alpha}(n) = 0$ if $n \neq 1, P$; $G_{\alpha}(n) = 0$ if $n \neq 1, 2, 2^{\alpha}$. It is clear that F_{α} and G_{α} will be multiplicative functions, and the equation $G_{\alpha}(n+1) = F_{\alpha}(n) \ (n=1, 2, ...)$ will be true.

It is an open question, whether $2^{\alpha}-1$ can be a prime power for infinitely many α or not. The list of $\alpha=2, 3, 5$ shows that such α values exist.

We shall prove the next

Theorem 4. If $F, G \in M$ and G(n+1)=F(n) holds for every $n \in N$, then either F(n)=G(n) are identically zero, or identically one, or there exists an integer $\alpha \ge 2$ such that $2^{\alpha}-1=$ prime power=P, such that G(2)=F(1)=G(1)=1, $G(2^{\alpha})=$ =F(P) and F(n)=0, G(n)=0 holds for all other $n \in N$.

Proof. Let \mathscr{P} be the set of those prime powers P for which $F(P) \neq 0$, and \mathscr{R} be the set of those powers Q for which $G(Q) \neq 0$. Let $\overline{\mathscr{P}}, \overline{\mathscr{R}}$ denote the complement sets with respect to the whole set of prime powers. If \mathscr{P} or $\overline{\mathscr{P}}$ are empty sets, then so are \mathscr{R} and $\overline{\mathscr{R}}$, and these lead to the equation F(n)=G(n) as it was proved in Section 3. Thus, we may assume that \mathscr{P} and \mathscr{R} are non-empty proper subsets of the whole set of the prime powers.

It is well known that all solutions of the Diophantine equation $3^x - 2^y = 1$ are x = y = 1, and x = 2, y = 3 while $2^x - 3^y = 1$ implies that x = 2, y = 1.

Lemma 5. Let P be the smallest integer n, for which F(n)G(n)=0. Then P=prime power, furthermore P=2, 4 or 8; F(P)=0 and $G(P)\neq 0$.

Proof. It is clear that the smallest integer n for which F(n)G(n)=0 holds, has to be a prime power P, and $G(n)=F(n-1)\neq 0$. Thus F(P)=0.

Assume first that P is even, and P>2. Then $P=2^a$. We have G(P+1)=0, G(2P+2)=F(2P+1)=0. From the minimality of P we have that both of P+1 and 2P+1 are prime powers. Since at least one of them is a multiple of 3, therefore either $2^a+1=3^b$ or $2^{a+1}+1=3^b$, which implies that P=4 or P=8.

Assume that P is an odd number. Then G(P+1)=0, and we can get rapidly that $P+1=2^{s}$. If 3|P, then $P=3^{a}$, $2^{s}-3^{a}=1$, whence s=2, a=1, i.e. P=3follows. In this case $F(2)\neq 0$, F(3)=0. But $F(2)\neq 0$, $\Rightarrow G(3)\neq 0$, $G(6)=F(5)\neq 0$, $F(10)\neq 0$, $G(11)\neq 0$, $\Rightarrow G(22)\neq 0$, $\Rightarrow F(21)=F(3)F(7)\neq 0$, $\Rightarrow F(3)\neq 0$. This leads to a contradiction. If 3|P, the $2P+1\equiv 0(3)$, G(2P+1)=0, and we deduce that $2P+1=3^{b}$, whence $2^{s+1}-3^{b}=1$, and so s=1, P=1 follows. This cannot occur.

We finished the proof of our lemma.

Lemma 6. In the notations of Lemma 5, P=4 or P=8 cannot be occur.

Proof. I. The case P=8. Then $\{2, 3, 2^2, 5, 7\} \in \mathcal{P}, \{2, 3, 2^2, 5, 7, 2^3\} \in \mathcal{R}$, whence $G(5 \cdot 3 \cdot 7) = G(105) \neq 0$, $F(104) = F(2^3) \cdot (13) \neq 0$, $F(2^3) \neq 0$, and this is a contradiction.

II. The case P=4. Then $\{2, 3\} \in \mathcal{P}, \{2, 3, 2^2\} \in \mathcal{R}$, and so

 $7 = 2 \cdot 3 + 1 \in \mathcal{R}, \ G(7 \cdot 3) = G(21) = F(20) = F(5 \cdot 4) \neq 0, \ \text{i.e.} \ F(4) \neq 0,$

contrary to our assumption.

Lemma 7. If \mathcal{R} contains at least one odd prime powers, then F(n) and G(n) are nowhere zero.

Proof. Assume that \varkappa is the smallest odd prime power in \mathscr{R} . $\varkappa = 3$ would imply that $F(2) \neq 0$, and this case was treated earlier. Assume that $\varkappa > 3$. Then $\varkappa - 1$ is a power of 2, since in the opposite case, $\varkappa - 1 = 2^s A$, A > 1 would imply that $F(2^s) \neq 0$, $G(2^s+1) \neq 0$, and $2^s+1 < \varkappa$. Thus $\varkappa - 1 = 2^s \in \mathscr{P}$. Since $G(2) \neq 0$, therefore $0 \neq G(2\varkappa) = F(2\varkappa - 1)$. If $3|\varkappa$, then $\varkappa = 3^b$, and from the equation $3^b - -2^s = 1$ we deduce that either $\varkappa = 3$ (b = 1), or $\varkappa = 3^2$ (b = 2). If $\varkappa = 3$ then $2 \in \mathscr{P}$, which was considered earlier. If $\varkappa = 3^2$, then

$$\{2,3^2\} \in \mathcal{R}, \ 2^3 \in \mathcal{P}, \ G(18) \neq 0, \ 17 \in \mathcal{P}, \ F(136) = F(8 \cdot 17) \neq 0,$$

 $137 \in \mathcal{R}, \ G(1233) = G(9 \cdot 137) \neq 0, \ F(1232) = F(2^4 \cdot 7 \cdot 11) \neq 0, \ 11 \in \mathcal{R},$

 $G(12)=G(4\cdot 3)\neq 0, 3\in \mathcal{R}$, which is a contradiction. Assume that $3\nmid x$. Then $3\mid 2x-1$, $F(2x-1)\neq 0$. If 2x-1 is not a power of 3, then $2x-1=3^{b}B$, where $B>1, 3\nmid B$, consequently $B\geq 5, 3^{b}\in P, F(B)=G(B+1)\neq 0$, and the odd parts of both of $3^{b}+1, B+1$ have to be 1, taking into account the minimality of x. But then $3^{b}+1=2^{t}$, whence $b=1, B=2^{d}-1, d\geq 3$, and $2(2^{s}+1)-1=3\cdot(2^{d}-1)$, i.e. $2^{s+1}-3\cdot 2^{d}=-4$, which is impossible, since $s+1\geq d\geq 3$.

We finished the proof of our lemma.

Lemma 8. If \mathcal{P} contains at least two distinct odd prime powers, then \mathcal{R} contains at least one odd number.

Proof. Let $Q_1, Q_2 \in \mathscr{P}$ be odd numbers. Assume first that $(Q_1, Q_2) = 1$. If the lemma fails to hold, then $G(Q_1+1) \neq 0$, $G(Q_2+1) \neq 0$, $G(Q_1Q_2+1) \neq 0$, and so $Q_1+1=2^a$, $Q_2+1=2^b$, $Q_1Q_2+1=2^c$, $a>b \ge 2$. Then $(2^c-1)=(2^a-1)(2^b-1)$ and the two sides of this equation are incongruent mod 2^b .

It remains the case when $Q_1 = Q^u$, $Q_2 = Q^v$ with some odd prime Q. Let $Q_1 + 1 = = 2^a$, $Q_2 + 1 = 2^b$, $a > b \ge 2$. Hence we get that $Q_j \equiv -1 \pmod{4}$, i.e. that $Q \equiv -1 \pmod{4}$, u, v are both odd numbers. First we observe that $Q^v + 1|Q^u + 1$. But then v|u, which can be proved easily. Assume that u = kv + r, where $0 \le r < v$. If k is an even number, k = 2h,

$$Q^{u}+1 = Q^{r}(Q^{2hv}-1)+Q^{r}+1,$$

which by $Q^{\nu}+1|Q^{2h\nu}-1$ implies that $Q^{\nu}+1|Q^{r}+1$, and this cannot occur. If k is an odd number, then $Q^{\mu}+1=Q^{r}(Q^{k\nu}+1)+(1-Q^{r})$, and by $Q^{\nu}+1|Q^{k\nu}+1$, $Q^{\nu}+1|Q^{r}-1$, which implies that r=0.

So we have, u=kv, k is odd. In the same way, starting from $Q^{v}|Q^{u}$, we deduce that b|a, a=bt. So we have

Then

$$Q^{b} + 1 = 2^{b}, \ Q^{ab} + 1 = 2^{ab}, \ t \ge 2^{ab}$$

 $-1 = (2^{b} - 1)^{k} \equiv -1 + (1^{k}) \cdot 2^{b} \pmod{2^{b+1}}$

which is impossible for odd k.

 2^{bt}

The proof of our lemma is completed. By this we proved our theorem.

Remark. The general case G(n+K)=F(n) can be treated similarly, at least for small fixed values of K, but it involves the knowledge of all solutions of Diophantine equations like $a^x - b^y = h$ for some values of a, b, h.

References

- [1] I. KATAI, Multiplicative functions with regularity properties. IV, Acta Math. Hungar., 44 (1984), 125-132.
- [2] I. KATAI, On additive functions, satisfying a congruence, Acta Sci. Math., 47 (1984), 85-92.
- [3] M. VAN ROSSUM-WIJSMULLER, Additive functions on the Gaussian integers, Publ. Math. Debrecen, in print.
- [4] A. SÁRKÖZY, On multiplicative arithmetic functions satisfying a linear recursion, Studia Sci. Math. Hungar., 13 (1989), 79-104.

EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER BUDAPEST, H-1117 BOGDÁNFY ÚT 10/B

:

• •