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Arithmetical functions satisfying some relations 

I M R E K A T A I * ) 

1. Let A (A*) be the set of additive (completely additive) functions, M(M*) 
be the set of multiplicative (completely multiplicative) functions. | | X | | = min |JC—k\. 

Let Lf(n):=f0(n)+f1(n+a1)+...+fk(n+ak), where f^A* and a l 5 ..., ak are 
mutually distinct natural numbers. It is probable that \\Lf(ti)\\— 0 («->-<=>) implies 
that fj(ri)=Xj logn+Mj(n) (mod 1), with some t ^ R such that r 0 + . . . + r t = 0 
and Lu(n):=u0(n)+u1(n +l)+ ... + uk(n+ak) satisfies Lu(n):=0 (mod 1) for every 
n ^ l . This question was raised by the author and solved by E. Wirsing in the 
special case k— 1. 

Furthermore we guess that 

(1.1) L„(n) = 0 ( m o d i ) (n = 1 , 2 . . . ) 

implies that Uj(n)=0 (mod 1) for every n£N and for every j. This was proved for 
k=3, ax= 1, fl2—2, a 3 = 3 in [2]. Marijke van Rossum investigated the solutions of 
the relation 

(1.2) £O( A )+^I (<*+1)+£2(« + 2 ) + ^ 3 ( a + 3) = 0 ( m o d i ) (Va (EG), 

where g0, ...,g3 are completely additive functions defined on the set of G of Gaus-
sian integers. She found that (1.2) has only trivial solutions. 

The simple idea to prove that a recursion 

(1.3) L,(n) = / o ( « ) + / i ( " + l ) + - + /*(" + *), Lf(n) = 0 (mod 1) 

has only trivial solution, is the following one: 
1) Initial step: by taking Lf(n)=0 (mod 1) for n— 1, 2 , . . . , N with a large N, 

solving a linear equation system without multiplication and divisions, one con-
clude that fj(n)=0 (mod 1) holds true for all n up to Na. 

*) This work has been done while the author had a visiting professorship at Temple Uni-
versity, Philadelphia. The work was financially supported by the Hungarian Research Fund No. 907, 
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2) Induction step: If (1.3) holds and fj(ri)=0 (mod 1) holds for k= 1, 2, ..., n, 
then it is true for k=n + 1 as well, assuming that where N ^ N g . 
The initial step can be handled by using computer for a moderate size of k. The 
induction could be deduced simply from the following. 

C o n j e c t u r e . For every integer fcsl there exists a constant C0(k) such that 

pminQ ( max^ max {P(JQ + 0> -P(JQ ~ 0} Q 

hold for every prime Q>C0(k). Here P(n) denotes the largest prime divisor of n. 
This is clearly true, if k=\, by choosing j= 1. The conjecture is open for 

and even in the case k= 1 if we exclude j= 1. 
In Section 2 we shall prove the following 

T h e o r e m 1. Let a, S be positive integers,fi,f2,/3€ A* such that £(«):=/!(« — a) + 
+f2(n)+fz(n + S) satisfies the relation 

(1.4) L(n) = 0 ( m o d i ) , 

for every integer n^a+1. Assume furthermore that fj(n)=0 ( m o d i ) for j= 1 , 2 , 3 
and for all « S m a x (3, a+$). Then / y ( « ) = 0 (mod 1) ( 7 = 1 , 2, 3) for all /i£N and 
j= 1 ,2 ,3 . 

Hence immediately follows 

T h e o r e m 2. If f1,f2,f3^A* and 

(1.5) f1(n-a)+f2(n)+f3(n + b) = 0 

holds for all n^a+1, then for every prime /?>max (3, a + b) the values fi(p), f2(p), 
fzip) are determined by the collection of the values f(q), f2(q), f3(q) taken on at 
primes ^Srnax (3, a+b). Thus the set of solutions ( / i , / ^ , / 3 ) of (1.5) forms a 
finite dimensional space. 

Let .¿denote the operator Exn=xn+l in the linear space of infinite sequences, 
and for an arbitrary polynomial P(z)=a0+a1z+ ...+akzk let P(E)xn — a0xn + 
+a1xn+1 + ...+akxn+k. A . S A R K O Z Y [ 4 ] determined a l l / £ M which satisfy a linear 
recurrence. From his theorem one can deduce immediately the following 

L e m m a 1. Let B^l be an integer, f£M for which f(n+B)=f(n) (n= 1, 2, ...) 
holds. Then either f(n)~0 for all N, or f(n) = yB(n) for all n coprime to B, 
where £B(/z) is a character mod B. Let B=B1B2, (B1, B2)= 1, B1 =p\l.. p*"', where 
f{p)i)^0 (j=l, ...,/"), B2=q^...ql', where / (?? ') = 0. The cases B x = 1 or B2= 1 
are included. Let 5t be the largest exponent (<5;S0) for which f ( q * T h e n 

1,...,S). Let D=ql>>-sK..q<l--°-. Then xB{n)=lD(n) for (n, B)= 1, 
is a character m o d D . Furthermore f(py)=f(p") 7.e(Py1) holds for all p"\\B and y > a . 
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All the functions with the above conditions are periodic mod B. 
In Section 3 we give all the solutions of ( « = 1 , 2 , . . . ) for 

U, VZM under the condition U(n)^0 if (n, k)= 1. This equation for completely 
multiplicative functions was solved earlier in [1]. We present it now as 

L e m m a 2. Let G(n+k)=F(n) hold for all n£N, F, G£M*, F(n) be non-
identically zero, F(n)=0 if (n, £)> 1. Then 

a) F(n)=G(n)=Xk('0 ' s a solution for an arbitrary multiplicative character 
Xk (mod K), 

b) there is no other solution if 4|K or if (2, K)= 1, 
c) if K=2R, (R , 2)=1, then all further solutions have the form 

where \jjR (n) is an arbitrary character mod R, /(n, 4) is the nonprincipal character 
mod 4, and y(n, 8) is the character mod 8 defined by the relations. 

The equation G(n+k)=F(n), F( 1 ) ^ 0 implies that F(n)G(n)^0 for (n,k)= 1, 
assuming that F and G are completely multiplicative. This is not true if we assume 
only that F, G£M. 

In Section 4 we solve the equation G(n + l)=F(n) for F,G£M without any 
additional conditions. 

2. Proof of Theorem 1. The case a—b= 1 has been proved in [2]. We may 
assume that (a,b)=1. Indeed, by substituting nd into the place of n, observing 
that fj(8)=0 (mod 1), we have 

and / ; ( « ) = 0 (mod 1) (y '= l , 2, 3) for every « ^ m a x ( 3 , a+b), a=5al, b-dby. 
Let An denote the event that fj(n)^ 0 (mod 1) holds for at least one j. We 

shall prove that under the condition of the theorem there exists no such an integer. 
If such an n exists, then n^k-(-1, furthermore the smallest n for which An is true 
has to be a prime number P. 

Now we distinguish three cases according to the parity of a and b. Let k=a+b. 

Case I: a and b are odd numbers. Since P is the smallest integer n for which An 

is true, therefore f(P)=0 (mod 1) cannot occur, since / 2 ( P - a ) = 0 (mod 1), 

F(n) = yfn, 8)*R(n), G(n) = / (« , 4) F(n), 

M " ) = {. 

*8(") = {. 

1 n = ± 1 (mod 8) 
- 1 n = ± 3 (mod 8) 
' 1 n = ± 3 (mod 8) 
-1 n = 5, 7 (mod 8) 

if R= 1 (mod 4), 

if R==-l (mod 4). 

fi(n - a,) +f2(n) +f(n + Ol) = 0 (mod n) (V«), 
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P+b 
fi{P-k)=0 (mod 1). Similarly, f2(P)=0 (mod 1), since 2 |P+b, and < P . 

P+a 
Thus , / i (P )=a ( ^ 0 ) (mod 1). Since £ ( P + a ) = 0 (mod 1), and 2 | P + a , — - — = P , 

f2(P+a)=0 (mod 1), therefore f3(P+k) = -a (mod 1). 

Let now 6\k, ¿ > 1 . Since L(P+a)=0 (mod 1), L (p+—-—i>j=0 (mod 1), 
therefore 
(2.1) M5P) + MbP+ a)+f3 (6P+ k) = 0 (mod 1) 

(2.2) fx ( p + y + A : ) + / , ( p + y - Z > ) + / 3 ( p + y ) = 0 mod 1), 

fx j - f c j = 0 (mod 1). If f3(P+k/5)=P^0 (mod 1), then k/8 is an even 

number, since in the opposite case 2|P-f-A:/5, and from y (P+A:/<5)<P it would 

follow / 3 ( - ) = 0 (mod 1). But then f2(P+k/5-b)=-P^0 (mod 1), P+—-b is 
o 

1 / k ^ 

an even number and — ~b\<P. This cannot be occur. Thus f3(SP+k) = 

=/s («5 )+ / s [ -P+y]=0 (mod 1). So we have 
(2.3) /2(<5P+a) = - a (mod 1) whenever S\k, 5 => 1. 

Assume first that 3|k. Then, from (2.3) we have / a ( 3 P + a ) = — a ( m o d i ) . 
Since 2 |3P+a , therefore 3P+a=2<2, where Q is a prime number, P - = g < 2 P . 
Since MQ-a)+MQ)+ft(Q+b)=0 (mod 1), 2 | Q - a , 2 |Q+b, Q - a < 2 P , Q+b< 
<2(P+A:), therefore fAQ-a) =0 (mod 1), f3(Q+b)=0 (mod 1), and so / 2 ( 0 = 
s O (mod 1), a = 0 (mod 1). It remains the case 3 f k . Since f3(P+k)^0 (mod 1), 
and from (2.3), / 2 ( 2 P + a ) ^ 0 (mod 1), thus P, P+k, 2P+a are prime numbers. 

Assume first that 3fa. Since P > 3 , therefore either 3 | 2P+a or 3 | 4 P + a . 
Since / 2 ( 2 P + a ) ^ 0 (mod 1), therefore 3{2P+a , so 3 | 4P+a . Let us consider now 

(2.4) / i (4P) + / 2 ( 4 P + a ) +f3(4P+ k) = 0 (mod 1). 

We shall prove that / ¡ ¡ (4P+a)=0 (mod 1). Since 4 P + a = 3 Q , it is true, if Q is 
a composite number. If it is a prime, then we may consider 

M Q - a ) + M Q ) + M Q + b) = 0 (mod 1), 

which by 2\Q + b, 2\Q-a, Q^2P gives that / 2 ( 0 E E 0 (mod 1). So, from (2.4) 
we infer f3(4P+k)= — a (mod 1). If 4 |k, then it cannot be occur, since P+k 
is the smallest integer n for which f3(n)^0 (mod 1). If k—2l, (/, 2 )=1 , then 
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/ 3 ( 2 / > + / ) = - a (mod 1). If k=2l, (/, 2)=1, then f3(2P+l)=-a ( m o d i ) . But 

(2.5) M2P- 0 +M2P-1 + a) +M2P+ J) = 0 (mod 1). 

Since 2 | a - l , 2\2P-l+a<2P+a, therefore / 2 ( 2 P - / + o ) = 0 (mod 1), and so 
f1(2P—l)=0L (mod 1). 

Since 2 P - l , (2P—l)+l=2P, 2P+l cover all the residue classes mod 3, 3{2Pi 

thus 3 | 2 P + / or 3|2—/. Both of these cases imply that <x=0(modl) . 
It remains the case 3|a and 3{k. Then k=b (mod3). Let Q:=P+k. Then 

MQ)= -<* (mod 1). Let us consider f1(2Q-k)+f2(2Q-b)+f3(2Q)=0 (mod 1). 
Since 2Q—k=2Q—b (mod 3), 3 | 2 Q - b , and 2Q-b<3(P+a), would imply 
f2(2Q-b)=0 (mod \),fx(2Q-k)=0 (mod 1), thus we may assume that 3"f2Q-b. 
But then P,P+k, 2P+k, are coprime to 3. Since 3 \ k , 3fP, therefore either 
P=k (mod3) or P=—k (mod3). In both cases, at least one of P,P+k, 2P+k 
is a multiple of 3. This is a contradiction. 

By this the proof of Case I is completed. 

Case II: a is odd, b is even. Let n=P be the smallest integer for which A„ 
holds true. Then n is a prime, P > 3 , P=~k. We can see, similarly as earlier, that 
/ 2 ( J ° ) = a ^ 0 (mod 1) with some a, f1(P)=0, f3(P)=0 (mod 1). Observe that 
f3(n)=0 (mod 1) if n^P+b, and that f3(P+b)= — a. (modi ) , which immediately 
follows from L(P)=0 (mod 1). Furthermore, we can get that / j ( n ) = 0 (mod 1), 
if n<2P—a. It is enough to prove this for odd, even for prime number integer Q. 
Since L(Q + a)=0 (mod 1), 2\Q+a, 2 | Q + k , 0+a^2P, therefore f2(Q+a) = 
= 0 (mod 1), f3(Q+k)=0 (mod 1), and so / x ( 0 = 0 (mod 1) as well. Then, for 
d\b, ¿ > 1 , we get that f3(5P+b)=0 (mod 1), and by L(8P)=0 (mod 1), that 

(2.6) f1(dP—a) = —a (mod 1) if <5|6 and ¿ > 1 . 

Let us consider the equation L(3P)—0 (mod 1). 
Since 2\3P—a, 3P-a=2Q, Q<2P-a, therefore f^P-a)^0 (mod 1). This 

implies that either a = 0 (mod 1), or 3f b, furthermore in the second case that 
f3(3P+b)= — a (mod 1). Thus 3P+b is a prime number since if it would be 
composite then its prime factors would be smaller than P+b. So P, P+b, 3P+b 
are prime numbers greater than 3, thus P=b (mod 3). 

Since 2\b, thus from (2.6) it follows that 2P—a is a prime, and so that 3f2b—a. 
If 4|b, then by (2.6) we get that 4P—a is a prime, and fi(4P—a)=— a (mod 1). 
Assume that 2\\b, b=2bl. Since P=b (mod 3), P=2bx (mod 3), from L(2P+bx-b) = 
= 0 (mod 1), by 2\2P+b1-k<P, 3\2P+bx-b we deduce that fx{2P+bx-k) = 
= 0 (mod 1), / 2 ( 2 P + b 1 - b ) = 0 (mod 1), and so that / 3 (2P+fc 1 )=0 (mod 1). But 
then, from L(4P)=0 (mod 1) we have 

M4P-a)+f2(4P)+f3(2(2P+b1)) = 0 (mod 1), 
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and so that fy(4P— a)=— <x (mod 1). Thus 4P—a is a prime, since in the case 
4P—a=3Q, Q<-2P—a would imply / l ( 4 P - a ) = 0 (mod 1). So P,P+b,2P-a, 
AP—a are all prime numbers which can be occur only if 3|a. 

It remained to consider the case 3|a, P=b (mod 3). Furthermore / 1 (4 / > —a)= 
= — a(mod 1). Since 3\2(P+b)-b,3\2(P+b)-b-a, and L(2(P+b)-b)=0(mod 1), 
therefore / 1 ( 2 ( P + t ) - f c ) = 0 (mod I), fz(2(P+b)-b-a)=0 (mod 1), consequently 
f3(2(P+b))=0 (mod 1), which implies a=0 (mod 1). 

The proof of Case II is completed. 

Case III: a is even, b is odd. Then we have f1(P)=a(^0) (mod 1 ) , / 2 ( P + a ) = 
= —a (mod 1, P+a is a prime number. Furthermore, / 2 («)=0 (mod 1) if n<P+a. 
Now we observe that f3(n) = 0 (mod 1) for all n<2P+k. Since f3(2)=0 (mod 1), 
therefore enough to prove this for odd prime Q. Let Q<2P+k. If / 3 ( 0 ^ O (mod 1), 
then by L(Q-b)=0 (mod 1) we have that MQ-k)+f2(Q-b)^0 (mod 1). But 
2\Q—b, 2\Q-k, and Q-k<2P, Q-b<2(P+a). Consequently f3(Q) =0 (mod 1). 

Let 5\a and ¿ > 1 . By f2(P+a/S) =0 (mod 1), and L(5P+a)=0 (mod 1) 
we deduce that 

<2.7) f3{6P+k) = -a (mod 1) if 5 > 1 and ¿¡a. 

Let fi\k. Since L(fiP+a)=0 (mod 1) and f3^iP+n- — j = 0 (mod 1), therefore 

<2.8) MfiP+a) = - a (mod 1) if n\k. 
Assume now that /¿>1. Then L(2pP+a)=0 (mod 1), 2fiP+k=(fi2P+k/n), 

2P+ kfri-^2P+k, f3(2fiP+A:)=0 (mod 1), and so 

<2.9) f2(2/xP+a) = - a (mod 1) if fi\k and n > 1. 

So P, P+a, 2P+k are prime numbers. 
3 P+k 

Since 2 ] 3 f + A : , = — - — < 2 P + k , therefore f3(3P+k)=0 (mod 1), and so, by 

L(3P+a)~0 (mod 1) we have f2(3P+a)= —a (mod 1). This implies that either 
a = 0 (mod 1) or 3\a. Assume that 3f a. Since P, P+a are primes larger than 3, 
therefore P=a (mod 3). If 4| a, then /3(4P+A:)= —a (mod 3) and 3 cannot be 
a divisor of 4P+k if a ^ O (mod3), consequently 4 P + k is a prime number. 
If 2|| a, a=2alt then by 

M4P) +A{2(2P+ a,)) +/30P+ k) = 0 (mod 1) 

f i (2P— a{) +f2 (2P+ ax) +f3 (2P +ax + b) = 0 (mod 1) 

and by taking into account that 3|2P—ay , 2\ax+b, first we deduce that fi(2P—ai) = 
= 0 (mod 1), /3(2/>+«!+£>)=0 (mod 1) and so that f ^ P + a ^ - O (mod 1), we 
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have f3(4P+k)= — a (mod 1). This implies that 4P+k is a prime number. Since 
0, 2P, 2-2P are incongruent residues mod3, therefore so are k,2P+k,4P+k, 
consequently one of them is a multiple of 3. Since 2 P + k , 4 P + k are primes larger 
than 3, only the case 3|k can be occur. Assume that 3|k. Then a=—b (mod 3). 
From 

f1(2P+a)+fi(2P+2a)+f3(2P+2a + b) = 0 (mod 1) 

we have 3\2P+a, 3\2P+2a+b, which implies that / 1 ( 2 P + a ) = 0 (mod 1), 
f3(2P+2a+b)=0 (mod 1), and so that f2(P+a)=0 (mod 1), which can be occur 
only if oc=0 (mod 1). 

This completes the proof of Case III. The theorem is proved. 

3. Let us consider now the equation 

where U, V are multiplicative functions, AT is a fixed positive integer. We are in-
terested in to give all the solutions under the condition 

The same equation for completely multiplicative functions was considered in our 
earlier paper [1]. We solved (3.1) for K= 1 assuming (3.2) in [1]. The case AT>1 is 
more complicated. Assume that (3.1) and (3.2) hold. 

(3.1) V(n + K) = U(n) (« = 1 ,2 , . . . ) , 

(3.2) U(ri) 9^0 whenever (n, K) = 1. 

Let 

(3.3) 

be defined on the set of integers n, coprime to K. Let furthermore 

(3.4) Sp(m) H(p)H(m)H(m + k)... H{m + (p — 2)K). 

If (p,n{n+K))=1, then 

(3.6) 
i.e. 

(3.5) 
_ V{p(n + kj) ^ 1 

U(pn) ~ H(pn + K) ...H{pn + (p-\)K)' 

Ô„(pn + K) = 1 if (p, n(n + K)) = 1. 

1 

Let p>q,r=p — q+1. Then 

Sp(m) = H{p)[H{m)H(m+K)... H(m + (q-2)K)] X 

X[H(m + (q-l)K) ... H(m + (p-2)K)] = 
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and so 

П 71 Щ Р ) = *>(т) 
{ } H{q)H(r) Sq(m) -6г{т + (Я~ I) К) ' 

We should like to give some conditions which imply that the right hand side 
equals 1. This holds true if all the next relations are satisfied, with a suitable in-
teger m: 

(3.8) m = A"(mod p)\ m = К (mod q); m + (q -2) К = 0 (mod r), 

(3.9) ( J 5 z £ . " + = l ; [ H L z L . " + ( * - ' ) * , • 

(3.10) ( m + ^ A r . m + fa-l)/:-^^,. (pqr, K) = \. 

Let 
* _ | К if A is even, 

~ 12АГ if AT is odd. 

Assume that r is given, (r,K)= 1. Let Я be an integer which will be chosen 
later, ц:=ХК*. Let p and q by defined by 

p = (1 + »/)/•, q = tjr+1. 

If (3.8), (3.9), (3.10) hold with some m, then 

(3.11) H(p) = # ( 1 + AK*)H(r) 
is valid. 
We shall search m in the form m=pqv+K. The conditions m=K ( m o d p ) , 
m = K (mod q), m + (q — 2)K=pq v + (q—\)K=0 (mod r) are satisfied clearly, the 
condition (pgr, K)=\ is equivalent to [r(\ + t]((t]r+ 1), К)— 1 which is true since 
(r, K ) = 1 was assumed. 

We have 

m-K m + (p-l)K . , m-K m + (q-l)K ^ = qv(qv + K), 2 = pV(pV+K), 
P P 4 4 

m + (q-2)K = pqv + (q-l)K= [(l + n)qv + t]K]r, 

m + (q-2)K+rK=[(l + r,)qv + (ri+l)K]r = (1 +n)r(qv + K). 

So, to satisfy (3.9), (3.10) we have to find such v, for which 

(3.12) (qv(qv + K),p)=l, (pv(pv + K), q) = 1 

(3.13) (((1 + t])qv + rjK)-(l + ij)(qv + К), r) = 1 

simultaneously hold. 
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The condition (p,q)= 1 will be guaranteed by restricting r to satisfy the re-
lation 
(3.14) ( r ( r - l ) , l + i,) = l. 

Since q is an even number, there exists such an r. Now we prove that (3.14) 
implies that (p,q)= 1. Assume the contrary. Let 5\(p, q), 5 be a prime number. 
Since p=(l+rj)r, q=tjr+l, therefore ¿ f r , and so <5|l + f/. But q=(tj + l)r+ 
+(1—r ) , whence ¿|1— r. This case was excluded by (3.14). 

Now our conditions can be rewritten in the form 

(1) (v(pv + K),q)= 1 

(2) (v(qV + K),p)=l 

(3) ((1 +1) + t]K, r) = 1 

(4) (qv + K,r) = 1. 

Since (2) implies (4), therefore (4) can be omitted. Since p=(l+rj)r, then we 
may substitute them with 

(A) (v(pv + K),q)=l 

(B) {v(qv + K),r)= 1 

(C) {V(qv + K),(l+q))= 1 

(D) {(\+ti)q\ + rjK,r) = 1. 
Since (p, q)= 1, therefore (q, r)= 1, consequently q, r, 1+rj are pairwise 

coprime integers. To prove that (A), (B), (C), (D) hold simultaneously with a suit-
able v, it is enough to show that there is a solution of (B) and (D), furthermore that 
of (A), and of (C). 

Since q and 1+rj are both odd numbers, therefore (A) and (C) can be solved. 
Assume that there exist no v for which (B) and (D) would hold simultaneously. 

Then there exists a prime divisor Q of r such that for every integer v, either 
{y(qv+K), Q)=Q or ((l + rf)qv+tjK, Q)=Q. Let us observe that it can be occur 
only if <2=3, i.e. if 3|r. 

If 3|r, then 3\K, q=1 (mod3), thus we have v(^rv+^)=v(v+A:) (mod3), 
(l+ri)qv+riK=(l+Tj)v+TiK (mod3). If 3\t], then the last congruence can be 
reduced to = v (mod 3). In this case (B) and (D) can be solved as well. 

We shall exclude the case when 3|r and 3fr\, i.e. the case: 3\r and tj = l (mod3.) 
Since H(p)=H(q)H(r), by (3.9) we have 

(3.15) H(\ +XK*) = H( 1 +krK*) 
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if 

(3.16) (r(r— 1), 1 + XK*) = 1 (r, K) = 1 

and in the case 3\r, the relation rj 1 (3) holds. 

L e m m a 3. If (X,K)= 1, (n,K)=l and in the case 31K, XK*^\ (mod 3), 
nK*£l (mod 3), then 

(3.17) H(l+XK*) = H(l+PK*) 

P r o o f . We can find positive integers r and s such that 
(3.18) rX = s\i 
and 
(3.19) ( r ( r - l ) , 1+XK*) = 1 

(3.20) ( J ( j - 1 ) , 1 + / I * * ) = 1. 

Indeed, if 5—(A, n), X=5X1, [i=8n1, then r=p1t, s=A1t is a solution of 
(3.18) for every positive in teger / . Assume that (t, K)= 1. Then (r, K) = (s, K)= 1 
holds true. Since K is coprime to both of the integers 1 + XK*, 1 + f i K * , we have 
to consider only the solvability of (3.19) and that of (3.20). Both of them have 
solutions. 

Assume that there exists no t for which (3.19) and (3.20) would be satisfied. 
Then there would exist a prime divisor Q of (1+AK*, 1+fiK*) such that 
Pi t (pi t — 1) • X± t • (Xx t — 1 )=0 (mod Q) holds for every integer t. 

We have Furthermore Q\(X~n)K*, (Q,K*)= 1, therefore 
<2l<5(Ai—Pi). Q\S cannot be occur, thus Xx—Px=0 (mod Q). Consequently our 
congruence can be reduced to the form t(X1t—1)=0 (mod Q). But it has at most 
two solutions mod Q, consequently there is a t for which both of (3.19), (3.20) holds. 
By this we proved our Lemma 3. 

L e m m a 4. If A=B (modK*K) and (A,K*)= 1, then 

(3.21) H(A) = H(B). 

P r o o f . Let 3 f K . Assume first that 31A and 31B or 3{(A, B). In the former 
case let AX=3A, B±=3B, in the second case A~Aly B=Bi. In both cases 
AX=BX (mod 3). 

If 0 is such an integer for which A10 = 1 +K* (mod K*K) holds, then 
Bx& = \+K* (mo6.K*K) is satisfied as well." Writing Ax0 = l+XK*, + 
+ fiK*, XK*^1, 1 obviously hold. Since the solutions 0 give a whole residue 
class (mod K*K), which is reduced to the module, we can choose 0 to be a large 
prime. By Lemma 3 we have H(A10)=H(B10), which implies that H(A1)=H(B1), 
and so that H(A)=H(B). 
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If 3| A, 3f B, then the general solution of the congruence B© = 1 + K* (mod K*K) 
can be written as 0 = 0*+hK*K (h=0, 1 , 2 , . . . ) where 0* is a particular solu-
tion. Since B0=B0*+hBK*K ( m o d 3 ) , 3 f B K * K , therefore B0 = 1 (mod 3) holds 
if h is falling into the appropriate residue class m o d 3 . Then A0 = 0 (mod 3). 
We may choose 0 to be a large prime, and by Lemma 2, H(A0)=H(B0) we con-
clude that H(A)=H(B). 

In the case 3|K we get the lemma similarly, but without taking care of t he 
requirements (mod3) . 

Let Xo be the principal character mod K*K. Since the conditions of Lemma 1 
are satisfied for the function f(n):=x0(n)H(n), B=K*K, therefore there exists a. 
character %K*K SUC^ that 

(3.22) H(n) = XK*K(") whenever (n, K* K ) = 1. 

We distinguish two cases according to the parity of k. 
Case K=even. For every m, n integers coprime to K, let 

A(m,n): = U(mn) 

U(m) U (n) ' 

5 ( W ' n ) : =
 X(n+K) M X { m n + I K ) ' 

where x is the character given in (3.22). Since x is periodic mod K2, therefore 
S(m,n) is periodic mod K2 in both of its variables m and n. Furthermore,. 
A(m, n)=1 if m and n are coprimes. 
Since 

U(n) = V(n + K) = H(n + K)U(n + K) = x(n + K)U(n + K), 

consequently 
U(nm) = x(mn + K)x(mn + 2K) ... x(mn + mK) U(m(n+K)) = S(m, n)U(m(n + K))r 

i.e. 
(3.23) A(m,n) = S(m,n) 

holds under the condition (mn, K)= 1, (m, n+K)= 1. 
Let p be an arbitrary prime, (p, K)= 1. Then p is an odd integer. Take m—p1,. 

U(p*+1) 
n=pv, where (v,p)=\. Then A(pa,pv)= . Since (n+K, m)=i 
clearly holds, therefore ^ ' ' 

A(p*,pv) = S(p*,pv). 

Since S(p",pv)=S(p",pv+K2)=A(p'',pv+K2)= 1, we deduced that 

U(p^) = U(p*)U(p) 
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valid for all prime pover p1 coprime to K. This shows that U is completely multi-
plicative on the set (n, K)=\. Since V-H- U, and H is completely multiplicative 
on the set (n, K)= 1, so is V. Therefore, we may apply Lemma 2 for the charac-
terization of the solution (U, V) at least on the set (n,K)= 1. 

Case K=odd. Let n=Tv,y<£\ and (v, K)=\. Then 

V(2>v + K) K ( 2 ^ v + 2 K) U(2'+*) U(2y+1) , 
U(2yv) U(v(U(2y) V(2)U(2y+i) V(2)U(2r) V 7 h 

Thus we proved that 

(3.24) H(2r+1v + K) = Dy, for every (v,2AT) = l , 
where 

U(2y+1) 
V(2)U(2y) ' 

Similarly, we can prove that 

(3.25) = ( y s i ) 

(3.26) H(2v+1v—K) = for every (v, 2K) = 1, 

n m F - M l (3-2 7) = K(2y+1) r 

From (3.22) we know that H(n)=%(n) for (n, 2AT)=1, where ^ is a character 
mod 2K2 For odd AT we can prove more, namely that H is periodic mod 2K. The 
worst case is the case 3f K. Assume that 31K. 

If K* = 1 (mod 3), then, by Lemma 2, 

H(\+3K*) = H{ 1 + 4K*); (A = 3, ¡i = 4), 

if = - 1 (mod 3), then 

#(•1 +2K*) = H( 1 + 3 K * ) (A = 2, n = 3), 
consequently, by 

/7(1 + WT) = Z № ( 1 +vK*) = Z a I , ( l + * * ) * = H( 1 

we get that tf(l+Jn=£sK.(l+£)= 1- If 3|AT, then we have H(l+K*)= 
H(l+2K*), and conclude to the same result. But then ^ ( 1 + vA:*)=>:2k1(1+vA:*)= 1 
holds for every integer v. If A =B (mod K*) such that (A, K*)=l, then one can 
choose a large prime 0 such that AQ — l (mod K*), which implies that BQ = 1 
( m o d a n d H(A0)=H(B0), whence by (A, 0)=(B, 0)=1, N(0)^0, we 
infer H(A)=H(B). So we proved that H is periodic mod 2K; consequently, by 
Lemma 1, 

(3.28) H(ri) = XzK(n) if (n ,2K) = 1. 
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Let >us consider now (3.24). Observe that if v l5 v2, vs, S=(p(2K) is a com-
plete reduced residue system mod 2K, then so is 27+1vy-4-K (j=i,..., S). Indeed, 
these numbers are coprime to 2K, and if 2y+1vi+>K=2r+1vJ+K (mod 2K), for 
some suitable iVy, then ^Kvj—vy). Since vf, v.j are odd numbers, ¡therefore 
2| (Vi—Vj), so Vi=Vj (mod 2K), which cannot be occur. It implies that the left-
hand side does not change its value if v run over a reduced residue set," whence we 
have that H(n)~ 1 for every (n,2K)=\, furthermore that D y = l and similarly 
that Ey=1 for every y s l . From the relation DyEy—\ we obtain that 

H ( 2 y + 1 ) = l W ( r - 1 } ' 

which implies that H(22)=1. We shall show that there exists such an integer T 
for which H(2r)=H(2r+1), which will imply tha t H{2)=1, and so that H(2y)=l 
for every y s l . 

To do this, let us consider the product 

A(s, n) = /71 H(sn + IK) 
(=i 

defined for positive integers s, n such that (sn,K)= 1. Observing that for 
(s, n+K)= 1 we have 

U(sn) = H(sn + K)... H(sn + sK)U(s(n + K)) = A(s, n)U(s)U(n), 

consequently, if additionally ( j , n ) = l , then 

A(s,ri) = 1. 
Assume that the conditions 

(3.29) (s, n) = 1, (s,n + K) = 1, (s, K) = (n, K) = 1 

hold for some pairs of integers s, n. They imply that A (s, n) = 1. Let us change n 
by N=n-h RsK, where R is an arbitrary positive integer. Since the conditions 
(3.29) will be held replacing n by N, therefore A(s, N)=l holds for all 
Let A,=sn+lK, then AL<A2<...<AS_1. Let r 0 be so large that 2r°. 
Let us choose R=RX such that Let b2, ..., be defined as the 
exponents of 2, such that 2bJ\\AJ+s2R1K(j=2, ..., j - 1). It is clear that max b j < r 0 . 
Now we choose an R2 such that 2r+l\\A0+s2R2K. For this choice of R the ex-
ponents of 2 in Aj+s2R2k (J=2, ..., s - l ) are unchanged, 2BJ\\Aj+s2R2K. Thus 
we have 

1 = A(S,n + RlSK) = H(2T) 'ff H(2»i) = H(2r+1) 'jj H(2".) = A(s,n + R2sK). 
1 = 2 1 = 2 

whence we have H(2r)=H(2r+l). 

3 
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So we proved that U(n)=V(n) on the set («, K)= 1. By taking f(n)= 
=Xo(n)U(n), where x0(n) is the principal character mod A", we have f(n+K)= 
=f(n) for all (n, K)—l. From Lemma 1 we get that U(n)=V(n)=/K(n) on the 
set :{n ,K)= 1. Hence, by Lemma 3, after a simple discussion we shall deduce our 

T h e o r e m 3. Let K^l be an integer, F,G£M such that G(n+K)=F(n) 
holds for every n^N, furthermore that F(n)^0 if (n,K)= 1. Then the following 
assertions hold: 

(A) F(«) = G(n) = x(«; K) on the set n,(ji,K)=\, 

for every n, (n,K)= 1, where x (« ;4 ) is the nonprincipal character mod 4; by 

(C) If <5sl and ps+1\K, then F(ps)=0 holds if and only if G(ps)=0 is 
satisfied. In the case (A), if p is odd and Fip')^0 then G(ps)=F(pi) and x(n\K) 
is periodic with the period Kip9. In the case (A), if p — 2 and Fip3)^ 0, then /(n; K) 
is periodic with the period K/2a_1 and G (p*)=1 + (K/2?); K) F(p*). In the case (B), 
if p is odd, then G(p>)=x(p';4)F(ps), and Fip*)^0 implies that %(n\ R) is 
periodic mod R/pi. 

(D) In the case (B), F(2"') = G ( 2 ' ) = 0 for every y^l. 
(E) If pa\\K, then F(p')=0 is true if and only if G(p>)=0 for every y > « 

furthermore G(p") — 0 if and only if F(p7)=0 is satisfied for every y > a . If p> 2, 
then the statement G(p)=0, F(p) = 0 are equivalent. 

(F) If p"\\K and F(p*)^0 or G( /AM0, then x(n;K) is induced by x(n\Kx), 
K=p*K1 in case (A), and /(n: R) is induced by y(n \ Rx), R=p"R1 in case (B). 

(G) In case (A) let K=B1B2, (B1,B2)= 1, where Bx is the product of those 
prime powers p", pa\\K, for which at least one of G(p")^0, FO^O holds. Then 
X(n;K) is induced by some character x(n~, B2), and 

or 

(B) in the case K=2R, (R, 2 ) = 1, 

G(ri) = X(n; 4)F(n); F(n) = X(n; 8)X(n; R), 

x(»; 8) = { 

-1 n = ± 1 (mod 8) 

1 n = ± 3 (mod 8) 

1 n = 1,3 (mod 8) 

- 1 n = 5,7 (mod 8) if R = — I (mod 4). 

if R = 1 (mod 4), 
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moreover for 
F(p') = G(p°) 

hold. 

(H) In the case (B) let R=D1-D2, (Dlt D2)= 1, where is the product of the 
prime powers p", pa\\R, for which F(p")?i 0, then %(n; R) is induced by a character 
K.(n\ Do). Then 

F(py) 

hold for every y furthermore 

G(py) = X(p';4)F(py) 
for every a. 

Jf F and G is such a pair of functions for which the above conditions hold, then 
the relation G(n + K)= F(n) (n£N) is satisfied. 

P r o o f . We shall prove only the necessity of the conditions, the sufficiency 
part can be verified easily. (A) and (B) were proved earlier. To prove (E) take n=pyv, 
where y > a , (v, K)= 1, and consider only the equations G(pyv+K)=F(pyv), 
F(pyv — K) = G(pyv). S i n c e p y v ± K = p x ( p y ~ * v ± K 1 ) , K—pxKx, and (py~xv±K1, K) = 
= 1, F( /? 7 - a v- / i 1 )? i0 , G(py-'l\+K^)7i0, and since the same is true if y=a, p>2, 
for v, (v(v—/sTj), # ) = 1, we obtain (E). 

Now we prove (C). The assertion that F(ps)=0 iff G(ps)=0 is clear. Con-
sider first the case (A). Assume that F(P6)T±0. Let n=p"v, K=pxKt, p*\\K, <5<a. 
Then G(ps)G(v+p*-sKl) = F(ps)F(v), whence 

If we write this equation replacing v by v + i p5 , - 1 and multiply the equations 
for 5=0, . . . , v - l , we get that 

x(v; K) 
Xiv + vp'-'K^, K) ' 

whence we obtain, that 
1 

a" = 
Xil+p'-'K^K) 

is true for every v, (v, K)=l. The right hand side does not depend on v. If 2 f K 
we can choose v = l , v = 2 and conclude that a= 1. If 2\K, then we take v=K— 1, 

3* 
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v=K+1, and deduce that a2=l. In both cases we have 

X(V + 2p-*K1, K) = x(v; K) if (V, K) = 1, 

which implies that ¿(v, K) is periodic with period 2p*~sKl, and so it is periodic 
with (2p'-sK1,K). This implies condition (C) for the case (A). 

Now we shall consider case (B). Observe that for the characters given in (B), 
the product 

for every odd p. and for 7 ? = ± 1 (mod 4). 
Assume that p^2, ps\R, R=p"R1, p'\R, By choosing n—psct, starting 

from the relation G(pi)G(v+2px-iR1)=F(ps)F(v), substituting the values for 
F(v) and G(v+2pI~sRl) given in (B), after some calculation we obtain 

4)TB(psv) 
F(ps) n p ' * ) W } x(v + 2p"~ i R 1 ; R)' 

whence, by (3.32) we have that 

h . =
 G ( r t = R) 

(p6;4)F(ps) x(v + 2p*-*R1-, R) * 

for every v, (v, 2R) = 1. Arguing as at the former case we deduce that b2= 1, and 
so that is periodic m o d 4 / - a R l 5 and so m o d ( 4 p " - s R 1 , R ) = p x - s R 1 . 
But then b= 1, G(p*)=x(p'; 4 )F(p" ) . This proves condition (C). 

The next step is to prove (D). Assume that G(2)^0 , choose n = 2yv, y = 2. 
Then 

G(2)G(2y-1v + R) = F(2')F(v) 

and by using the explicit form of F and G, after some cancellation, we have 

(3.32) G(2)X(2y~1v + R; 4)x(2y-1v + R; 8)x(2y~1; R) = F(2>)z(v; 8). 
If y = 4 , then the left-hand side does not depend on v, while / (v ; 8) does. It im-
plies that F(2y)=0 for y ^ 4 , and so G(2)=0. We can prove impossibility of 
the case F(2)^0 similarly. By (C) the proof of (D) is completed. 

Let us prove now (G). By choosing n—prv, (v, K)=l, y > a , p*\\K, K=K1px, 
under conditions (A), we have 

(3.33) * ( v ; ^ 
F\py) x(py-*v+Ki;K)' 

which is valid if G(p")^0. Assume G{p')^0. Then F(py)^0 holds for y > a , 
and the right-hand side does not depend on v. Let Then the denominator 
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is periodic mod / ^ , which implies that x( v+Ki ' , K)=x( v ' , K), consequently 
X(v; K)=x(v, K^) with some character mod-J^, and so the right-hand side is 

This assertion hold for every y > a , and in the case 2 even for 
y =a. The case F(p")^0 is.similar. Doing this for al lp", />12?i, we get that x ( n K ) 
is periodic mod B2, and this leads to the equations given in (G). We proved the 
first part of (F), as well'. 

Let us finally consider (H). Let G-(p')^ 0. Let R=pxR1,y>a, n=pyv, (v, K)=l. 
Then p>2. From G(pa)G(py~''v+2Rl)=F(py)F(v), we deduce that 

G j j f ) x W l 8) = X(y, R) T ( n y v s 
F(Py) X(P", 4). x(Py~°v + 2RltR)' RKPV' 

which by (3.31) and by choosing y ^ 2 a , gives that X(-, R) is periodic mod 2i? 
and so modi? . Furthermore the right-hand side equals x(py~*',Ri)> for every 
y ^ a . We can deduce a similar formula assuming F(p")?±0. Doing this for every p", 
p"\\D1, we can finish the proof rapidly. 

By this the proof of our theorem is completed. 

4. Let A, G£M be connected by the equation G(n+l)=F(n). This was 
solved in Section 3 under the additional condition F ( n ) ^ 0 («=1 ,2 , . . . ) . It was 
found that F (n )=( / (« )= 1 identically. 

Let now a be such an exponent for which 2" — 1=P, where P is a prime power, 
P=QSS, allowing the case P=\. Let GX,F^M asfollow: F (1 )=G(1)= 1, G a(2)= 1, 
Gx(2x)=Fa(P)=arbitrary nonzero value, Fa(n)=0 if n^ 1, P; Gx(n)=0 if n* 1, 2, 2". 
It is clear that Fa and Gx will: be multiplicative functions, and the equation 
G I ( « + l ) = F a ( « ) ( n = l , 2, ...) will be true. 

It is an open question, whether 2" — 1 can be a prime power for infinitely many 
a or not. The list of a = 2 , 3, 5 shows that such a values exist. 

We shall prove the next 

T h e o r e m 4. If F,G£M and G{n+\)=F(n) holds for every n£N, then 
either F(n)=G(n) are identically zero, or identically one, or there exists an integer 
a.^2 such that 2"-1=prime power=P, such that G ( 2 ) = F ( 1 ) = G ( 1 ) = 1, G(2')= 
= F(P) and F(n}=0, G(n)=0 holds for all other n£N. 

P r o o f . Let SP be the set of those prime powers P for which F(P)?±0, and 
&t be the set of those powers Q for which G(Q)^0. Let SP, 01 denote the comple-
ment sets with respect to the whole set of prime powers. If 0> or 2? are empty sets, 
then so are 8k and 3$, and these lead to the equation F(n)=G(n) as it was proved in 
Section 3. Thus, we may assume that ^ a n d M are non-empty proper subsets of the 
whole set o£ the prime powers. 
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It is well known that all solutions of the Diophantine equation 3X —2 y =l 
are. x—y= 1, and x=2, y=3 while 2X—3*= 1 implies that x=2, y= 1. 

L e m m a 5. Let P be the smallest integer n, for which F(n)G(n)=0. Then 
P=prime power, furthermore P=2,4 or 8; F(P)=0 and G(P)?i0. 

P r o o f . It is clear that the smallest integer n for which F(n)G(n)=0 holds, 
has to be a prime power P, and G(n)=F(n—1)^0. Thus F(P)=0. 

Assume first that P is even, and 2. Then P= 2". We have G(P+1)=0, 
G ( 2 P + 2 ) = F ( 2 P + 1 ) = 0 . From the minimality of P we have that both of P+1 
and 2P+1 are prime powers. Since at least one of them is a multiple of 3, there-
fore either 2" + l=3b or 2a+1 + l=3b, which implies that P=4 or P=8. 

Assume that P is an odd number. Then G(P+1)=0, and we can get rapidly 
that P + 1 = 2 S . If 3 | P , then P=3°, 2 S - 3 ° = 1 , whence 5 = 2 , a= 1 , i.e. P=3 
follows. In this case F(2)^0, F ( 3 ) = 0 . But F ( 2 ) ^ 0 , = > G ( 3 ) ? I 0 , G ( 6 ) = F ( 5 ) ? I 0 , 

F ( 1 0 ) T Î 0 , G(U)^0, = > G ( 2 2 ) ^ 0 , =>F(2l)=F(3)F(7)^0, =>F(3)^0. This leads to 
a contradiction. If 3 | F , the 2 P + 1 = 0 ( 3 ) , G ( 2 P + 1 ) = 0 , and we deduce that 
2 P + 1 = 3 6 , whence 2 S + 1 — 3 6 = 1 , and so J = l , F = 1 follows. This cannot occur. 

We finished the proof of our lemma. 

L e m m a 6. In the notations of Lemma 5, P=4 or P= 8 cannot be occur. 

P r o o f . I. Thecase P= 8. Then {2, 3, 22, 5, 7}£0>, {2, 3, 22, 5, 7, 23}€^, whence 
G(5 • 3 • 7)=G(105)r i0, F(104) = F(23) - (13)^0, F(2 3 )^0 , and this is a contra-
diction. 

II. Thecase i>=4. Then {2, 3}6^>, {2, 3, 2 2}€^, and so 

7 = 2 • 3 + 1 G(7 • 3) = G(21) = F(20) = F(5 • 4) ^ 0, i.e. F(4) j t 0, 

contrary to our assumption. 
L e m m a 7. If 01 contains at least one odd prime powers, then F(n) and G{n) 

are nowhere zero. 

P r o o f . Assume that x is the smallest odd prime power in 0t. x = 3 would 
imply that F (2 )^0 , and this case was treated earlier. Assume that x=-3. Then 
x— 1 is a power of 2, since in the opposite case, x—l=2sA, A=*l would imply 
that F ( 2 0 ^ 0 , G ( 2 s + 1 ) ^ 0 , and 2 s + 1 Thus x-l=2'e0>. Since G(2 )^0 , 
therefore 0?ÎG(2>C)=F(2JÎ-1). If 3\x, then x=3b, and from the equation 3® — 
—2S=1 we deduce that either x=3 (b=i), or x=32 (b=2). If x=3 then 2Ç0>, 
which was considered earlier. If x=32, then 

{2,32}Çâg, 23Ç0>, G( 1 8 ) 0 , 17Ç0>, F ( 1 3 6 ) = F ( 8 • 1 7 ) ^ 0 , 

137Ç&, G ( 1 2 3 3 ) = G ( 9 - 1 3 7 ) ^ 0 , F ( 1 2 3 2 ) = F ( 2 4 - 7 - 1 1 ) * 0 , 
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G(12)=G(4- 3)^0,3(0%, which is a contradiction. Assume that 3 U . Then 3 | 2 x - l , 
F(2x— 1 )^0 . If 2x — l is not a power of 3, then 2x-l=3bB, where B>1, 3ffl , 
consequently fls5, 3b£P, F(B)=G(B+1)^0, and the odd parts of both/of 3 6 + l , 
B +1 have to be 1, taking into account the minimality of x. But then 3b+1=2', 
whence 6 = 1 , B=2d-l, </s3, and 2 ( 2 5 + 1 ) - 1 = 3 • (2^-1), i.e. 2 s + 1 - 3 • 2f= -4, 
which is impossible, since s + l ^ d ^ 3 . 

We finished the proof of our lemma. 

L e m m a 8. If contains at least two distinct odd prime powers, then 8% contains 
at least one odd number. 

P r o o f . Let Qi, Qo^SP be odd numbers. Assume first that {Qi, Q2) = 1- If 
the lemma fails to hold, then G(Ql+1)^0, G(Q2+1)^0, G(Q1Q2+1)^0, and 
so Q1 + l=2°, Q2+1=2", QlQi + l = 2c, 2. Then ( 2 c - l ) = ( 2 a - l ) ( 2 6 - l ) 
and the two sides of this equation are incongruent mod 2b. 

It remains the case when Qx=Q", Q2=Q" with some odd prime Q. Let Qi + 1 = 
=2", Q2+l=2b, a>b=z2. Hence we get that Qj=-l (mod4), i.e. that Q= -
— 1 (mod4), u, v are both odd numbers. First we observe that Q"+l\Q"+l. 
But then v\u, which can be proved easily. Assume that u=kv+r, where 0^r<v. If 
k is an even number, k=2h, 

Q"+ 1 = Qr(QM»-l) + Qr + lt 

which by Q"+l\Q2h0-\ implies that Q"+l\Qr+l, and this cannot occur. If A: 
is an odd number, then Q"+ l = Qr(Qkc+l)+(l-Qr), and by Q"+\\Qkv+l, 
Qv+ l | Q r - l , which implies that r=0. 

So we have, u=kv, k is odd. In the same way, starting from Q"IQ", we deduce 
that b\a, a=bt. So we have 

Q"+1 = 2b, Qkv+1 = 2bt, t 2.J 
Then 

2"'-1 = (2b -1)" = -1 + (1*). 2" (mod 2b+1) 

which is impossible for odd k. 
The proof of our lemma is completed. By this we proved our theorem. 

R e m a r k . The general case G(n+K)=F(ri) can be treated similarly, at least 
for small fixed values of K, but it involves the knowledge of all solutions of Dio-
phantine equations like a*-by=h for some values of a, b, h. 
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