Arithmetical functions satisfying some relations

IMRE KÁTAI*)

1. Let $A\left(A^{*}\right)$ be the set of additive (completely additive) functions, $M\left(M^{*}\right)$ be the set of multiplicative (completely multiplicative) functions. $\|x\|=\min _{k \in \mathbf{Z}}|x-k|$.

Let $L_{f}(n):=f_{0}(n)+f_{1}\left(n+a_{1}\right)+\ldots+f_{k}\left(n+a_{k}\right)$, where $f_{j} \in A^{*}$ and a_{1}, \ldots, a_{k} are mutually distinct natural numbers. It is probable that $\left\|L_{f}(n)\right\| \rightarrow 0(n \rightarrow \infty)$ implies that $f_{j}(n) \equiv \tau_{j} \log n+u_{j}(n)(\bmod 1)$, with some $\tau_{j} \in \mathbf{R}$ such that $\tau_{0}+\ldots+\tau_{k}=0$ and $L_{u}(n):=u_{0}(n)+u_{1}(n+1)+\ldots+u_{k}\left(n+a_{k}\right)$ satisfies $L_{u}(n): \equiv 0(\bmod 1)$ for every $n \geqq 1$. This question was raised by the author and solved by E. Wirsing in the special case $k=1$.

Furthermore we guess that

$$
\begin{equation*}
L_{u}(n) \equiv 0 \quad(\bmod 1) \quad(n=1,2 \ldots) \tag{1.1}
\end{equation*}
$$

implies that $u_{j}(n) \equiv 0(\bmod 1)$ for every $n \in \mathbf{N}$ and for every j. This was proved for $k=3, a_{1}=1, a_{2}=2, a_{3}=3$ in [2]. Marijke van Rossum investigated the solutions of the relation

$$
\begin{equation*}
g_{0}(\alpha)+g_{1}(\alpha+1)+g_{2}(\alpha+2)+g_{3}(\alpha+3) \equiv 0 \quad(\bmod 1) \quad(\forall \alpha \in G), \tag{1.2}
\end{equation*}
$$

where g_{0}, \ldots, g_{3} are completely additive functions defined on the set of \mathbf{G} of Gaussian integers. She found that (1.2) has only trivial solutions.

The simple idea to prove that a recursion

$$
\begin{equation*}
L_{f}(n)=f_{0}(n)+f_{1}(n+1)+\ldots+f_{k}(n+k), \quad L_{f}(n) \equiv 0 \quad(\bmod 1) \tag{1.3}
\end{equation*}
$$

has only trivial solution, is the following one:

1) Initial step: by taking $L_{f}(n) \equiv 0(\bmod 1)$ for $n=1,2, \ldots, N$ with a large N, solving a linear equation system without multiplication and divisions, one conclude that $f_{j}(n) \equiv 0(\bmod 1)$ holds true for all n up to N_{0}.

[^0]2) Induction step: If (1.3) holds and $f_{j}(n) \equiv 0(\bmod 1)$ holds for $k=1,2, \ldots, n$, then it is true for $k=n+1$ as well, assuming that $n \geqq N_{1}$, where $N_{1} \leqq N_{0}$.
The initial step can be handled by using computer for a moderate size of k. The induction could be deduced simply from the following.

Conjecture. For every integer $k \geqq 1$ there exists a constant $C_{0}(k)$ such that

$$
\min _{P(j)<Q} \max _{l=1, \ldots, k} \max \{P(j Q+l), P(j Q-l)\}<Q
$$

hold for every prime $Q>C_{0}(k)$. Here $P(n)$ denotes the largest prime divisor of n.
This is clearly true, if $k=1$, by choosing $j=1$. The conjecture is open for $k \geqq 2$, and even in the case $k=1$ if we exclude $j=1$.

In Section 2 we shall prove the following
Theorem 1. Let a, δ be positive integers, $f_{1}, f_{2}, f_{3} \in A^{*}$ such that $L(n): \equiv f_{1}(n-a)+$ $+f_{2}(n)+f_{3}(n+\delta)$ satisfies the relation

$$
\begin{equation*}
L(n) \equiv 0 \quad(\bmod 1) \tag{1.4}
\end{equation*}
$$

for every integer $n \geqq a+1$. Assume furthermore that $f_{j}(n) \equiv 0(\bmod 1)$ for $j=1,2,3$ and for all $n \leqq \max (3, a+\delta)$. Then $f_{j}(n) \equiv 0(\bmod 1)(j=1,2,3)$ for all $n \in \mathbb{N}$ and $j=1,2,3$.

Hence immediately follows
Theorem 2. If $f_{1}, f_{2}, f_{3} \in A^{*}$ and

$$
\begin{equation*}
f_{1}(n-a)+f_{2}(n)+f_{3}(n+b)=0 \tag{1.5}
\end{equation*}
$$

holds for all $n \geqq a+1$, then for every prime $p>\max (3, a+b)$ the values $f_{1}(p), f_{2}(p)$, $f_{3}(p)$ are determined by the collection of the values $f_{1}(q), f_{2}(q), f_{3}(q)$ taken on at primes $q \leqq \max (3, a+b)$. Thus the set of solutions $\left(f_{1}, f_{2}, f_{3}\right)$ of (1.5) forms a finite dimensional space.

Let E denote the operator $E x_{n}=x_{n+1}$ in the linear space of infinite sequences, and for an arbitrary polynomial $P(z)=a_{0}+a_{1} z+\ldots+a_{k} z^{k}$ let $P(E) x_{n}=a_{0} x_{n}+$ $+a_{1} x_{n+1}+\ldots+a_{k} x_{n+k}$. A. SÁrкözy [4] determined all $f \in M$ which satisfy a linear recurrence. From his theorem one can deduce immediately the following

Lemma 1. Let $B \geqq 1$ be an integer, $f \in M$ for which $f(n+B)=f(n)(n=1,2, \ldots)$ holds. Then either $f(n)=0$ for all $n \in \mathbf{N}$, or $f(n)=\chi_{B}(n)$ for all n coprime to B, where $\chi_{B}(n)$ is a character $\bmod B$. Let $B=B_{1} B_{2},\left(B_{1}, B_{2}\right)=1, B_{1}=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$, where $f\left(p_{j}^{\alpha}\right) \neq 0(j=1, \ldots, r), B_{2}=q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$, where $f\left(q_{l}^{\beta_{1}}\right)=0$. The cases $B_{1}=1$ or $B_{2}=1$ are included. Let δ_{l} be the largest exponent $\left(\delta_{l} \geqq 0\right)$ for which $f\left(q_{l}^{\delta_{l}}\right) \neq 0$. Then $0 \leqq \delta_{l}<$ $<\beta_{l} \cdot(l=1, \ldots, S)$. Let $D=q^{\theta_{1}-\delta_{1}} \ldots q^{\beta_{s}-\delta_{s}}$. Then $\chi_{B}(n)=\chi_{D}(n)$ for $(n, B)=1, \quad \chi_{D}$ is a character $\bmod D$. Furthermore $f\left(p^{\gamma}\right)=f\left(p^{\alpha}\right) \chi_{E}\left(p^{\gamma x}\right)$ holds for all $p^{\alpha} \| B$ and $\gamma>\alpha$.

All the functions with the above conditions are periodic mod B.
In Section 3 we give all the solutions of $V(n+k)=U(n)(n=1,2, \ldots)$ for $U, V \in M$ under the condition $U(n) \neq 0$ if $(n, k)=1$. This equation for completely multiplicative functions was solved earlier in [1]. We present it now as

Lemma 2. Let $G(n+k)=F(n)$ hold for all $n \in N, F, G \in M^{*}, F(n)$ be nonidentically zero, $F(n)=0$ if $(n, k)>1$. Then
a) $F(n)=G(n)=\chi_{k}(n)$ is a solution for an arbitrary multiplicative character $\chi_{k}(\bmod K)$,
b) there is no other solution if $4 \mid K$ or if $(2, K)=1$,
c) if $K=2 R,(R, 2)=1$, then all further solutions have the form

$$
F(n)=\chi(n, 8) \psi_{R}(n), G(n)=\chi(n, 4) F(n),
$$

where $\psi_{R}(n)$ is an arbitrary character $\bmod R, \chi(n, 4)$ is the nonprincipal character $\bmod 4$, and $\chi(n, 8)$ is the character mod 8 defined by the relations.

$$
\begin{aligned}
& \chi_{8}(n)=\left\{\begin{array}{rl}
1 & n \equiv \pm 1(\bmod 8) \\
-1 & n \equiv \pm 3(\bmod 8)
\end{array} \text { if } R \equiv 1(\bmod 4)\right. \\
& \chi_{8}(n)=\left\{\begin{array}{rl}
1 & n \equiv \pm 3(\bmod 8) \\
-1 & n \equiv 5,7(\bmod 8)
\end{array} \text { if } R \equiv-1(\bmod 4)\right.
\end{aligned}
$$

The equation $G(n+k)=F(n), F(1) \neq 0$ implies that $F(n) G(n) \neq 0$ for $(n, k)=1$, assuming that F and G are completely multiplicative. This is not true if we assume only that $F, G \in M$.

In Section 4 we solve the equation $G(n+1)=F(n)$ for $F, G \in M$ without any additional conditions.
2. Proof of Theorem 1. The case $a=b=1$ has been proved in [2]. We may assume that $(a, b)=1$. Indeed, by substituting $n \delta$ into the place of n, observing that $f_{j}(\delta) \equiv 0(\bmod 1)$, we have

$$
f_{1}\left(n-a_{1}\right)+f_{2}(n)+f_{3}\left(n+a_{1}\right) \equiv 0(\bmod n) \quad(\forall n)
$$

and $f_{j}(n) \equiv 0(\bmod 1)(j=1,2,3)$ for every $n \leqq \max (3, a+b), a=\delta a_{1}, b=\delta b_{1}$.
Let A_{n} denote the event that $f_{j}(n) \neq 0(\bmod 1)$ holds for at least one j. We shall prove that under the condition of the theorem there exists no such an integer. If such an n exists, then $n \geqq k+1$, furthermore the smallest n for which A_{n} is true has to be a prime number P.

Now we distinguish three cases according to the parity of a and b. Let $k=a+b$.
Case I: a and b are odd numbers. Since P is the smallest integer n for which A_{n} is true, therefore $f_{3}(P) \equiv 0(\bmod 1)$ cannot occur, since $f_{2}(P-a) \equiv 0(\bmod 1)$,
$f_{1}(P-k) \equiv 0(\bmod 1)$. Similarly, $f_{2}(P) \equiv 0(\bmod 1)$, since $2 \mid P+b$, and $\frac{P+b}{2}<P$. Thus $f_{1}(P) \equiv \alpha(\not \equiv 0)(\bmod 1)$. Since $L(P+a) \equiv 0(\bmod 1)$, and $2 \mid P+a, \frac{P+a}{2}<P$, $f_{2}(P+a) \equiv 0(\bmod 1)$, therefore $f_{3}(P+k) \equiv-\alpha(\bmod 1)$.

Let now $\delta \mid k, \delta>1$. Since $L(P+a) \equiv 0(\bmod 1), L\left(P+\frac{k}{\beta}-b\right) \equiv 0(\bmod 1)$, therefore

$$
\begin{equation*}
f_{1}(\delta P)+f_{2}(\delta P+a)+f_{3}(\delta P+k) \equiv 0(\bmod 1) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left.f_{1}\left(P+\frac{k}{\delta}+k\right)+f_{2}\left(P+\frac{k}{\delta}-b\right)+f_{3}\left(P+\frac{k}{\delta}\right) \equiv 0 \bmod 1\right) \tag{2.2}
\end{equation*}
$$

$f_{1}\left(P+\frac{k}{\delta}-k\right) \equiv 0(\bmod 1)$. If $f_{3}(P+k / \delta) \equiv \beta \neq 0(\bmod 1)$, then k / δ is an even number, since in the opposite case $2 \mid P+k / \delta$, and from $\frac{1}{2}(P+k / \delta)<P$ it would follow $f_{3}(\cdot) \equiv 0(\bmod 1)$. But then $f_{2}(P+k / \delta-b) \equiv-\beta \neq 0(\bmod 1), P+\frac{k}{\delta}-b$ is an even number and $\frac{1}{2}\left(P+\frac{k}{\delta}-b\right)<P$. This cannot be occur. Thus $f_{3}(\delta P+k) \equiv$ $\equiv f_{3}(\delta)+f_{3}\left(P+\frac{k}{\delta}\right) \equiv 0(\bmod 1)$. So we have

$$
\begin{equation*}
f_{2}(\delta P+a) \equiv-\alpha(\bmod 1) \text { whenever } \delta \mid k, \delta>1 \tag{2.3}
\end{equation*}
$$

Assume first that $3 \mid k$. Then, from (2.3) we have $f_{2}(3 P+a) \equiv-\alpha(\bmod 1)$. Since $2 \mid 3 P+a$, therefore $3 P+a=2 Q$, where Q is a prime number, $P<Q<2 P$. Since $f_{1}(Q-a)+f_{2}(Q)+f_{3}(Q+b) \equiv 0(\bmod 1), 2|Q-a, 2| Q+b, Q-a<2 P, Q+b<$ $<2(P+k)$, therefore $f_{1}(Q-a) \equiv 0(\bmod 1), f_{3}(Q+b) \equiv 0(\bmod 1)$, and so $f_{2}(Q) \equiv$ $\equiv 0(\bmod 1), \alpha \equiv 0(\bmod 1)$. It remains the case $3 \nmid k$. Since $f_{3}(P+k) \not \equiv 0(\bmod 1)$, and from (2.3), $f_{2}(2 P+a) \neq 0(\bmod 1)$, thus $P, P+k, 2 P+a$ are prime numbers.

Assume first that $3 \nmid a$. Since $P>3$, therefore either $3 \mid 2 P+a$ or $3 \mid 4 P+a$. Since $f_{2}(2 P+a) \not \equiv 0(\bmod 1)$, therefore $3 \nmid 2 P+a$, so $3 \mid 4 P+a$. Let us consider now

$$
\begin{equation*}
f_{1}(4 P)+f_{2}(4 P+a)+f_{3}(4 P+k) \equiv 0(\bmod 1) \tag{2.4}
\end{equation*}
$$

We shall prove that $f_{2}(4 P+a) \equiv 0(\bmod 1)$. Since $4 P+a=3 Q$, it is true, if Q is a composite number. If it is a prime, then we may consider

$$
f_{1}(Q-a)+f_{2}(Q)+f_{3}(Q+b) \equiv 0(\bmod 1)
$$

which by $2|Q+b, 2| Q-a, Q<2 P$ gives that $f_{2}(Q) \equiv 0(\bmod 1)$. So, from (2.4) we infer $f_{3}(4 P+k) \equiv-\alpha(\bmod 1)$. If $4 \mid k$, then it cannot be occur, since $P+k$ is the smallest integer n for which $f_{3}(n) \neq 0(\bmod 1)$. If $k=2 l,(l, 2)=1$, then
$f_{3}(2 P+l) \equiv-\alpha(\bmod 1)$. If $k=2 l,(l, 2)=1$, then $f_{3}(2 P+l) \equiv-\alpha(\bmod 1)$. But

$$
\begin{equation*}
f_{1}(2 P-l)+f_{2}(2 P-l+a)+f_{3}(2 P+l) \equiv 0(\bmod 1) \tag{2.5}
\end{equation*}
$$

Since $2|a-l, 2| 2 P-l+a<2 P+a$, therefore $f_{2}(2 P-l+a) \equiv 0(\bmod 1)$, and so $f_{1}(2 P-l) \equiv \alpha(\bmod 1)$.

Since $2 P-l,(2 P-l)+l=2 P, 2 P+l$ cover all the residue classes $\bmod 3,3 \nmid 2 P_{i}$ thus $3 \mid 2 P+l$ or $3 \mid 2-l$. Both of these cases imply that $\alpha \equiv 0(\bmod 1)$.

It remains the case $3 \mid a$ and $3 \nmid k$. Then $k \equiv b(\bmod 3)$. Let $Q:=P+k$. Then $f_{3}(Q) \equiv-\alpha(\bmod 1)$. Let us consider $f_{1}(2 Q-k)+f_{2}(2 Q-b)+f_{3}(2 Q) \equiv 0(\bmod 1)$. Since $2 Q-k \equiv 2 Q-b(\bmod 3), 3 \mid 2 Q-b$, and $2 Q-b<3(P+a)$, would imply $f_{2}(2 Q-b) \equiv 0(\bmod 1), f_{1}(2 Q-k) \equiv 0(\bmod 1)$, thus we may assume that $3 \nmid 2 Q-b$. But'then $P, P+k, 2 P+k$, are coprime to 3 . Since $3 \nmid k, 3 \nmid P$, therefore either $P \equiv k(\bmod 3)$ or $P \equiv-k(\bmod 3)$. In both cases, at least one of $P, P+k, 2 P+k$ is a multiple of 3 . This is a contradiction.

By this the proof of Case I is completed.
Case 1I: a is odd, b is even. Let $n=P$ be the smallest integer for which A_{n} holds true. Then n is a prime, $P>3, P>k$. We can see, similarly as earlier, that $f_{2}(P) \equiv \alpha \not \equiv 0(\bmod 1)$ with some $\alpha, f_{1}(P) \equiv 0, f_{3}(P) \equiv 0(\bmod 1)$. Observe that $f_{3}(n) \equiv 0(\bmod 1)$ if $n<P+b$, and that $f_{3}(P+b) \equiv-\alpha(\bmod 1)$, which immediately follows from $L(P) \equiv 0(\bmod 1)$. Furthermore, we can get that $f_{1}(n) \equiv 0(\bmod 1)$, if $n<2 P-a$. It is enough to prove this for odd, even for prime number integer $n=Q$. Since $L(Q+a) \equiv 0(\bmod 1), 2|Q+a, 2| Q+k, Q+a<2 P$, therefore $f_{2}(Q+a) \equiv$ $\equiv 0(\bmod 1), f_{3}(Q+k) \equiv 0(\bmod 1)$, and so $f_{1}(Q) \equiv 0(\bmod 1)$ as well. Then, for $\delta \mid b, \delta>1$, we get that $f_{3}(\delta P+b) \equiv 0(\bmod 1)$, and by $L(\delta P) \equiv 0(\bmod 1)$, that

$$
\begin{equation*}
f_{1}(\delta P-a) \equiv-\alpha(\bmod 1) \quad \text { if } \quad \delta \mid b \quad \text { and } \quad \delta>1 \tag{2.6}
\end{equation*}
$$

Let us consider the equation $L(3 P) \equiv 0(\bmod 1)$.
Since $2 \mid 3 P-a, 3 P-a=2 Q, Q<2 P-a$, therefore $f_{1}(3 P-a) \equiv 0(\bmod 1)$. This implies that either $\alpha \equiv 0(\bmod 1)$, or 3$\} b$, furthermore in the second case that $f_{3}(3 P+b) \equiv-\alpha(\bmod 1)$. Thus $3 P+b$ is a prime number since if it would be composite then its prime factors would be smaller than $P+b$. So $P, P+b, 3 P+b$ are prime numbers greater than 3 , thus $P \equiv b(\bmod 3)$.

Since $2 \mid b$, thus from (2.6) it follows that $2 P-a$ is a prime, and so that $3 \nmid 2 b-a$. If $4 \mid b$, then by (2.6) we get that $4 P-a$ is a prime, and $f_{1}(4 P-a) \equiv-\alpha(\bmod 1)$. Assume that $2 \| b, b=2 b_{1}$. Since $P \equiv b(\bmod 3), P \equiv 2 b_{1}(\bmod 3)$, from $L\left(2 P+b_{1}-b\right) \equiv$ $\equiv 0(\bmod 1)$, by $2\left|2 P+b_{1}-k<P, 3\right| 2 P+b_{1}-b$ we deduce that $f_{1}\left(2 P+b_{1}-k\right) \equiv$ $\equiv 0(\bmod 1), f_{2}\left(2 P+b_{1}-b\right) \equiv 0(\bmod 1)$, and so that $f_{3}\left(2 P+b_{1}\right) \equiv 0(\bmod 1)$. But then, from $L(4 P) \equiv 0(\bmod 1)$ we have

$$
f_{1}(4 P-a)+f_{2}(4 P)+f_{3}\left(2\left(2 P+b_{1}\right)\right) \equiv 0(\bmod 1)
$$

and so that $f_{1}(4 P-a) \equiv-\alpha(\bmod 1)$. Thus $4 P-a$ is a prime, since in the case $4 P-a=3 Q, Q<2 P-a$ would imply $f_{1}(4 P-a) \equiv 0(\bmod 1)$. So $P, P+b, 2 P-a$, $4 P-a$ are all prime numbers which can be occur only if $3 \mid a$.

It remained to consider the case $3 \mid a, P \equiv b(\bmod 3)$. Furthermore $f_{1}(4 P-a) \equiv$ $\equiv-\alpha(\bmod 1)$. Since $3|2(P+b)-b, 3| 2(P+b)-b-a$, and $L(2(P+b)-b) \equiv 0(\bmod 1)$, therefore $f_{1}(2(P+b)-b) \equiv 0(\bmod 1), f_{2}(2(P+b)-b-a) \equiv 0(\bmod 1)$, consequently $f_{3}(2(P+b)) \equiv 0(\bmod 1)$, which implies $\alpha \equiv 0(\bmod 1)$.

The proof of Case II is completed.
Case III: a is even, b is odd. Then we have $f_{1}(P) \equiv \alpha(\not \equiv 0)(\bmod 1), f_{2}(P+a) \equiv$ $\equiv-\alpha\left(\bmod 1, P+a\right.$ is a prime number. Furthermore, $f_{2}(n) \equiv 0(\bmod 1)$ if $n<P+a$. Now we observe that $f_{3}(n) \equiv 0(\bmod 1)$ for all $n<2 P+k$. Since $f_{3}(2) \equiv 0(\bmod 1)$, therefore enough to prove this for odd prime Q. Let $Q<2 P+k$. If $f_{3}(Q) \not \equiv 0(\bmod 1)$, then by $L(Q-b) \equiv 0(\bmod 1)$ we have that $f_{1}(Q-k)+f_{2}(Q-b) \not \equiv 0(\bmod 1)$. But $2|Q-b, 2| Q-k$, and $Q-k<2 P, Q-b<2(P+a)$. Consequently $f_{3}(Q) \equiv 0(\bmod 1)$.

Let $\delta \mid a$ and $\delta>1$. By $f_{2}(P+a / \delta) \equiv 0(\bmod 1)$, and $L(\delta P+a) \equiv 0(\bmod 1)$ we deduce that

$$
\begin{equation*}
f_{3}(\delta P+k) \equiv-\alpha(\bmod 1) \quad \text { if } \quad \delta>1 \quad \text { and } \quad \delta / a \tag{2.7}
\end{equation*}
$$

Let $\mu \mid k$. Since $L(\mu P+a) \equiv 0(\bmod 1)$ and $f_{3}\left(\mu P+\mu \cdot \frac{k}{\mu}\right) \equiv 0(\bmod 1)$, therefore

$$
\begin{equation*}
f_{2}(\mu P+a) \equiv-\alpha(\bmod 1) \quad \text { if } \mu \mid k \tag{2.8}
\end{equation*}
$$

Assume now that $\mu>1$. Then $L(2 \mu P+a) \equiv 0(\bmod 1), 2 \mu P+k=(\mu 2 P+k / \mu)$, $2 P+k / \mu<2 P+k, f_{3}(2 \mu P+k) \equiv 0(\bmod 1)$, and so

$$
\begin{equation*}
f_{2}(2 \mu P+a) \equiv-\alpha(\bmod 1) \quad \text { if } \quad \mu \mid k \quad \text { and } \quad \mu>1 \tag{2.9}
\end{equation*}
$$

So $P, P+a, 2 P+k$ are prime numbers.
Since $2 \mid 3 P+k, \frac{3 P+k}{2}<2 P+k$, therefore $f_{3}(3 P+k) \equiv 0(\bmod 1)$, and so, by $L(3 P+a) \equiv 0(\bmod 1)$ we have $f_{2}(3 P+a) \equiv-\alpha(\bmod 1)$. This implies that either $\alpha \equiv 0(\bmod 1)$ or $3 \nmid a$. Assume that $3 \nmid a$. Since $P, P+a$ are primes larger than 3 , therefore $P \equiv a(\bmod 3)$. If $4 \mid a$, then $f_{3}(4 P+k) \equiv-\alpha(\bmod 3)$ and 3 cannot be a divisor of $4 P+k$ if $\alpha \not \equiv 0(\bmod 3)$, consequently $4 P+k$ is a prime number. If $2 \| a, a=2 a_{1}$, then by

$$
\begin{gathered}
f_{1}(4 P)+f_{2}\left(2\left(2 P+a_{1}\right)\right)+f_{3}(4 P+k) \equiv 0(\bmod 1) \\
f_{1}\left(2 P-a_{1}\right)+f_{2}\left(2 P+a_{1}\right)+f_{3}\left(2 P+a_{1}+b\right) \equiv 0(\bmod 1)
\end{gathered}
$$

and by taking into account that $3\left|2 P-a_{1}, 2\right| a_{1}+b$, first we deduce that $f_{1}\left(2 P-a_{1}\right) \equiv$ $\equiv 0(\bmod 1), f_{3}\left(2 P+a_{1}+b\right) \equiv 0(\bmod 1)$ and so that $f_{2}\left(2 P+a_{1}\right) \equiv 0(\bmod 1)$, we
have $f_{3}(4 P+k) \equiv-\alpha(\bmod 1)$. This implies that $4 P+k$ is a prime number. Since $0,2 P, 2 \cdot 2 P$ are incongruent residues $\bmod 3$, therefore so are $k, 2 P+k, 4 P+k$, consequently one of them is a multiple of 3 . Since $2 P+k, 4 P+k$ are primes larger than 3 , only the case $3 \mid k$ can be occur. Assume that $3 \mid k$. Then $a \equiv-b(\bmod 3)$. From

$$
f_{1}(2 P+a)+f_{2}(2 P+2 a)+f_{3}(2 P+2 a+b) \equiv 0(\bmod 1)
$$

we have $3|2 P+a, 3| 2 P+2 a+b$, which implies that $f_{1}(2 P+a) \equiv 0(\bmod 1)$, $f_{3}(2 P+2 a+b) \equiv 0(\bmod 1)$, and so that $f_{2}(P+a) \equiv 0(\bmod 1)$, which can be occur only if $\alpha \equiv 0(\bmod 1)$.

This completes the proof of Case III. The theorem is proved.
3. Let us consider now the equation

$$
\begin{equation*}
V(n+K)=U(n) \quad(n=1,2, \ldots) \tag{3.1}
\end{equation*}
$$

where U, V are multiplicative functions, K is a fixed positive integer. We are interested in to give all the solutions under the condition

$$
\begin{equation*}
U(n) \neq 0 \quad \text { whenever } \quad(n, K)=1 \tag{3.2}
\end{equation*}
$$

The same equation for completely multiplicative functions was considered in our earlier paper [1]. We solved (3.1) for $K=1$ assuming (3.2) in [1]. The case $K>1$ is more complicated. Assume that (3.1) and (3.2) hold.

Let

$$
\begin{equation*}
H(n):=\frac{V(n)}{U(n)} \tag{3.3}
\end{equation*}
$$

be defined on the set of integers n, coprime to K. Let furthermore

$$
\begin{equation*}
\delta_{p}(m):=H(p) H(m) H(m+k) \ldots H(m+(p-2) K) \tag{3.4}
\end{equation*}
$$

If $(p, n(n+K))=1$, then

$$
\begin{equation*}
H(p)=\frac{V(p(n+k))}{U(p n)}=\frac{1}{H(p n+K) \ldots H(p n+(p-1) K)} \tag{3.5}
\end{equation*}
$$

(3.6)

$$
\delta_{p}(p n+K)=1 \quad \text { if } \quad(p, n(n+K))=1
$$

Let $p>q, r=p-q+1$. Then

$$
\begin{aligned}
\delta_{p}(m) & =H(p)[H(m) H(m+K) \ldots H(m+(q-2) K)] \times \\
& \times[H(m+(q-1) K) \ldots H(m+(p-2) K)]= \\
& =H(p) \frac{\delta_{q}(m)}{H(q)} \cdot \frac{\delta_{r}(m+(q-1) K)}{H(r)},
\end{aligned}
$$

and so

$$
\begin{equation*}
\frac{H(p)}{H(q) H(r)}=\frac{\delta_{p}(m)}{\delta_{q}(m) \cdot \delta_{r}(m+(q-1) K)} \tag{3.7}
\end{equation*}
$$

We should like to give some conditions which imply that the right hand side equals 1 . This holds true if all the next relations are satisfied, with a suitable integer m :

$$
\begin{equation*}
m \equiv K(\bmod p) ; m \equiv K(\bmod q) ; m+(q-2) K \equiv 0 \quad(\bmod r) \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{m-K}{p} \cdot \frac{m+(p-1) K}{p}, p\right)=1 ;\left(\frac{m-K}{q} \cdot \frac{m+(q-1) K}{q}, q\right)=1 \tag{3.9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left(\frac{m+(q-2) K}{r} \cdot \frac{m+(q-1) K-K+r K}{r}, r\right)=1 ; \quad(p q r, K)=1 \tag{3.10}
\end{equation*}
$$

$$
K^{*}=\left\{\begin{array}{rlll}
K & \text { if } & K & \text { is even } \\
2 K & \text { if } & K & \text { is odd. }
\end{array}\right.
$$

Assume that r is given, $(r, K)=1$. Let λ be an integer which will be chosen later, $\eta:=\lambda K^{*}$. Let p and q by defined by

$$
p=(1+\eta) r, q=\eta r+1
$$

If (3.8), (3.9), (3.10) hold with some m, then

$$
\begin{equation*}
H(p)=H\left(1+\lambda K^{*}\right) H(r) \tag{3.11}
\end{equation*}
$$

is valid.
We shall search m in the form $m=p q v+K$. The conditions $m \equiv K(\bmod p)$, $m \equiv K(\bmod q), m+(q-2) K \equiv p q v+(q-1) K \equiv 0(\bmod r)$ are satisfied clearly, the condition ($p q r, K)=1$ is equivalent to $(r(1+\eta((\eta r+1), K)=1$ which is true since $(r, K)=1$ was assumed.

We have

$$
\begin{gathered}
\frac{m-K}{p} \cdot \frac{m+(p-1) K}{p}=q v(q v+K), \frac{m-K}{q} \cdot \frac{m+(q-1) K}{q}=p v(p v+K) \\
m+(q-2) K=p q v+(q-1) K=[(1+\eta) q v+\eta K] r \\
m+(q-2) K+r K=[(1+\eta) q v+(\eta+1) K] r=(1+\eta) r(q v+K)
\end{gathered}
$$

So, to satisfy (3.9), (3.10) we have to find such ν, for which

$$
\begin{gather*}
(q v(q v+K), p)=1, \quad(p v(p v+K), q)=1 \tag{3.12}\\
(((1+\eta) q v+\eta K) \cdot(1+\eta)(q v+K), r)=1 \tag{3.13}
\end{gather*}
$$

simultaneously hold.

The condition $(p, q)=1$ will be guaranteed by restricting r to satisfy the relation

$$
\begin{equation*}
(r(r-1), 1+\eta)=1 \tag{3.14}
\end{equation*}
$$

Since η is an even number, there exists such an r. Now we prove that (3.14) implies that $(p, q)=1$. Assume the contrary. Let $\delta \mid(p, q), \delta$ be a prime number. Since $p=(1+\eta) r, q=\eta r+1$, therefore $\delta \nmid r$, and so $\delta \mid 1+\eta$. But $q=(\eta+1) r+$ $+(1-r)$, whence $\delta \mid 1-r$. This case was excluded by (3.14).

Now our conditions can be rewritten in the form

$$
\begin{gather*}
(v(p v+K), q)=1 \tag{1}\\
(v(q v+K), p)=1 \tag{2}\\
((1+\eta) q v+\eta K, r)=1 \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
(q v+K, r)=1 \tag{4}
\end{equation*}
$$

Since (2) implies (4), therefore (4) can be omitted. Since $p=(1+\eta) r$, then we may substitute them with

$$
\begin{gather*}
(v(p v+K), q)=1 \tag{A}\\
(v(q v+K), r)=1 \\
(v(q v+K),(1+\eta))=1 \tag{C}\\
((1+\eta) q v+\eta K, r)=1 \tag{D}
\end{gather*}
$$

Since $(p, q)=1$, therefore $(q, r)=1$, consequently $q, r, 1+\eta$ are pairwise coprime integers. To prove that (A), (B), (C), (D) hold simultaneously with a suitable v, it is enough to show that there is a solution of (B) and (D), furthermore that of (A), and of (C).

Since q and $1+\eta$ are both odd numbers, therefore (A) and (C) can be solved.
Assume that there exist no v for which (B) and (D) would hold simultaneously. Then there exists a prime divisor Q of r such that for every integer v, either $(v(q v+K), Q)=Q$ or $((1+\eta) q v+\eta K, Q)=Q$. Let us observe that it can be occur only if $Q=3$, i.e. if $3 \mid r$.

If $3 \mid r$, then $3 \nmid K, q \equiv 1(\bmod 3)$, thus we have $v(q v+K) \equiv v(v+K)(\bmod 3)$, $(1+\eta) q v+\eta K \equiv(1+\eta) v+\eta K(\bmod 3)$. If $3 \mid \eta$, then the last congruence can be reduced to $\equiv v(\bmod 3)$. In this case (B) and (D) can be solved as well.

We shall exclude the case when $3 \mid r$ and $3 \nmid \eta$, i.e. the case: $3 \mid r$ and $\eta \equiv 1$ (mod3.) Since $H(p)=H(q) H(r)$, by (3.9) we have

$$
\begin{equation*}
H\left(1+\lambda K^{*}\right)=H\left(1+\lambda r K^{*}\right) \tag{3.15}
\end{equation*}
$$

if

$$
\begin{equation*}
\left(r(r-1), 1+\lambda K^{*}\right)=1 \quad(r, K)=1 \tag{3.16}
\end{equation*}
$$

and in the case $3 \mid r$, the relation $\eta \not \equiv 1(3)$ holds.
Lemma 3. If $(\lambda, K)=1,(\mu, K)=1$ and in the case $3 \nmid K, \lambda K^{*} \not \equiv 1(\bmod 3)$, $\mu K^{*} \not \equiv 1(\bmod 3)$, then

$$
\begin{equation*}
H\left(1+\lambda K^{*}\right)=H\left(1+\mu K^{*}\right) \tag{3.17}
\end{equation*}
$$

Proof. We can find positive integers r and s such that
and

$$
\begin{equation*}
r \lambda=s \mu \tag{3.18}
\end{equation*}
$$

$$
\begin{align*}
& \left(r(r-1), 1+\lambda K^{*}\right)=1 \tag{3.19}\\
& \left(s(s-1), 1+\mu K^{*}\right)=1 \tag{3.20}
\end{align*}
$$

Indeed, if $\delta=(\lambda, \mu), \lambda=\delta \lambda_{1}, \mu=\delta \mu_{1}$, then $r=\mu_{1} t, s=\lambda_{1} t$ is a solution of (3.18) for every positive integer t. Assume that $(t, K)=1$. Then $(r, K)=(s, K)=1$ holds true. Since K is coprime to both of the integers $1+\lambda K^{*}, 1+\mu K^{*}$, we have to consider only the solvability of (3.19) and that of (3.20). Both of them have solutions.

Assume that there exists no t for which (3.19) and (3.20) would be satisfied. Then there would exist a prime divisor Q of $\left(1+\lambda K^{*}, 1+\mu K^{*}\right)$ such that $\mu_{1} t\left(\mu_{1} t-1\right) \cdot \lambda_{1} t \cdot\left(\lambda_{1} t-1\right) \equiv 0(\bmod Q)$ holds for every integer t.

We have $\left(\lambda_{1} \mu_{1}, Q\right)=1$. Furthermore $Q \mid(\lambda-\mu) K^{*},\left(Q, K^{*}\right)=1$, therefore $Q\left|\delta\left(\lambda_{1}-\mu_{1}\right) . Q\right| \delta$ cannot be occur, thus $\lambda_{1}-\mu_{1} \equiv 0(\bmod Q)$. Consequently our congruence can be reduced to the form $t\left(\lambda_{1} t-1\right) \equiv 0(\bmod Q)$. But it has at most two solutions mod Q, consequently there is a t for which both of (3.19), (3.20) holds. By this we proved our Lemma 3.

Lemma 4. If $A \equiv B\left(\bmod K^{*} K\right)$ and $\left(A, K^{*}\right)=1$, then

$$
\begin{equation*}
H(A)=H(B) \tag{3.21}
\end{equation*}
$$

Proof. Let $3 \nmid K$. Assume first that $3 \nmid A$ and $3 \nmid B$ or $3 \mid(A, B)$. In the former case let $A_{1}=3 A, B_{1}=3 B$, in the second case $A=A_{1}, B=B_{1}$. In both cases $A_{1}=B_{1}(\bmod 3)$.

If Θ is such an integer for which $A_{1} \Theta \equiv 1+K^{*}\left(\bmod K^{*} K\right)$ holds, then $B_{1} \Theta \equiv 1+K^{*}\left(\bmod K^{*} K\right)$ is satisfied as well. Writing $A_{1} \Theta=1+\lambda K^{*}, B_{1} \Theta=1+$ $+\mu K^{*}, \lambda K^{*} \not \equiv 1, \mu K^{*} \not \equiv 1$ obviously hold. Since the solutions Θ give a whole residue class $\left(\bmod K^{*} K\right)$, which is reduced to the module, we can choose Θ to be a large prime. By Lemma 3 we have $H\left(A_{1} \Theta\right)=H\left(B_{1} \Theta\right)$, which implies that $H\left(A_{1}\right)=H\left(B_{1}\right)$, and so that $H(A)=H(B)$.

If $3 \mid A, 3 \nmid B$, then the general solution of the congruence $B \Theta \equiv 1+K^{*}\left(\bmod K^{*} K\right)$. can be written as $\Theta=\Theta^{*}+h K^{*} K(h=0,1,2, \ldots)$ where Θ^{*} is a particular solution. Since $B \Theta \equiv B \Theta^{*}+h B K^{*} K(\bmod 3), 3 \nmid B K^{*} K$, therefore $B \Theta \equiv 1(\bmod 3)$ holds if h is falling into the appropriate residue class $\bmod 3$. Then $A \Theta \equiv 0(\bmod 3)$. We may choose Θ to be a large prime, and by Lemma 2, $H(A \Theta)=H(B \Theta)$ we conclude that $H(A)=H(B)$.

In the case $3 \mid K$ we get the lemma similarly, but without taking care of the requirements $\lambda K^{*} \not \equiv 1, \mu K^{*} \neq 1(\bmod 3)$.

Let χ_{0} be the principal character $\bmod K^{*} K$. Since the conditions of Lemma 1 are satisfied for the function $f(n):=\chi_{0}(n) H(n), B=K^{*} K$, therefore there exists a character $\chi_{K^{*} K}$ such that

$$
\begin{equation*}
H(n)=\chi_{K^{*} K}(n) \quad \text { whenever } \quad\left(n, K^{*} K\right)=1 \tag{3.22}
\end{equation*}
$$

We distinguish two cases according to the parity of k.
Case $K=$ even. For every m, n integers coprime to K, let

$$
\begin{gathered}
A(m, n):=\frac{U(m n)}{U(m) U(n)} \\
S(m, n):=\frac{1}{\chi(n+K)} \prod_{l=1}^{m} \chi(m n+l K),
\end{gathered}
$$

where χ is the character given in (3.22). Since χ is periodic $\bmod K^{2}$, therefore $S(m, n)$ is periodic $\bmod K^{2}$ in both of its variables m and n. Furthermore, $A(m, n)=1$ if m and n are coprimes.
Since

$$
U(n)=V(n+K)=H(n+K) U(n+K)=\chi(n+K) U(n+K)
$$

consequently
$U(n m)=\chi(m n+K) \chi(m n+2 K) \ldots \chi(m n+m K) U(m(n+K))=S(m, n) U(m(n+K))$, i.e.

$$
\begin{equation*}
A(m, n)=S(m, n) \tag{3.23}
\end{equation*}
$$

holds under the condition $(m n, K)=1,(m, n+K)=1$.
Let p be an arbitrary prime, $(p, K)=1$. Then p is an odd integer. Take $m=p^{2}$, $n=p v, \quad$ where $(v, p)=1$. Then $A\left(p^{\alpha}, p v\right)=\frac{U\left(p^{\alpha+1}\right)}{U(p) U\left(p^{\alpha}\right)}$. Since $(n+K, m)=1$
clearly holds, therefore

$$
A\left(p^{\alpha}, p v\right)=S\left(p^{\alpha}, p v\right)
$$

Since $S\left(p^{\alpha}, p v\right)=S\left(p^{\alpha}, p v+K^{2}\right)=A\left(p^{\alpha}, p v+K^{2}\right)=1$, we deduced that

$$
U\left(p^{\alpha+1}\right)=U\left(p^{\alpha}\right) U(p)
$$

valid for all prime pover p^{x} coprime to K. This shows that U is completely multiplicative on the set $(n, K)=1$. Since $V=H \cdot U$, and H is completely multiplicative on the set $(n, K)=1$, so is V. Therefore, we may apply Lemma 2 for the characterization of the solution (U, V) at least on the set $(n, K)=1$.

Case $K=o d d$. Let $n=2^{\gamma} v, \gamma \geqq 1$ and $(v, K)=1$. Then

$$
1=\frac{V\left(2^{y} v+K\right)}{U\left(2^{y} v\right)}=\frac{V\left(2^{y+1} v+2 K\right)}{U\left(v \left(U\left(2^{\gamma}\right)\right.\right.} \cdot \frac{U\left(2^{\gamma+1}\right)}{V(2) U\left(2^{y+1}\right)}=\frac{U\left(2^{y+1}\right)}{V(2) U\left(2^{\gamma}\right)} H\left(2^{\gamma+1} \gamma+K\right) .
$$

Thus we proved that

$$
\begin{equation*}
H\left(2^{\gamma+1} v+K\right)=D_{\gamma}, \quad \text { for every } \quad(v, 2 K)=1 \tag{3.24}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{\gamma}=\frac{U\left(2^{\gamma+1}\right)}{V(2) U\left(2^{\gamma}\right)}, \quad(\gamma \geqq 1) \tag{3.25}
\end{equation*}
$$

Similarly, we can prove that

$$
\begin{gather*}
H\left(2^{\gamma+1} v-K\right)=E_{\gamma} \quad \text { for every } \quad(v, 2 K)=1, \tag{3.26}\\
E_{\gamma}=\frac{U(2) V\left(2^{\gamma}\right)}{V\left(2^{\gamma+1}\right)} \quad \gamma \geqq 1 \tag{3.27}
\end{gather*}
$$

From (3.22) we know that $H(n)=\chi(n)$ for $(n, 2 K)=1$, where χ is a character $\bmod 2 K^{2}$ For odd K we can prove more, namely that H is periodic $\bmod 2 K$. The worst case is the case $3 \nmid K$. Assume that $3 \backslash K$.

If $K^{*} \equiv 1(\bmod 3)$, then, by Lemma 2 ,

$$
H\left(1+3 K^{*}\right)=H\left(1+4 K^{*}\right) ; \quad(\lambda=3, \mu=4)
$$

if $K^{*} \equiv-1(\bmod 3)$, then

$$
H\left(1+2 K^{*}\right)=H\left(1+3 K^{*}\right) \quad(\lambda=2, \mu=3)
$$

consequently, by

$$
H\left(1+v K^{*}\right)=\chi_{2 K^{2}}\left(1+v K^{*}\right)=\chi_{2 K^{z}}\left(1+K^{*}\right)^{v}=H\left(1+K^{*}\right)^{\nu},
$$

we get that $H\left(1+K^{*}\right)=\chi_{2 K^{3}}(1+K)=1$. If $3 \mid K$, then we have $H\left(1+K^{*}\right)=$ $H\left(1+2 K^{*}\right)$, and conclude to the same result. But then $H\left(1+\nu K^{*}\right)=\chi_{2 K^{2}}\left(1+\nu K^{*}\right)=1$ holds for every integer v. If $A \equiv B\left(\bmod K^{*}\right)$ such that $\left(A, K^{*}\right)=1$, then one can choose a large prime Θ such that $A \Theta \equiv 1\left(\bmod K^{*}\right)$, which implies that $B \Theta \equiv 1$ $\left(\bmod K^{*}\right)$, and $H(A \Theta)=H(B \Theta)$, whence by $(A, \Theta)=(B, \Theta)=1, H(\Theta) \neq 0$, we infer $H(A)=H(B)$. So we proved that H is periodic $\bmod 2 K$; consequently, by Lemma 1,

$$
\begin{equation*}
H(n)=\chi_{2 K}(n) \quad \text { if } \quad(n, 2 K)=1 \tag{3.28}
\end{equation*}
$$

Let us consider now (3.24). Observe that if $v_{1}, v_{2}, \ldots, v_{s}, S=\varphi(2 K)$ is a complete reduced residue system $\bmod 2 K$, then so is $2^{\gamma+1} v_{j}+K(j=1, \ldots, S)$. Indeed, these numbers are coprime to $2 K$, and if $2^{\gamma+1} v_{i}+K \equiv 2^{\gamma+1} v_{j}+K(\bmod 2 K)$, for some suitable $i \neq j$, then $K \mid\left(v_{i}-v_{j}\right)$. Since v_{i}, v_{j} are odd numbers, therefore $2 \mid\left(v_{i}-v_{j}\right)$, so $v_{i} \equiv v_{j}(\bmod 2 K)$, which cannot be occur. It implies that the lefthand side does not change its value if v run over a reduced residue set, whence we have that $H(n)=1$ for every $(n, 2 K)=1$, furthermore that $D_{\gamma}=1$ and similarly that $E_{\gamma}=1$ for every $\gamma \geqq 1$. From the relation $D_{\gamma} E_{\gamma}=1$ we obtain that

$$
H\left(2^{\gamma+1}\right)=\frac{H\left(2^{y}\right)}{H(2)} \quad(\gamma \geqq 1),
$$

which implies that $H\left(2^{2}\right)=1$. We shall show that there exists such an integer Γ for which $H\left(2^{\Gamma}\right)=H\left(2^{\Gamma+1}\right)$, which will imply that $H(2)=1$, and so that $H\left(2^{\gamma}\right)=1$ for every $\gamma \geqq 1$.

To do this, let us consider the product

$$
\Delta(s, n)=\prod_{l=1}^{s-1} H(s n+l K)
$$

defined for positive integers s, n such that $(s n, K)=1$. Observing that for $(s, n+K)=1$ we have

$$
U(s n)=H(s n+K) \ldots H(s n+s K) U(s(n+K))=\Delta(s, n) U(s) U(n)
$$

consequently, if additionally $(s, n)=1$, then

$$
\Delta(s, n)=1
$$

Assume that the conditions

$$
\begin{equation*}
(s, n)=1, \quad(s, n+K)=1, \quad(s, K)=(n, K)=1 \tag{3.29}
\end{equation*}
$$

hold for some pairs of integers s, n. They imply that $\Delta(s, n)=1$. Let us change n by $N=n+R s K$, where R is an arbitrary positive integer. Since the conditions (3.29) will be held replacing n by N, therefore $\Delta(s, N)=1$ holds for all $R \geqq 1$. Let $A_{l}=s n+l K$, then $A_{1}<A_{2}<\ldots<A_{s-1}$. Let Γ_{0} be so large that $A_{s-1}-A_{1}<2^{\Gamma_{0}}$. Let us choose $R=R_{1}$ such that $2^{r} \| A_{0}+s^{2} R_{1} K$. Let b_{2}, \ldots, b_{s-1} be defined as the exponents of 2 , such that $2^{b_{j}} \| A_{j}+s^{2} R_{1} K(j=2, \ldots, s-1)$. It is clear that max $b_{j}<\Gamma_{0}$. Now we choose an R_{2} such that $2^{\Gamma+1} \| A_{0}+s^{2} R_{2} K$. For this choice of R the exponents of 2 in $A_{j}+s^{2} R_{2} k(j=2, \ldots, s-1)$ are unchanged, $2^{b_{j}} \| A_{j}+s^{2} R_{2} K$. Thus we have

$$
1=\Delta\left(s, n+R_{1} s K\right)=H\left(2^{\Gamma}\right) \prod_{l=2}^{s-1} H\left(2^{b_{i}}\right)=H\left(2^{r+1}\right) \prod_{i=2}^{s-1} H\left(2^{b_{i}}\right)=\Delta\left(s, n+R_{2} s K\right) .
$$

whence we have $H\left(2^{r}\right)=H\left(2^{\Gamma+1}\right)$.

So we proved that. $U(n)=V(n)$ on the set $(n, K)=1$. By taking $f(n)=$ $=\chi_{0}(n) U(n)$, where $\chi_{0}(n)$ is the principal character $\bmod K$, we have $f(n+K)=$ $=f(n)$ for all $(n, K)=1$. From Lemma 1 we get that $U(n)=V(n)=\chi_{K}(n)$ on the -set $(n, K)=1$. Hence, by Lemma 3, after a simple discussion we shall deduce our

Theorem 3. Let $K \geqq 1$ be an integer, $F, G \in M$ such that $G(n+K)=F(n)$ holds for every $n \in \mathbf{N}$, furthermore that $F(n) \neq 0$ if $(n, K)=1$. Then the following assertions hold:
(A) $F(n)=G(n)=\chi(n ; K)$ on the set $n,(n, K)=1$,
or
(B) in the case $K=2 R,(R, 2)=1$,

$$
G(n)=\chi(n ; 4) F(n) ; \quad F(n)=\chi(n ; 8) \chi(n ; R)
$$

for every $n,(n, K)=1$, where $\chi(n ; 4)$ is the nonprincipal character $\bmod 4$; by

$$
\begin{aligned}
& \chi(n ; 8)=\left\{\begin{array}{rl}
-1 & n \equiv \pm 1(\bmod 8) \\
1 & n \equiv \pm 3(\bmod 8)
\end{array} \text { if } \quad R \equiv 1(\bmod 4),\right. \\
& \chi(n ; 8)
\end{aligned}=\left\{\begin{array}{rl}
1 & n \equiv 1,3(\bmod 8) \\
-1 & n \equiv 5,7(\bmod 8)
\end{array} \text { if } \quad R \equiv-1(\bmod 4) .\right.
$$

(C) If $\delta \geqq 1$ and $p^{\delta+1} \mid K$, then $F\left(p^{\delta}\right)=0$ holds if and only if $G\left(p^{\delta}\right)=0$ is satisfied. In the case (A), if p is odd and $F\left(p^{\delta}\right) \neq 0$ then $G\left(p^{\delta}\right)=F\left(p^{\delta}\right)$ and $\chi(n ; K)$ is periodic with the period K / p^{δ}. In the case (A), if $p=2$ and $F\left(p^{\delta}\right) \neq 0$, then $\chi(n ; K)$ is periodic with the period $K / 2^{\delta-1}$ and $G\left(p^{\delta}\right)=\chi\left(1+\left(K / 2^{\delta}\right) ; K\right) F\left(p^{\delta}\right)$. In the case (B), if p is odd, then $G\left(p^{\delta}\right)=\chi\left(p^{\delta} ; 4\right) F\left(p^{\delta}\right)$, and $F\left(p^{\delta}\right) \neq 0$ implies that $\chi(n ; R)$ is periodic $\bmod R / p^{\delta}$.
(D) In the case (B), $F\left(2^{\gamma}\right)=G\left(2^{\gamma}\right)=0$ for every $\gamma \geqq 1$.
(E) If $p^{\alpha} \| K$, then $F\left(p^{\alpha}\right)=0$ is true if and only if $G\left(p^{\nu}\right)=0$ for every $\gamma>\alpha$ furthermore $G\left(\dot{p}^{\alpha}\right)=0$ if and only if $F\left(p^{\gamma}\right)=0$ is satisfied for every $\gamma>\alpha$. If $\dot{p}>2$, then the statement $G(p)=0, F(p)=0$ are equivalent.
(F) If $p^{\alpha} \| K$ and $F\left(p^{\alpha}\right) \neq 0$ or $G\left(p^{\alpha}\right) \neq 0$, then $\chi(n ; K)$ is induced by $\chi\left(n ; K_{1}\right)$, $K=p^{\alpha} K_{1}$ in case (A), and $\chi(n ; R)$ is induced by $\chi\left(n ; R_{1}\right), R=p^{\alpha} R_{1}$ in case (B).
(G) In case (A) let $K=B_{1} B_{2},\left(B_{1}, B_{2}\right)=1$, where B_{1} is the product of those prime powers $p^{\alpha}, p^{\alpha} \| K$, for which at least one of $G\left(p^{\alpha}\right) \neq 0, F\left(p^{\alpha}\right) \neq 0$ holds. Then $\chi(n ; K)$ is induced by some character $\chi\left(n ; B_{2}\right)$, and

$$
\begin{aligned}
& \frac{G\left(p^{\alpha}\right)}{\chi\left(p^{\alpha} ; B_{2}\right)}=\frac{F\left(p^{\gamma}\right)}{\chi\left(p^{\gamma}: B_{2}\right)} \quad(\text { for every } \gamma>\alpha) \\
& \frac{F\left(p^{\alpha}\right)}{\chi\left(p^{\alpha} ; B_{2}\right)}=\frac{G\left(p^{\gamma}\right)}{\chi\left(p^{\gamma} ; B_{2}\right)} \quad(\text { for every } \gamma>\alpha),
\end{aligned}
$$

moreover for $p \neq 2$,

$$
F\left(p^{\alpha}\right)=G\left(p^{\alpha}\right)
$$

hold.
(H) In the case (B) let $R=D_{1} \cdot D_{2},\left(D_{1}, D_{2}\right)=1$, where D_{1} is the product of the prime powers $p^{\alpha}, p^{\alpha} \| R$, for which $F\left(p^{a}\right) \neq 0$, then $\chi(n ; R)$ is induced by a character $\chi\left(n ; D_{2}\right)$. Then

$$
\begin{aligned}
& a(p ; \gamma):=\frac{F\left(p^{\gamma}\right)}{\chi\left(p^{\gamma} ; 8\right) \chi\left(p^{\gamma} ; \overline{\left.D_{2}\right)}\right.}=a(p ; \alpha) \\
& b(p ; \gamma):=\frac{G\left(p^{\gamma}\right)}{\chi\left(p^{\gamma} ; 8\right) \chi\left(p^{\gamma} ; \overline{\left.D_{2}\right)}\right.}=b(p ; \gamma)
\end{aligned}
$$

hold for every $\gamma>\alpha$, furthermore

$$
G\left(p^{\gamma}\right)=X\left(p^{\alpha} ; 4\right) F\left(p^{\gamma}\right)
$$

for every $\gamma \geqq \alpha$.
If F and G is such a pair of functions for which the above conditions hold, then the relation $G(n+K)=F(n)(n \in N)$ is satisfied.

Proof. We shall prove only the necessity of the conditions, the sufficiency part can be verified easily. (A) and (B) were proved earlier. To prove (E) take $n=p^{\nu} v$, where $\gamma>\alpha,(v, K)=1$, and consider only the equations $G\left(p^{\gamma} v+K\right)=F\left(p^{\gamma} v\right)$, $F\left(p^{\gamma} v-K\right)=G\left(p^{\gamma} v\right)$. Since $p^{\gamma} v \pm K=p^{\alpha}\left(p^{\gamma-\alpha} v \pm K_{1}\right), K=p^{\alpha} K_{1}$, and $\left(p^{\gamma-x} v \pm K_{1}, K\right)=$ $=1, F\left(p^{\gamma-\alpha} v-K_{1}\right) \neq 0, G\left(p^{\gamma-\alpha} v+K_{1}\right) \neq 0$, and since the same is true if $\gamma=\alpha, p>2$, for $v,\left(v\left(v-K_{1}\right), K\right)=1$, we obtain (E).

Now we prove (C). The assertion that $F\left(p^{\delta}\right)=0$ iff $G\left(p^{\delta}\right)=0$ is clear. Consider first the case (A). Assume that $F\left(p^{\delta}\right) \neq 0$. Let $n=p^{\delta} v, K=p^{\alpha} K_{1}, p^{\alpha} \| K, \delta<\alpha$. Then $G\left(p^{\delta}\right) G\left(v+p^{\alpha-\delta} K_{1}\right)=F\left(p^{\delta}\right) F(v)$, whence

$$
\begin{equation*}
a:=\frac{G\left(p^{\delta}\right)}{F\left(p^{\delta}\right)}=\frac{\chi(v ; K)}{\chi\left(v+p^{\alpha-\delta} K_{1} ; K\right)} \quad \text { if } \quad(v, K)=1 \tag{3.30}
\end{equation*}
$$

If we write this equation replacing v by $v+s p^{2-1} K_{1}$, and multiply the equations for $s=0, \ldots, v-1$, we get that

$$
a^{v}=\frac{\chi(v ; K)}{\chi\left(v+v p^{\alpha-\delta} K_{1} ; K\right)},
$$

whence we obtain, that

$$
a^{\nu}=\frac{1}{\chi\left(1+p^{\alpha-\delta} K_{1}, K\right)}
$$

is true for every $v,(v, K)=1$. The right hand side does not depend on v. If $2 \nmid K$ we can choose $v=1, v=2$ and conciude that $a=1$. If $2 \mid K$, then we take $v=K-1$,
$v=K+1$, and deduce that $a^{2}=1$. In both cases we have

$$
\chi\left(v+2 p^{\alpha-\delta} K_{1}, K\right)=\chi(v ; K) \quad \text { if } \quad(v, K)=1
$$

which implies that $\chi(v, K)$ is periodic with period $2 p^{\alpha-\delta} \cdot K_{1}$, and so it is periodic with ($2 p^{2-\delta} K_{1}, K$). This implies condition (C) for the case (A).

Now we shall consider case (B). Observe that for the characters given in (B), the product

$$
\begin{equation*}
T_{R}(\mu):=\frac{\chi(\mu ; 8)}{\chi(\mu+2 R ; 8) \chi(\mu ; 4)}=-1 \tag{3.31}
\end{equation*}
$$

for every odd μ and for $R \equiv \pm 1(\bmod 4)$.
Assume that $p \neq 2, p^{\delta} \mid R, R=p^{\alpha} R_{1}, p^{\alpha} \| R, \delta<\alpha$. By choosing $n=p^{\delta} \alpha$, starting from the relation $G\left(p^{\delta}\right) G\left(v+2 p^{\alpha-\delta} R_{1}\right)=F\left(p^{\delta}\right) F(v)$, substituting the values for $F(v)$ and $G\left(v+2 p^{z-\delta} R_{1}\right)$ given in (B), after some calculation we obtain

$$
\frac{G\left(p^{\delta}\right)}{F\left(p^{\delta}\right)}=-\chi\left(p^{\delta} ; 4\right) T_{R}\left(p^{\delta} v\right) \frac{\chi(v ; R)}{\chi\left(v+2 p^{\alpha-\delta} R_{1} ; R\right)},
$$

whence, by (3.32) we have that

$$
b:=\frac{G\left(p^{\delta}\right)}{\left(p^{\delta} ; 4\right) F\left(p^{\delta}\right)}=\frac{\chi(v ; R)}{\chi\left(v+2 p^{\alpha-\delta} R_{1} ; R\right)},
$$

for every $v,(v, 2 R)=1$. Arguing as at the former case we deduce that $b^{2}=1$, and so that $\chi(\cdot, R)$ is periodic $\bmod 4 p^{\alpha-\delta} R_{1}$, and so $\bmod \left(4 p^{\alpha-\delta} R_{1}, R\right)=p^{\alpha-\delta} R_{1}$. But then $b=1, G\left(p^{\delta}\right)=\chi\left(p^{\delta} ; 4\right) F\left(p^{\delta}\right)$. This proves condition (C).

The next step is to prove (D). Assume that $G(2) \neq 0$, choose $n=2^{\gamma} v, \gamma \geqq 2$. Then

$$
G(2) G\left(2^{\gamma-1} v+R\right)=F\left(2^{\gamma}\right) F(v)
$$

and by using the explicit form of F and G, after some cancellation, we have

$$
\begin{equation*}
G(2) \chi\left(2^{\gamma-1} v+R ; 4\right) \chi\left(2^{\gamma-1} v+R ; 8\right) \chi\left(2^{\gamma-1} ; R\right)=F\left(2^{\gamma}\right) \chi(v ; 8) . \tag{3.32}
\end{equation*}
$$

If $\gamma \geqq 4$, then the left-hand side does not depend on v, while $\chi(v ; 8)$ does. It implies that $F\left(2^{\gamma}\right)=0$ for $\gamma \geqq 4$, and so $G(2)=0$. We can prove impossibility of the case $F(2) \neq 0$ similarly. By (C) the proof of (D) is completed.

Let us prove now (G). By choosing $n=p^{\gamma} v,(v, K)=1, \gamma>\alpha, p^{\alpha} \| K, K=K_{1} p^{\alpha}$, under conditions (A), we have

$$
\begin{equation*}
\frac{G\left(p^{\alpha}\right)}{F\left(p^{\gamma}\right)}=\frac{\chi(\nu ; K)}{\chi\left(p^{\gamma-\alpha} v+K_{1} ; K\right)}, \tag{3.33}
\end{equation*}
$$

which is valid if $G\left(p^{\alpha}\right) \neq 0$. Assume $G\left(p^{2}\right) \neq 0$. Then $F\left(p^{\gamma}\right) \neq 0$ holds for $\gamma>\alpha$, and the right-hand side does not depend on v. Let $\gamma \geqq 2 x$. Then the denominator
is periodic mod K_{1}, which implies that $\chi\left(\nu+K_{1} ; K\right)=\chi(\nu ; K)$, consequently $\chi(v ; K)=\chi\left(v ; K_{1}\right)$ with some character $\bmod K_{1}$, and so the right-hand side is $\chi\left(p^{\gamma-\alpha} ; K_{1}\right)$. This assertion hold for every $\gamma>\alpha$, and in the case $p \neq 2$ even for $\gamma=\alpha$. The case $F\left(p^{\alpha}\right) \neq 0$ is.similar. Doing this for all $p^{\alpha}, p^{\alpha} \| B_{1}$, we get that $\chi(n ; K)$ is periodic $\bmod B_{2}$, and this leads to the equations given in (G). We proved the first part of (F), as well:

Let us finally consider (H). Let $G\left(p^{\alpha}\right) \neq 0$. Let $R=p^{\alpha} R_{1}, \gamma>\alpha, n=p^{\gamma} v,(v, K)=1$. Then $p>2$. From $G\left(p^{\alpha}\right) G\left(p^{\nu-\alpha} v+2 R_{1}\right)=F\left(p^{\gamma}\right) F(v)$, we deduce that

$$
\frac{G\left(p^{\alpha}\right)}{F\left(p^{\gamma}\right)} \cdot \frac{\chi\left(p^{\gamma-\alpha} ; 8\right)}{\chi\left(p^{\alpha} ; 4\right)}=-\frac{\chi(v, R)}{\chi\left(p^{\gamma-\alpha} v+2 R_{1}, R\right)} \cdot T_{R}\left(p^{\gamma} v\right),
$$

which by (3.31) and by choosing $\gamma \geqq 2 \alpha$, gives that $X(\cdot, R)$ is periodic mod $2 R$ and so $\bmod R$. Furthermore the right-hand side equals $\chi\left(p^{\gamma-\alpha} ; R_{1}\right)$, for every $\gamma \geqq \alpha$. We can deduce a similar formula assuming $F\left(p^{\alpha}\right) \neq 0$. Doing this for every p^{α}, $p^{\alpha} \| D_{1}$, we can finish the proof rapidly.

By this the proof of our theorem is completed.
4. Let $A, G \in M$ be connected by the equation $G(n+1)=F(n)$. This was solved in Section 3 under the additional condition $F(n) \neq 0(n=1,2, \ldots)$. It was found that $F(n)=G(n)=1$ identically.

Let now α be such an exponent for which $2^{\alpha}-1=P$, where P is a prime power, $P=Q^{\beta}$, allowing the case $\beta=1$. Let $G_{\alpha}, F_{\alpha} \in M$ as follow: $F(1)=G(1)=1, G_{\alpha}(2)=1$, $G_{\alpha}\left(2^{\alpha}\right)=F_{\alpha}(P)=$ arbitrary nonzero value, $F_{\alpha}(n)=0$ if $n \neq 1, P ; G_{\alpha}(n)=0$ if $n \neq 1,2,2^{\alpha}$. It is clear that F_{α} and G_{α} will: be multiplicative functions, and the equation $G_{\alpha}(n+1)=F_{\alpha}(n)(n=1,2, \ldots)$ will be true.

It is an open question, whether $2^{\alpha}-1$ can be a prime power for infinitely many α or not. The list of $\alpha=2,3,5$ shows that such α values exist.

We shall prove the next
Theorem 4. If $F, G \in M$ and $G(n+1)=F(n)$ holds for every $n \in N$, then either $F(n)=G(n)$ are identically zero, or identically one, or there exists an integer $\alpha \geqq 2$ such that $2^{\alpha}-1=$ prime power $=P$, such that $G(2)=F(1)=G(1)=1, G\left(2^{\alpha}\right)=$ $=F(P)$ and $F(n)=0, G(n)=0$ holds for all other $n \in N$.

Proof. Let \mathscr{P} be the set of those prime powers P for which $F(P) \neq 0$, and \mathscr{R} be the set of those powers Q for which $G(Q) \neq 0$. Let $\overline{\mathscr{P}}, \overline{\mathscr{R}}$ denote the complement sets with respect to the whole set of prime powers. If \mathscr{P} or $\overline{\mathscr{P}}$ are empty sets, then so are \mathscr{R} and \bar{R}, and these lead to the equation $F(n)=G(n)$ as it was proved in Section 3. Thus, we may assume that \mathscr{P} ' and \mathscr{R} are non-empty proper subsets of the whole set of the prime powers.

It is well known that all solutions of the Diophantine equation $3^{x}-2^{y}=1$ are $x=y=1$, and $x=2, y=3$ while $2^{x}-3^{y}=1$ implies that $x=2, y=1$.

Lemma 5. Let P be the smallest integer n, for which $F(n) G(n)=0$. Then $P=$ prime power, furthermore $P=2,4$ or $8 ; F(P)=0$ and $G(P) \neq 0$.

Proof. It is clear that the smallest integer n for which $F(n) G(n)=0$ holds, has to be a prime power P, and $G(n)=F(n-1) \neq 0$. Thus $F(P)=0$.

Assume first that P is even, and $P>2$. Then $P=2^{a}$. We have $G(P+1)=0$, $G(2 P+2)=F(2 P+1)=0$. From the minimality of P we have that both of $P+1$ and $2 P+1$ are prime powers. Since at least one of them is a multiple of 3 , therefore either $2^{a}+1=3^{b}$ or $2^{a+1}+1=3^{b}$, which implies that $P=4$ or $P=8$.

Assume that P is an odd number. Then $G(P+1)=0$, and we can get rapidly that $P+1=2^{s}$. If $3 \mid P$, then $P=3^{a}, 2^{s}-3^{a}=1$, whence $s=2, a=1$, i.e. $P=3$ follows. In this case $F(2) \neq 0, F(3)=0$. But $F(2) \neq 0, \Rightarrow G(3) \neq 0, G(6)=F(5) \neq 0$, $F(10) \neq 0, G(11) \neq 0, \Rightarrow G(22) \neq 0, \Rightarrow F(21)=F(3) F(7) \neq 0, \Rightarrow F(3) \neq 0$. This leads to a contradiction. If $3 \mid P$, the $2 P+1 \equiv 0(3), G(2 P+1)=0$, and we deduce that $2 P+1=3^{b}$, whence $2^{s+1}-3^{b}=1$, and so $s=1, P=1$ follows. This cannot occur.

We finished the proof of our lemma.
Lemma 6. In the notations of Lemma 5, $P=4$ or $P=8$ cannot be occur.
Proof. I. The case $P=8$. Then $\left\{2,3,2^{2}, 5,7\right\} \in \mathscr{P},\left\{2,3,2^{2}, 5,7,2^{3}\right\} \in \mathscr{R}$, whence $G(5 \cdot 3 \cdot 7)=G(105) \neq 0, \quad F(104)=F\left(2^{3}\right) \cdot(13) \neq 0, F\left(2^{3}\right) \neq 0$, and this is a contradiction.
II. The case $P=4$. Then $\{2,3\} \in \mathscr{P},\left\{2,3,2^{2}\right\} \in \mathscr{R}$, and so

$$
7=2 \cdot 3+1 \in \mathscr{R}, G(7 \cdot 3)=G(21)=F(20)=F(5 \cdot 4) \neq 0, \quad \text { i.e. } \quad F(4) \neq 0
$$

contrary to our assumption.
Lemma 7. If \mathscr{R} contains at least one odd prime powers, then $F(n)$ and $G(n)$ are nowhere zero.

Proof. Assume that x is the smallest odd prime power in $\mathscr{R} . \chi=3$ would imply that $F(2) \neq 0$, and this case was treated earlier. Assume that $x>3$. Then $x-1$ is a power of 2 , since in the opposite case, $x-1=2^{s} A, A>1$ would imply that $F\left(2^{s}\right) \neq 0, G\left(2^{s}+1\right) \neq 0$, and $2^{s}+1<x$. Thus $x-1=2^{s} \in \mathscr{P}$. Since $G(2) \neq 0$, therefore $0 \neq G(2 x)=F(2 x-1)$. If $3 \mid x$, then $x=3^{b}$, and from the equation $3^{b}-$ $-2^{3}=1$ we deduce that either $x=3(b=1)$, or $x=3^{2}(b=2)$. If $x=3$ then $2 \in \mathscr{P}$, which was considered earlier. If $x=3^{2}$, then

$$
\left\{2,3^{2}\right\} \in \mathscr{R}, 2^{3} \in \mathscr{P}, G(18) \neq 0,17 \in \mathscr{P}, F(136)=F(8 \cdot 17) \neq 0
$$

$$
137 \in \mathscr{R}, G(1233)=G(9 \cdot 137) \neq 0, F(1232)=F\left(2^{4} \cdot 7 \cdot 11\right) \neq 0,11 \in \mathscr{R}
$$

$G(12)=G(4 \cdot 3) \neq 0,3 \in R$, which is a contradiction. Assume that $3 \nmid x$. Then $3 \mid 2 x-1$, $F(2 x-1) \neq 0$. If $2 x-1$ is not a power of 3 , then $2 x-1=3^{b} B$, where $\left.B>1,3\right\} B$, consequently $B \geqq 5,3^{b} \in P, F(B)=G(B+1) \neq 0$, and the odd parts of both of $3^{b}+1$, $B+1$ have to be 1 , taking into account the minimality of x. But then $3^{b}+1=2^{l}$, whence $b=1, B=2^{d}-1, d \geqq 3$, and $2\left(2^{s}+1\right)-1=3 \cdot\left(2^{d}-1\right)$, i.e. $2^{s+1}-3 \cdot 2^{d}=-4$, which is impossible, since $s+1 \geqq d \geqq 3$.

We finished the proof of our lemma.
Lemma 8. If \mathscr{P} contains at least two distinct odd prime powers, then \mathscr{R} contains at least one odd number.

Proof. Let $Q_{1}, Q_{2} \in \mathscr{P}$ be odd numbers. Assume first that $\left(Q_{1}, Q_{2}\right)=1$. If the lemma fails to hold, then $G\left(Q_{1}+1\right) \neq 0, G\left(Q_{2}+1\right) \neq 0, G\left(Q_{1} Q_{2}+1\right) \neq 0$, and so $Q_{1}+1=2^{a}, Q_{2}+1=2^{b}, Q_{1} Q_{2}+1=2^{c}, a>b \geqq 2$. Then $\left(2^{c}-1\right)=\left(2^{a}-1\right)\left(2^{b}-1\right)$ and the two sides of this equation are incongruent $\bmod 2^{b}$.

It remains the case when $Q_{1}=Q^{u}, Q_{2}=Q^{v}$ with some odd prime Q. Let $Q_{1}+1=$ $=2^{a}, Q_{2}+1=2^{b}, a>b \geqq 2$. Hence we get that $Q_{j} \equiv-1(\bmod 4)$, i.e. that $Q \equiv-$ $-1(\bmod 4), u, v$ are both odd numbers. First we observe that $Q^{v}+1 \mid Q^{u}+1$. But then $v \mid u$, which can be proved easily. Assume that $u=k v+r$, where $0 \leqq r<v$. If k is an even number, $k=2 h$,

$$
Q^{u}+1=Q^{r}\left(Q^{2 h v}-1\right)+Q^{r}+1,
$$

which by $Q^{v}+1 \mid Q^{2 h v}-1$ implies that $Q^{v}+1 \mid Q^{r}+1$, and this cannot occur. If k is an odd number, then $Q^{u}+1=Q^{r}\left(Q^{k v}+1\right)+\left(1-Q^{r}\right)$, and by $Q^{v}+1 \mid Q^{k v}+1$, $Q^{v}+1 \mid Q^{r}-1$, which implies that $r=0$.

So we have, $u=k v, k$ is odd. In the same way, starting from $Q^{v} \mid Q^{u}$, we deduce that $b \mid a, a=b t$. So we have

Then

$$
Q^{v}+1=2^{b}, Q^{k v}+1=2^{b t}, t \geqq 2 .
$$

$$
2^{b t}-1=\left(2^{b}-1\right)^{k} \equiv-1+\left(1^{k}\right) \cdot 2^{b}\left(\bmod 2^{b+1}\right)
$$

which is impossible for odd k.
The proof of our lemma is completed. By this we proved our theorem.
Remark. The general case $G(n+K)=F(n)$ can be treated similarly, at least for small fixed values of K, but it involves the knowledge of all solutions of Diophantine equations like $a^{x}-b^{y}=h$ for some values of a, b, h.

References

[1] I: KÁtal, Multiplicative functions with regularity properties. IV, Acta Math. Hungar., 44 (1984), 125-132.
[2] I. KÁtal, On additive functions, satisfying a congruence, Acta Sci. Math., 47 (1984), 85-92.
[3] M. van Rossum-Wismuller, Additive functions on the Gaussian integers, Publ. Math. Debrecen, in print.
[4] A. SÁRközy, On multiplicative arithmetic functions satisfying a linear recursion, Studia Sci. Math. Hungar., 13 (1989), 79-104.

EOTVOOS LORÁND UNIVERSITY
COMPUTER CENTER
BUDAPEST, H-1117.
BOGDANFY ÚT-10/B

[^0]: *) This work has been done while the author had a visiting professorship at Temple University, Philadelphia. The work was financially supported by the Hungarian Research Fund No. 907, Received June 16, 1989.

