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Strong limit theorems for quasi-orthogonal random fields. IT
F. MORICZ
1. Introduction. Let {X: i, k=1} be a random field (in abbreviation: r.f.).
We say that {X;,} is quasi-orthogonal if
(1-1) EX,zk = a'?k <

and there exists a double sequence {o(m, n): m,n=0} of nonnegative numbers
such that

(1.2) |EXy Xpl = @(li—Jjl, lk=ID ooy (4, k,1=1)
and
(13 g; _oe(m, n) < eo.

In the sp:cial case whan g(m, n)=0 except m=n=0, we say that {X,} is
an orthogonal r.f.

2. Main results. We will study the almost sure (in abbreviation: a.s.) behavior
of the Cesaro type means

(2'1) Cmn =

as m+n-—co,

5 30-290-5% ens

Theorem 1. If {X,} is a quasi-orthogonal r.f. and

2.2 S S0k _.,

' S S PER ’
then
2.3) lim {,,=0 a.s.
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It is instructive to compare Theorem 1 with the corresponding result in [4, Theo-
rem 1} according to which

(2.4)

.'I.Ms

g‘ '2k2 [log (1 + 1)]2[10g (k + 1)]2 - oo

is a sufficient (and in the monotomc case, necessary) condmon for the followmg
strong law of large numbers: - Slee T ce T e :
2.5 lim — = S.
( ) min—o MN izl' kZ th 0 a.

The surprising fact is that the logarithmic factors are missing in condition (2.2).
We note that the logarithms are to the base 2 in this -paper. '

We will prove Theorem 1 in a more general setting which provides information
on the rate of convergence in (2.3). In the sequel, p and ¢ denote nonnegative in-
tegers.

Proposition 1. If the conditions of Theorem 1 are satisfied and >0, then

1 2» ga 1 22 = g2
.6 P =0 {——— 2 e —ik
(26) [xflzlzpv ns:z;: el = £} = OC1) 22p2% i=21’ kg]'. out 280 i=21' k=22‘1’+1 k® +
Pl
2%, _FhaiS it oS k=te 1PK2)

Applying the well-known Kronecker lemma (see, e.g. [5, p. 35]), Proposition 1
implies Theorem 1.

We note that a result analogous to Proposmon 1 was proved in [3, Theorem 4]
for sequences of random variables (in abbreviation: r.v.’s).

We also consider other ‘Cesdro type means defined by
27 Tom = ——= 2 Z’(l— L;—l] Xy (mnz=1).
Clearly, the t,,, are intermediate between the rectangular arithmetic means occurring
in (2.5) and the means (2.1).

Theorem 2. If {X,} is a quasi-orthogonal r.f. and

(2.8) i_zl’ 'g' '2k2 [log k+ 1)]2 < oo,
then
2.9) lxmw 1,,,,, =0 a.s.

A more general statement giving mformanon on the convergence rate in (2.9)
reads as follows. :
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Proposition 2. If the conditions of Theorem?2 are satisfied and >0, then

1 9P 924 .
210) P5up 50p ! = & = O | g 5 S bt
b5 5 Chlogka iy 3 5%y
22" 8 k=t & P R

+ 2 3 g% b flog (k + 1)]2}.

Condition (2.8) lies between (2.2) and (2.4) (cf. conclusions (2.3), (2.5), and
(2.9)). ‘

We guess that the logarithmic factor in condition (2.8) is exact.

Conjecture. If {0,=0} isa double sequence such that

g; g; .
_i = ik+1 (l,k = 1)

k = k+1
and
2.11) =Z" 2 2k2 [log k+1DP =

with r=1, then there exists an orthogonal r.f. {X;} such that

EX,’]‘ = O EX,k = a',k (l k= )
and
limsup |7, =~ as.

m-n->co
If condition (2.11) is satisfied with any r=1, then we can state

lim sup it,,| =~ a.s.

3. Proof of Proposition 1. We begin with a known result [2].

Lemma-1. If {X,} satisfies conditions (1.1)—(1.3), and {a;} is any sequence
of numbers, then

m

(€B)) E[ Z’ ax Xy]® = 0(1) Z’ 2 ato%, (@b=0;mn=1).

i=a+1 k=b+ i=a+1k=b

We emphasize that in the proofs of Propositions 1 and 2 the condition that
{X4} is a quasi-orthogonal r.f. is used only to the extent that this 1mp11es the moment
inequality (3.1).

&*
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Now we turn to the proof of Proposition 1. We start with the inequality

(3:2) P[sup sup|{n| > €] = > ZP[ |Emal > €]

m=2P n=2 r=ps—q 2’smsz'*‘ 2’Sn52‘"

Let 2?=m=2"*! and 2°=n=2*'. Since
(3.3) L = Corost+(Cmoe —Lor,20) + Cor,n— Car20) + (Con— Cimy 20 — Lo + Lor, 29)

we can estimate as follows

(3.4) P[2rslplnlg§rn 2as,,sg-n IC""" = 6] = P[[ICZ' 2" = —] + 2 ng)’
where
B = o, max st = 2],
. .
I)'SZ) =P 2l<nszl+lIC2' _C2' 2: > 4]

PO = P| max w3 =Gt Ll > =]

| 2r<m=2r+1 2'<n§2‘“
By the Chebyshev inequality and (3.1),
0(1) 2" 2-'

i=1 k=

(3.5) P[ICzr os| > —-] ECzr 2 =

By the Cauchy inequality,

ar+1
(3.6) [2,_<mg.§'“ Cmer—ConolP = 3 m[lmar—{m-r ol
m= m=2"+1

An elementary calculation shows that

{mar—Cm-1,00 = Zm,' gask(m, s) Xik
i=1 k=1

where

1 @i- 1)(2'” D
. ay(m, 5) = > (1 - 2 ] m*(m—1¢  m(m— 1)] )
Clearly,

1
|an(m, 5)| = mEm—DZF

Hepce, by the Chebyshev inequality and (3.1),

3.7y Pﬂ>§l6- S mEn g —lniar= 2D 5 5 S gk

e m=9" 41 &? mew 41 i1 ko1 m(m— 1)22?3
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The symmetric counterpart of (3.7)is
oy 23 % 2 ok
& Faiaé n(n— 1)222' N

(3.8) ., B® =

Finally, by the Cauchy inequality,
‘ |Cmn'_Cm 2'_52' n+c2' 2'”

max
2T <mz=s2r+1 2=<nsz-+ 1
21'# 1 zl+ 1

) '§ 2 2 "‘m[zmn_Cm—l,n_Cm,n—l""Cm—l,n'-l]2
i m= 2"+1n =27+1 . ) C

and by an elementary ca]cu]atlon

Cmn_Cm—l,n"Cm,n—l'!'C -1n-1 = =2"1"hé1’ bik(m’ n)Xl'k

where

o (i'—‘l')(2m:..— 15 B (k—1@2n-1)
bi(m, 1) = [ mim—1)¢  m(m— l)] [ n(n—17%  n@n-1) ]
Clearly, . ‘
[ 1
m(m—1Dnn-1)"

|bix(m, n)| =

Hence, by the Cauchy:inequality and (3.1),
16 2;+l 2301

(39) Bga) = ? 2 Z mnE[Cmn_CM—I,n—Cm,n—-l_i'gm—l,n—l]z =

m=2r+1 n=2°+1

_ 0(1) Lor+1 2541 m?’ZI a?k
G R S dm(m—1)2n(n—1)*"

Next, we combine the above estimates in four parts.

Part 1. By (3.2) and (3.5), while decomposing the inner doub]e sum and inter-
changing the order of summations, we get that

3.10) ' 2 2 P[ICZ' 2| > —] owm Z 2 22r22s 5555 X
r=p s=4q r=ps=q
2P 94 2P 28 -or 29 2r 2%
NE2Z2+2 2+ 2 2+ > 2 Yoh=
= W == U IO S LAY = B R AR Y T TR
ol 1 £E, 12 = a
1 3 29 01‘2](‘ oo o al?k}
+ 24 ,-=§+1 k‘=z; i# +i=2"+1 k=S711 I2k?
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Part 2. By (3.2) and (3.7), we obtain in a similar way that

oo

@.11) S3Ev=01) 3

r=ps=q m=2F+1 g=q i=1 k=1 k=29+1
1 oo 29 0'.& - oo o.?k
ol 5 Z%y 3 3 il
2% 7S KB it = kR

Part 3. By (3.2) and (3.8),

(3.12) géggzeoa){%z S %y 3 S ,3"‘}

Part 4. By (3.2) and (3.9),

oo oo oo 2P 29 2p n ”m 29
313 I IEP =00 > > (> 2+2 >+ > 3+
r=ps=q m=2P41 a=20+1 V=1 k=1 =1 k=241 i=2F41k=1
m n o'?k - { 1 ar 24 1 2P oo a?k
+i=§+1k=§+1} mn® o) 2%r% £ 2 2",."‘-{_22" 2 _22«;17?2'*'
} 1 < Ll alk < < a.l?k }
+ 2%, 2§+1 kZ =374 1 k=241 I2Kk®

Collecting (3.2) and (3.10)—(3.13) yields (2.6) to be proved.

4. Proof of Proposition 2. This proof is essentially a combination of the tech-
niques of Section 3 and the proof of [4, Proposition 1]. Therefore, we do not go
into full details.

The next lemma is a version of the well-known Rademacher—Menshov in-
equality (see, e.g. [1, Theorem 2)).

Lemma 2. If {X;} satisfies conditions (1.1)—(1.3), and {a;} is any sequence
of numbers, then
a+tm a+m b+n

@)  E[max 2 G Xl = Oflog2af 3 3 aol,

sisn; S0 1% i=a+1k=b+1

(a,b=0;mn=1).

To start the proof of Proposition 2, assume that 2’=m=2"*! and 2=p=2+!
with nonnegative integers r and s. Obviously, it is enough to prove (2.10) for the
slightly modified means

m n i—1 )
Tmn = m2* '=Z' 2{1— m ‘Xik

1k=1
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in the place of r,,,. We use a decomposition analogous to (3.3), according to which
we can write

@.2) P[_ max [t > ] = p[m, o >_]+ 3 o

2rsm=2r+l 2'Su52'“

(cf. (3.4)), where

-

1)y -
(045 2r<r,£lsgr+l [T, 2¢ = Tar, 2] > ]
o
QD = PL,S}SZ,H |73, n = Tar, 2-| = —]
. [ 8
(3) k ok % * - 2
R i |

Imitating the corresponding steps in the proof of Proposition 1, it is easy to
verify that

@3 Plics, ol > 2] = 20 Zuz
and .

0(1) or+1 m a8 a’?k
1) _— [
44 - O r mer+1i=1 k=1 m(m— 1)22%

(cf. (3.5) and (3.7), respectively).
The following two estimates are different from (3.8) and (3.9). By the Chebyshev
inequality and (4.1),

- @ _ O() Mog 2P % =5t () i-1}

& 22 S -

- 0Q) 1 15 ] Tk [log T

2
€ A k=T

«. Then

To estimate we set f,,=

*
rs’ Tonn —Tmz

Nown —Ner,n = Tmn - T::l,2' - T;",n + T;", 25 -
Similarly to the reasoning in (3.6) we estimate as follows

. i * 2 =
[2'§r£g§'+l 2=§T§2=+1|T'"" Tm, 22 12""+12"2’|] -

or+t

= m=§+1 " [2’<"52’“

Inmn 'lm 1, nl]

A simple computation shows that

j Cie(m, n) Xy,

k=2%+1

Iz

”m—”m—l,n =
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where , . .
_ 1 fE=-H@2m-1) ]
) = S w1 mm=Dl’
Clearly, i
1
lea(m, n)| = mm—1)2
‘Thus, by the Chebyshev inequality and.(4.1),
s 0(1) or+1 12 m 2841 2 2
(4.6) 5;’ = —3 2 m[log 2°+1] Z 2 ci(m,nma} =
& m=2"41 . i=1 k=241 :
0(1) or+1 m 25+1 0’;2;; . 0(1) or+1 28+1 02 "
g2 m=2+1 .'=21' k=2o41 m(m— 1)2225 [log 2k} = i=1 k—?.z" 1 22'k2 [log 2k]

Now to complete the proof on the basis of (4.2)—(4.6) we have to go.along
the same lines as in the proof of Proposition 1 (cf. Parts 1—4 there).
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