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General results on strong approximation by orthogonal series 

L. LE1NDLER and A. MEIR 

1. Introduction. Let {(p„(x)} denote an orthonormal system on a finite interval 
(a, b). In this paper we shall consider real orthogonal series 

(1.1) 2c„(pa(x) with 
n = 0 n=0 

It is well known that the partial sums s„(x) of any such series converge in the .L2 

norm to a function f(x)£L2(a, b). 
The following theorem, proved in [6], provides a quantitative estimate for the 

pontwise approximation of f ( x ) by the arithmetic means of s„(x): 
Let 0 < y < l . If 

(1.2) 
>1 = 0 

then 

-rxr 2 h ( s ) - f ( x ) = ox(n->) « + 1 k=0 

almost everywhere (a.e.) in (a,b). 
This result was extended by G. S U N O U C H I [17] to strong approximation. Earlier 

G. A L E X I T S , who was first to propose the problem of strong approximation, in 
cooperation with his coauthors established various results pertaining to Fourier 
series [2], [3]. As far as we know it was S U N O U C H I ' S result the first to deal with strong 
approximation by general orthogonal series. His result reads as follows: 

Let 0 < y < l and x > 0 . If (1.2) holds and 0</?y< 1, then 

( 1 n 1 VP 
4 r 2 A*--*1 \sk(x) - / ( x ) | " = ox(n~y) I A„ k=o J 

a.e. in (a,b), where = | ^ 
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After several articles of the first author have dealt with strong approximation 
(9], [10], [11], the following two general results (the first for Cesàro means, the second 
for Riesz means) were established by the first author and H. SCHWINN[14]: 

T h e o r e m A. Let 0, j o O . If (1.2) holds and 0 < / ? y < l , then 

f 1 » l 1 / p 

(1.3) -j. . Cn(f,;K,p,vu.x):= \ — = °x(n-y) 

a.e. in (a, b) for any increasing sequence v := {vt} of positive integers. 

T h e o r e m B. Let y > 0 , £ > 0 . If (1.2) holds and 0 - ^ p y ^ ß , then 

f I1'" 
(1.4) R„(f,ß,p,v, x):= ( « + 1 ) - " + =ox(n~y) 

l fc=0 ) 

a.e. in (a, b) for any increasing sequence v := {vt} of positive integers. 

L. R E M P U L S K A [15] investigated the approximation properties of generalized 
Abel means of orthogonal series. One of her results, relevant to our present interest, 
is as follows : 

Let q be ä non-negative integer and y>0. If (1.2) holds, then 

(1 -ty+1 i ( ? î k \ t k s k ( x ) - f ( x ) = 
o,((i-07) if q+ I>y, 
O x ( ( l - 0 v | l o g ( l - 0 l ) if 9+1=7, 
O x ( ( l - / ) , + 1 ) if q + 1<V, 

a.e. in (a,b), as t—1_. 
This result was extended to strong Abel means, by the first author, in [8]: 

T h e o r e m C. Let q be a non-negative integer and y > 0 . If (1.2) holds and 
0</?y-=l, then 

Q ( f , q, p, v; 0 := {(1 - i ) ' + 1 J +
k *) tk k , ( x ) -/(AT)!"}1'" = o x ( ( l - ty); 

furthermore if py=\ and p = 2, then 

Q(f,q,p,v, / ) = 
O x ( d - 0 y ) ' / 9 + 1 =~Py, 
ox((i-0T|iog(i-0lVP). if q+i=py, 
P x ( ( i - 0 ( , + 1 ) " ) if q+ i < py, 

hold a.e. in (a,b), as t— 1 , for any increasing sequence v: = {vt} of positive in-
tegers. 

An investigation, pertaining to the Riesz means dealing with a question similar 
to the special case when q+l=py in Theorem C, was started in [10]. These results 



Strong approximation by orthogonal series 31? 

are often referred to as "limit case" theorems, since the restrictions, concerning 
the parameters, py< 1 and py<[S are replaced by py= 1 and py=P, respectively. 

T h e o r e m D. Let x andp be positive numbers. If 

i c W " ^ , 
n = l 

then 
C n ( / , x,p, v; x) = ox(n-y (lognfl") 

a.e.in(a,b) for any increasing sequence v:= {vfc} of positive integers. 
This corresponds to the case y=\jp. 

T h e o r e m E. Let ¡5 and p be positive numbers. If 

n = l 
then 

RN(F P,P, v; X) = ox(«-"/" (log n) l /p) 

a.e. in (a, b) for any increasing sequence v := {vfc} of positive integers. 

This corresponds to the case y=Plp. 
The aim of our present paper is to extend these results of strong approximation 

to certain more general classes of strong summation methods. These methods will 
include, as we shall show, a large family of Hausdorff transformations and [ / , / ] -
transformations. We hope that the forthcoming result will throw additional light 
on the common kernel of the previously established results. 

2. The main result. Let a:={at(ct))}, k=0, 1, ... denote a sequence of non-
negative functions defined for satisfying 

j X ( a > ) = l . 
t=o 

We shall assume that the linear transformation of real sequences x:={xfc} given by 

:= 2 ak(fi>)Xk, <» - °° 
fc=0 

is regular [4; p. 49]. Let y:=y(t) and g(t) denote non-decreasing positive functions 
defined for 0^/-=<*>, furthermore let ft:—{nm}, m = 0 , 1 , . . . denote a fixed, in-
creasing sequence of integers with /x0=0. We shall assume throughout this paper 
that the following conditions are satisfied: 
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There exist positive integers N and h so that 

(2.1) m = 1 , 2 , . . . 

(2.2) y O W i ) s J V - y ( A O . /" = 1 , 2 , . . . 

(2.3) y(jim+H) S 2y(nm), m = 1 , 2 , . . . . 

For /->1, co>0 and m = 0 , 1, ... we define 

(2-4) e„(a) , r ) := — 2 • 

In terms of the quantities introduced above we are ready to state our main 
result. 

T h e o r e m 1. Let p>0. Suppose that there exist /->1 and a constant K{r, ft, y) 
such that for any <¿>>0 

(2.5) f /im i?m(c», r)y(nm)~' s £ ( r , 7)(g(a>)ly((0)y. 
m = 0 

If 

(2-6) 2 c 2 r ( « ) 2 < - , 
n=l 

i/ie« 

(2.7) * ) : = { 2 K W - / W l " } 1 / P = fe(e>)/y(©)) 
*=o 

a.e. in (a, b) for any increasing sequence v := {vt} o/positive integers. 
I f , in addition, for every fixed m, 

(2.8) 6m((o,r) = o((g((D)ly(a})Y), as co^oo, 

then the Ox in (2.7) can be replaced by ox. 
We mention that the most important special case of Theorem 1 is when both 

(2.5) and (2.8) are satisfied with g(co)=l. In this case we get that 

(2.9) Am(f,p,v; x) = ox(y(co)~1) 
holds a.e. in (a, b). 

3. Lemmas. In order to prove Theorem 1 and for its applications we need a 
number of results; some were proved earlier, others will be proven here. In what 
follows K will denote absolute constants and K(.) constants depending only on 
those parameters as indicated. 

L e m m a 1. [13]. If {am} is a sequence of non-negative numbers, then 

JI 

2 f l » i - Kan, n = 1 , 2 , . . . m=l 
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hold if and only if there exist positive integers N and s so that 

am+i S Nam and am+s 2am, m= 1,2, .... 

L e m m a 2. [7]. Let {Am} be an increasing sequence of positive integers, let {ym} 
be a non-decreasing sequence of positive numbers so that 

(3.1) 

If 

(3.2) 
then 
(3.3) 
a.e. in (a, b). 

z ylm s n= 1,2,.... m = l 

Zclyl 
n=1 

Sxn(x)-f(x) = ox(yji) 

L e m m a 3. [10]. Let <5> 0 and {<5„} an arbitrary sequence of positive numbers. 
Suppose that for any orthonormal system the condition 

©o oo 

ns=l k=n 

implies that the sequence {j„(x)} possesses a property P, then any subsequence {jv (x)} 
also possesses property P. 

k 
L e m m a 4. Let <rk(x):=(k +l)"1 2 ^ ( 4 * = 0 , 1, ... . If 

i—o 

n = 0 

then 
m b m 

(3.4) 2 n f (<T„(x) - a.^x^dx s K J c°„; 
n=l X 11=0 

and for every p> 0 

(3.5) / {sup ((« + 1 ) - 1 J \sk(x) - ck(xy)V>y dx s K(p) 2 cl. 
a "SO fc=0 n=0 

Inequality (3.4) can be found in [1] and (3.5) was proved in [16]. 

L e m m a 5. Let />>0 and M<N positive integers. Let 

/0, if nsM, 

(3.6) <rn(x) = ' 
(n + 1)-1 2 {Sk(x)-SM(X)), if M ^nsN, 

k=M+1 

( " + 1 ) - 1 2 (Sk(x)-sM(x)), if n>N. k=U+1 
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Then 

(3.7) 2 f n(an(x)-dn^(x)fdxsK 2 cl, 

and 

f f n{dn(x)-5n^{x))2dx^K 2 п=М+1д л=М + 1 

Л1 N I VP N 

•J^TT 2 sK(p) 2 < 
a Jy + 1 n=M+1 У n=Af+l 

P r o o f . Let 
fck, if M < к ё N, 

°k lo, otherwise. 

It is easy to see that for the corresponding partial sums s„(x) of (1.1) we have 

0, if n = M, 
Sn(x) — SM(x), if M < И 5Э TV, 
sN(x)-sM(x), if N < n, 

and therefore the (C, l)-means o„(x) of {s„(x)} are given by (3.6). The applica-
tion of (3.4) to {с*} clearly implies (3.7), the application of (3.5) to {c*} implies (3.8). 

L e m m a 6. Let p>0 and let <r*(x) be defined by 

(3.9) a*n(x) := <r„*(л; x) := —L- 2 (**(*)-*„„(*)) 

for pm-^n<fim+1, m = 0, 1, ... . If (2.6) holds, then 
f 1 fm + l - l \4P 

(3.10) Ая(х):=\- 2 = MvOO"1) 
l Ит + l k=Pm ' 

a.e. in (a, b). 

P r o o f . We set М—цт and N=fim+1— 1 with m=0,1,... successively into 
(3.8) and observe that for tum^n<pm+1, o*(x) equals 5n(x) of (3.6). Multiplying 
by y(pm)2 and summing over m, we get 

2 j y(iim?Ai(x)dx^K(P) 2уШ*"т2 m=0 a m = 0 *=*•». 

The sum on the right-hand side is finite on account of (2.2) and (2.6). This implies 
the required result. 

L e m m a 7. Let o*(x) be as defined by (3.9). If (2.6) holds, then 

<(*) = ^ ( y ( n ) - 1 ) 
a.e. in (a, b). 
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P r o o f . Since <T*m(;t)=0 for every m, we have 

(3.11) max |ffî(*)|"=s max ( J I ^ W - ^ - i W I ) * ^ 

S ( ' " 1 1 WUxi-Jj-iWI)2 ^ K " ! 1 J 
J=(im +1 i=/"m + l 

where the last inequality is the consequence of the Schwarz inequality and (2.1). 
To the last expression we may apply (3.7) with M=nm and N=nm+1 — 1, since 
in the required range tf (x)=âj (x). Thus we obtain from (3.11) 

b /1—1 
(3.12) f max \oUx)\2dxsK c ï . 

J + 1 j=Hm+1 

It follows now from (3.12) that 

J y(jimf J max \a*k(x)\2dx =s K j f cj — K 2 7(k?4 < - , 
m=0 % Vm^k^Pm + i , m = 0 j=f„+1 »=0 

on account of (2.2) and (2.6). The last inequality implies the required result 
using (2.2) once again. 

L e m m a 8. [4]. Let {at(w)}> the coefficients of a regular Hausdotff transforma-
tion, be given by 

(3.13) «*(„) = j l n
k ) t k ( i - t r - k < f > ( t ) d t , 

o v ' 

where <j>(t)£Lr(0,1) for some r>-1. ïTien 

(3-14) i w » ) r s i ( r ) ( H + r . 
J c = 0 

L e m m a 9. Z.e/ {ak(co)}, i/ie coefficients of a regular [J,f]-transformation, be 
given by 

(3.15) a t (œ) = ^ / V ( l o g ( l / O ) * 0 ( O ^ 

where <f>(t)£L'(0, 1) for some /•> 1. Then for 7 = 0 , 1, . . . 

(3.16) 
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P r o o f . Denote kk(co, />=(A:!>-1(log(1//))^^ and let / • - 1 + j - 1 = l . By Hol-
der's inequality we get from (3.15) 

i I 

(3.17) \ak((o)\r s ( / J*(o>, t)dt)"1 • f Xk(co, t) №)\'dt. 
o o 

Now, we find by an easy calculation that for k = 0 , 1, . . . 

i 
(3.18) f Xk(co, t) dt = <o*(l +<0) - * - 1 S (1 +£u)_ 1e~ t / 1 + < 0 

о 
and that 

Z 0 = 1-
fc=0 

Inequality (3.16) is therefore a consequence of (3.17) and (3.18). 

4. Proof of Theorem 1. First we carry out the proof when vk=k. Using ele-
mentary considerations we see that 

(4.1) { 2 <*к(<») K M - / М Г } 1 / Р S K(p)(21+22+2z)> k=0 
where 

2i = { 2 "m2 1 a * ( a > ) [ s k ( x ) - s u J x ) - с * к ( х ) [ " } ^ , m=0 k=pm 

(4.2) 2* = { 2 "т2 1 «*(<») k„m (*) -№\*y>p, 
m=0 fc=/im 

2s = { 2 "m2 1<*k(a,)K(x)l"}1/p• m=0к=цт 

Let By Holder's inequality, using (2.2) and (3.10) with ps in place 
of p, we get 

~ Pm + l-1 ч Km+l"1 

(4.3) 2{ 2 «k(p)r}Vr-{2 l ^ w - ^ w - ^ w r } 1 ' ^ 
m=0 *=(xm k=i«„, 

~ f 1 fm + l - 1 lV« 

m=0 + l к=цт I 
OO 

S К 2 Mm(<0, Г) • ox(y(pm)-P), 
m=0 

a.e. in (a, b). 
In order to estimate 2% w e u s e (3-3) with X„—p.n and y„:=y(n), observing 

that (3.1) is satisfied due to our assumptions (2.2) and (2.3) and Lemma 1. By Hoi-
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der's inequality 

(4.4) {" *y{o>Y}Vr • C2'1 KJx)-f(x)ryt> 
m=0 t=iim *=/•„ 

0 0 

3= K 2 VmQm(0>, r)ox(y(flm)-"), m=0 

taking (2.1) and (2.2) into account. 
For estimating 2 a we use Lemma 7. By Holder's inequality 

(4-5) 
~ r 1 "m 4-1-1 l 1 " 00 

2 KmQm(co,r)-\— 2 m=0 I Mm m~0 

Collecting these estimations and taking account of assumption (2.5) we immediately 
get the required result (2.7) when vk=k. 

If (2.8) is also satisfied, then the proof runs as follows. By (4.1)—(4.5) we have, 
when vk=k, that 

(4.6) Aa(f, p, v; xy^K 2 PmQm(«>, r)ox(y(fimy) 
m=0 

holds a.e. in (a, b). . 
Let now £>-0 be given. If x is a point where (4.6) holds, then let M(x) be a 

positive integer such that for m > M ( x ) the inequality ox(y(fim)~p)*=epy([im)~p is 
valid. For such x we get from (4.6) that 

M(x) 
v; x)p s K(x){ 2 HmQm(o>, r)y(pm)-p}(y(o>)lg(o>))p + 

m = 0 

+ Kep(y(a>)lg(o))y 2 pmQm(fo,r)y(nJ-p. 
m=M(x) +1 

When < u — t h e first sum on the right converges to zero by (2.8); and the 
second sum remains 0((g((o)/y(co))p), by (2.5). 

Hence, for vk=k, 

(4.7) Aa(f,p, v; x) = ox(g(co)ly(co)), as 

clearly follows. Since (4.6) holds a.e. in (a, b), it follows that (4.7) also holds a.e. 
in (a, b). This completes the proof when vk=k. 

The statements of Theorem 1 in their generality — for arbitrary v:={v t} — 
follow from the results just proved and (2.6) using Lemma 3 with 5 = 1 and 
A , : = y ( H ) 2 - y ( " - l ) 2 . 

5. Applications. First we treat those results which can be derived from Theo-
rem 1 in the special case when g(co) = 1 and both (2.5) and (2.8) are satisfied. 
7 
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(i) If 

(5.1) / U 0 = [l)«*(!-tT\ k = 0, 1, . . . , n ; n = 1,2, ... 

and 0 ,1) is a non-negative function with 11011!= 1, then the matrix {a t(n)} 
defined by 

i 
(5.2) «»(«) = J pnt(t)<t>(t)dt, k = 0, 1, ..., n; n = 1, 2, ... 

a 

yields the coefficients of a regular Hausdorff transformation. For these transforma-
tions we have the following result. 

T h e o r e m 2. Let Suppose that (afc(n)} is given by (5.2), where <j)(t)£Lr(0,1) 
with some r> 1. If (1.2) holds and 

(5.3) 0 < / » y - = 1 - r " 1 , 
then 

(5.4) { 1 <xk(n) K t ( * ) - f i x r y i " = 
*=o 

a.e. in (a, b) / o r a/ry increasing sequence {vfc} o/posit ive integers. 

C o r o l l a r y 2.1. 7/" {at(re)} ¿r /Ae matrix of a Cesaro (C, x) or a Holder (H, x) 
transformation, then (5.4) holds whenever 0</>-y<min (1, x). 

R e m a r k . Although Theorem 2 does not include Theorem A for arbitrary 
if we take into acoount the special properties of the (C, x) transformation matrix, 
we find easily that Theorem 1 is applicable. For, in this case, (2.5) wi thg( / ) = 1 
and y(t)=ty will be satisfied if we choose r ( > l ) so that x > l — r - 1 . 

P r o o f of T h e o r e m 2. We wish to show that conditions (2.5) and (2.8) of 
Theorem 1 are satisfied if [co]=n, y(t)=ty and g(a>)= 1. From (3.14) we get 

em(a>, r)y(coy K(r)[i~1/r(D<1/r)-1+py, 

whence (2.8) follows by (5.3). Now we observe that in this case gm(a), r)=0 if 
f i m x o . Hence, again from (3.14), 

2 MmQm(co, r)y(pm)-" ^ Ra>M-12 ^~(1/r)~py, m=0 

where the summation on the right is for pm^a>. Because of the assumptions made 
on the sequence {/im}, this last sum is 0(a)1~ (1 / ' )~py). This proves (2.5). The 
conclusion of Theorem 2 now follows from Theorem 1. 
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P r o o f of C o r o l l a r y 2.1. Both the (C,x) and (H, x) transforms are Haus-
dorff transforms with <j>1(t)=x(l-t)"-1 and 4>2(t)=r(x)~1(log 1/t)"-1, respec-
tively. If x^l, then 1), for arbitrary large r, hence (5.3) will hold 
whenever 0<py< 1 and r is large enough. If 0 1 , then <£,(/)(; Z/(0, 1) if 

> - 1 > l — x, hence in this case (5.3) holds whenever 1—— 

(ii) If 

(5.5) * = 0 , 1 , . . . 

and </>(t)CL1(0,1) is a non-negative function with | | $ | | i= l , then the function-
sequence (ak(co)} defined by 

i 
(5.6) ak(a>) = / 4(<o, t)<j>(t)dt, k = 0 , 1 , . . . 

o 

yields the coefficients of a regular [J, /^transformation. For this transformation 
we have the following result. 

T h e o r e m 3. Let y >0 . Suppose that {ak(to)} is given by (5.6), where <f>(t)£Lr(0,1) 
with some r> 1. If (1.2) holds and 

(5.7) 0 <py < l - r - \ 

then 

(5.8) { 2 «*(©) K M - / M l * } 1 " = <>,(<»-') 
it = 0 

a.e. in (a, b) for any increasing sequence {v/J of positive integers. 

C o r o l l a r y 3.1. If {ak(©)} is the coefficient-sequence of the Abel transforma-
tion, then (5.8) holds whenever 0<py<l. 

P r o o f of T h e o r e m 3. We shall show that the conditions (2.5) and (2.8) of 
Theorem 1 are satisfied in this case with y(t)=ty and g(co)=l. From (3.16) we 
obtain 

Qjfo, r)y(wy s K(r)»-l"coW-

whence (2.8) follows by (5.7). Also from (3.16) 

(5-9) 2 7 T X 7 & 7 F - 2 rir11"*-" * K(r)a>-», 

7» 
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due to the assumptions concerning {/iB}. Finally, again from (3.16), 

(5.10) 2 fimQm(.(o,r)»-" 2 IYX7TI « 1+aA r ] S 

due to the fact that x e ~ x < l for x > 0 and the properties of {ptm}. 
Inequalities (5.9) and (5.10) prove (2.5), hence Theorem 3 is a consequence of 

Theorem 1. 

P r o o f of C o r o l l a r y 3.1. If <£(0 = 1, then ak((o)=a)k/(l+co)k+1 for k= 
= 0 , 1 , . . . , which yield the classical Abel transformation. In this case, clearly, 
<j>(t)dL'(0,1) for any r > 0 , hence the result follows from Theorem 3. 

(iii) If the function <j>(t) in (5.2) satisfies 

0 s m s K(p)t>-\ 

with ¡} => 0, then it is easy to see that 

(5-11) 
» 

for O s f c s n , « = 1 , 2 , . . . . Using (5.11) one can establish by easy estimations that 
in these cases (2.5) and (2.8) hold whenever y(t)=ty, g(t) = 1 and 0<py</? . For 
example if then 

« w - ' r o . ; ^ , ) r ( t H w -

which yield, essentially, the Riesz transformation of order /J. Hence Theorem B 
follows from Theorem 1. 

(iv) If the function <j>(t) in (5.6) satisfies 

0 ^ cj>(t) ^ K(q)[\ogjJ 

with g £ 0 , then easy calculations yield that 

(5.12) ^ ^ ( l ^ f e f 

for k=0,1,... . Using (5.12) it is not difficult to show that in these cases (2.5) 
1 ( 1 Y 

and (2.8) hold whenever For example, if (¡>(t)= — |k>g—J , 
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qm 0, then 

•*•> = < ^ » - f r ) b f r ) ' . 

which yields the generalized Abel transforms of order q+1, q^O. Hence the first 
statement of TheoremC with the relaxed condition 0 < p y < q + \ follows from 
Theorem 1 for all q^O. 

It seems worthwhile mentioning that Theorem. 1 with suitable choices of y(t) 
and {pm} can also be applied to strong approximation by certain Norlund and Riesz 
means having the form 

{i n-i li/p 

2 (¿(« — k) — A(n — k— 1))|it(x)-/(*) 
and 

{1 n-1 lVj> 

2 {Hk+1) - m ) M * ) 

where X = {!(«)} denotes an increasing unbounded sequence of positive numbers 
satisfying 

X(ri) erf or X(n)-k{n- 1) A(n)n-e 

with c > 0 and e=>0, respectively. 

Furthermore, the function y(t) chosen as ty in Theorems 2 and 3 could be 
replaced by functions of the form y(r)=r7(log t~f. 

Next, without proof, we mention some further applications of Theorem 1 
with g(co):=(log (1+co))1/i'. The proofs would run as in the previous cases. These 
special cases of Theorem 1 include certain parts of the so-called limit-case theo-
rems. For example Theorems D and E, moreover the second part of Theorem C 
quoted in this paper, belong to these cases. 

(v) Let {«t(«)} denote the coefficient matrix of a regular Hausdorff transforma-
tion with (j)(t)£Lr(0,1) for some r> 1. 

T h e o r e m 2*. If (1.2) holds and py=l—r~l, then 

{ 2 «*(«) M*) -ZOOI*}1" = o*((iog nfi"n-') k=0 

a.e. in (a, b) for any increasing sequence {vk} of positive integers. 
This result (r~oc) includes the special case x=l of Theorem D. Similarly 

it includes the special case 1 of Theorem E. 
(vi) Let {xk((o)} denote the function-sequence of coefficients of a regular [J,f\-

transformation with <j>(t)£Lr(0,1) for some /•>!. 
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T h e o r e m 3*. If (1.2) holds and py=\-r~l, then 

{ 2 |ivfcW-/WIP}1/P = Ox(dOg(l +oj)fl"(o~y) 
fc=0 

a.e. in (a, b) for any increasing sequence {vt} of positive integers. 

T h e o r e m s 2* a n d 3*, because of their general i ty, d o n o t yield the l imit-cases 
included in T h e o r e m s C a n d E . However , if we t ake in to accoun t the special p r o p -
erties of the coefficients of the Riesz a n d the general ized Abel summat ion m e t h o d s , 
as appea r u n d e r (5.11) a n d (5.12), then our ma in result , T h e o r e m 1, yields the results 
fo r the above ment ioned cases as well. 
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