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On the central limit theorem for series with respect 
to periodical multiplicative systems. I 

S. V. LEV1ZOV*) 

Introduction. It is well known that many important properties of independent 
random variables are transfered on broad classes of various orthonormal systems. 
The questions concerning the statistical properties of lacunary subsystems of ortho-
normal systems have been studied by many authors. For the trigonometric systems, 
the first result in this direct ion is due to SALEM a n d ZYGMUND. 

N 
T h e o r e m ([13]). Let SN(t)= 2 ak cos 2nnk(t+ock), where {«*} is an infinite 

k = l 

sequence of positive integers satisfying the condition *+1 Si for certain A>1 
"k 

(so-called Hadamard's lacunar! ty); furthermore let {ak} be a sequence of real numbers 
such that 

= , aN = o(AN) as 
k=l 

and {at} be an arbitrary sequence of real numbers. Then for any set iicz[0, 1] of 
positive measure and for any x€R we have 

where \E\ denotes the Lebesgue measure of E. 

This result is called central limit theorem (abbrev. CLT for lacunary trig-
onometric series and it has been generalized by many ways ([1], [15]—[16]). 

For Walsh—Paley's system {W„(x)} the first analogous result was achieved in 
[12] and afterwards it was extended in [2]—[3], [7]. 

*) This paper was written during the stay of the author at Bolyai Institute (Szeged, Hungary)-
in the academic year 1989/90. 
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T h e o r e m ([3]). Let us assume that a sequence { / i j satisfies the conditions 

(1) ^ S l + p c > 0 , O s e t ^ i fc = 1, 2, . . . ; 

and {ak} has the properties 

(2) AN = { 2 *2}1/2 - aN = O(An • N~x). 
k=1 

Then for any J C £ R we have 

(3) Hm \{t: /€[0, 1], | akWnk(t) ^ x. = J L / exp i - y ) dz. 
k—1 |r ZTC _ oo 

In [7] it was remarked that under hypothesis (1) the second condition of (2) is 
necessary for the validity of (3). 

The purpose of the present work is to study the CLT for weakly lacunary series 
with respect to the generalized Walsh's functions, i.e. for so-called periodical multi-
plicative orthonormal systems (abbrev. PMONS). 

We recall the definition of PMONS following the survey paper [6]. 
A sequence of functions X = called multiplicative system if the 

following conditions are fulfilled: 
a) if xk(x), yj(x)eX then the product Xk(x) • xi(x)=x(k, I, x) also belongs 

to X; 
b) if y.k(x)£X then {yk(x)}~1 belongs to X, too. 
The system X is called periodical if for every n=0, 1, ... there exists an integer 

kn such that {zn(x)}fc»=l. 
We shall define a periodical, multiplicative and orthonormal system X which 

will be considered later on the interval [0, 1]. This system can be numerated in the 
following way (see [6]): there exist integers 

0 = i < 1 = m0 < m t < mz ... 

and functions ^0(x) = 1, ym (x), ym (x),. . . such that the quotients — = p n + i 
0 1 mn 

are prime numbers *) and every functions Xk{x) of the system X has the represen-
tation 

Xk(x) = n{Xmj(x)}'J, j= 0 

*) We remark that p„ has not to be a prime number necessarily. 
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provided that k is expressed in the from 

n 
k = where 0 s oij < p}+i, k > 0. 

y=0 

The choice of {/m (*)} may be also ambiguous, but we suppose that it is made 
by certain determined manner. 

OO 
We shall study the properties of the series having the form y aky_n (x), where 

*=i * 
{nk} is a sequence of positive integers such that 

(4) s 1 +to(k) for k = 1, 2, ..., 
nk 

and {a) (A:)} is a non-negative, non-increasing sequence such that 

(5) kf-a>(k)\oo for some i , 0 < « < 1. 

Finally we assume that the sequence of the coefficients {ak} satisfies the con-
dition 

(6) AN = { 2 a i y < * — . 
fc= 1 

We shall consider the following sum 

(7) 
k=1 

Further on the sequence of the complex-valued functions TN(x) will be under-
stood as a sequence of two-dimensional random vectors. These vectors are defined 
on the probability space (£2, P), where Q is the square [0, 1]X[0, 1], IF is 
the (7-field of all Borel-measurable sets on Q and P is the Lebesgue measure on ¡F. 
The components of the vector TN(x) are the real part and the imaginary part of 
the function TN(x). If it will be necessary, we shall represent the vector TN(x) in 
the form 

TN(x) = (&(*), ^ ( 4 
where 

&(* ) = Re {^(x)}, tt(x) = Im {7^*)}. 

In the case of the trigonometric system (or the Walsh's system) the CLT was 
proved by a direct proof showing the convergence of the sequence {7^ (x)} to the 
normal distributions. But in our case the corresponding distributions have two-
dimensional character and it requires a special approach. 

We shall require some informations from the theory of probability. The ter-
minology and the facts are taken from [14]. 
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D e f i n i t i o n 1. A random vector • ••» W is called normally dis-
tributed (Gaussian) if its characteristic function (pt(t) has the form 

q>t(t) = exp{/•<*, m ) - y < R / , />}, 

where m=(m 1 , m 2 , . . . , mk), |m t |<°o; R=| | rH | | is a symmetrical, positive semi-
definite matrix, the dimension of which is equal to «X« ; ( . , . ) denotes a scalar 
product. For brevity we shall use the notation R). 

In this connection m is a vector of mean value, i.e. 

mk = M£k for k = 1, 2, ..., n; 

and R is a covariance matrix, i.e. 

rkl = M^-MZJ-^-MZ,)} = c o v ( ^ , k,l= 1, 2, . . . , n. 

Here the symbol MS, denotes the mathematical expectation of random variable 
£ and rkl are the elements of R. 

D e f i n i t i o n 2. If there exists a two-dimensional Gaussian vector T(x)= 
=(c1(x), £2(x)) such that the sequence of random vectors TN(x) weakly converges 
to T(x) as N-* °o (in distribution) then the subsystem {akx„k(x)} is called the subject 
to CLT. We denote these facts as follows: 

TN(x)^T(x) and {akX„k(x)} <z CLT, 

where the symbol —*• means the weak convergence. 
In other words, there exist a vector m=(m1, m2) and a covariance matrix 

R=lk f l l ; k, 1=1, 2; such that 

TN(x)jV(m, R) as JV -

1. The main theorem. Let the PMONS X = {z„(x)}^l0 be defined by means of 
the sequence {/>„}. As earlier, we assume that m 0 = 1, W„ + 1 — Wln'Pn+l'i ti—1, 2 , . . . . 
The functions v (x) are used as "basis" elements in the system X. The set of the 
functions Xk(x) having the index-number from 

mn to w„+i—1 (inclusively) will 
be called the "n-th block of X" and denoted by [m„, mn+1). Also let us define the 
operations of addition and subtraction on the group of non-negative integers ac-
cording to the following rules: 

m = k + l, if xm(x) = /*(*) • xi(x); 

m = k-^-l, if xm(x) = Xk(x) • Xi(x), 

where Xi(x)= denotes the complex conjugate function of Xi(x)-
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To formulate the further results we shall introduce some additional concepts. 
Let %k(x)£X. The number s is called conjugate to the number k, if s+k=0 (i.e. 
Xs(x)=yk(x)). The coefficients at the conjugate functions X„k(x) and y„k (x) (if such 
pair there will be in our subsystem {x„k(*)}) will be denote by ak and ak, respec-
tively. 

Furthermore, let the numbers q, r be given such that mn=q, r < mn+j for 
some n. Suppose that q + r^O and let /=min {/: (/ can be equal 
to 0, 1, . . . , n). In this case we shall call the numbers q and r (I, n)-adjoint. 

If a sequence {nk} is given, then, in general, there exist both conjugate and 
(/, n)-adjoint numbers in {nk}. The quantity of the conjugate pairs («, ,«,) , where 
mn^q, r<mn+l will be denoted by A„ (in addition, we suppose that the pairs (nq, nr) 
and (nr, nq) are distinct if q^r). The value Xl

n(q) will be defined as quantity of 
the numbers nr being (/, n)-adjoint with nq for a fixed q. 

Finally, for given sequences {«*} and {ak} we put 

/ ( 0 ) = 0, f ( k ) = max {/: n{ < mk), k = 1, 2, ... 

/(*+D 
(1.1) Ak(x) = J aiXmt(xy, Bk = Afik+1); k = 0, 1, ... 

bk = max {\a}\: f ( k ) + 1 ^ y < /(fc +1)}; 5k = f(k + 1) —f(k). 

R e m a r k 1.1. If for some k f(k)=f(k+1), then we assume that J fc(jt:)=0; 

Now we can formulate the main statement of our work. 

T h e o r e m A. Suppose that for a given system X the corresponding sequence 
{/>„} is bounded. We also assume that the sequences {co (k)} and {ak} satisfy 
conditions (4)—(6), respectively. Additionally if 

a) 

<1.2) ak = o{Akto(k))\ 

b) there exists a real number rj, O^tj^l such that 

1 №+i) 0-3) J im"p- 2 (aj-dj) = tj, 

where the summation is taken for all conjugate numbers being not greater than 
f(N+1); 

c) there exists a constant C > 1 (independent of q,j) such that for any fixed q 
and for any j, 

(1.4) H(q)-co(f(k)) = 0(C'~k) as k — 

holds, then the subsystem {akyn (*)} is the subject to CLT. 



338 •S. V. Levizov 

It is easy to see that Theorem A will be proved if we can show the existence 
of a vector m=(m 1 ,m 2 ) and a matrix R = [|/-k,[]; k, 1= 1, 2; such that 

(1.5) T N ( x ) ± ~ j r ( m , R ) as TV — 

2. Lemmas. First we shall recall some further facts of the probability. 

D e f i n i t i o n 3 ([14], pp. 467—474). Let {/„} be a certain sequence of indices 
and {Xni; n=0, 1 , . . . ; be an array of random variables on the prob-
ability space (Q, SF, P). Let #?=0, 1 , . . . ; O s / s / , , } be any triangular array 
of sub ff-fields of 2F such that 

J ^ , - ! c; J*,,,- for all n = 0, 1, ...; 1 s / =£ /„-

Then we shall call the array {Xn,} a martingale difference array (briefly MDA) with 
respect to if Xn>i is -measurable and M {\Xn>i\}<<™, M{Xn>i|^,,_x}=0 
almost everywhere (a.e.) for all n and i s 1 (the definition of the conditional expecta-
tion with respect to u-field can be found in [14], p. 227). 

D e f i n i t i o n 4 ([14], p. 204). The class of random variables is called uniformly 
integrable if 

supA/{|c„ |- / t | f n |> c ]} - 0 as n 

Now we shall prove some auxiliary assertions. 

L e m m a 2.1. On the probability space (Q, ¿F, P) let the sequences {Tn} and 
{£„} of random variables be given such that 

a) {7̂ ,} is uniformly integrable-, 

b) <;„•£•*• 0 as n-oo; 
c) №' €n} >s uniformly integrable. 

Then Tn • c„—»0 (here and denote the convergence with respect to prob-
ability and Lx-metric, respectively). 

P r o o f . Let e > 0 be fixed. By virtue of condition c) there exists <5(e)>0 such 
that for any N and ArziF we have 

(2.1) f\Tn-QdP^e 

if P(A)^S(e). 
Furthermore, by condition b) there exists N such that for all w>JV 

(2.2) P{|ÉJ > e} s 0(e). 
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From (2.1) and (2.2) we conclude that for n>JV 

/ | T „ U d P ^ e . 

Therefore by n>N 

(2.3) 

f\T„UdP= f + f ^ f ]T„UdP+s- f\Tn\dP^s + sf\Tn\dP 
fi m„l=-e) (líjáe) {¡i„M> a 13 

Since {T„} is uniformly integrable, therefore 

sup / i r j d P ^ o o 
" « 

(see [14], p. 206). Hence, taking into account (2.3), we obtain the assertion of 
Lemma 2.1. 

Now let Xn>J=(fAnj; vn j) ; n=0, 1, ...; O^j^n be the set of random vectors 
on the probability space (Q, P); be the set of sub a-fields of J* such that 
for all 

n,j (w=0 ,1 , . . . ; 0 =j=w) the variables Xn} are ^¿-measurable and 

Put (2-4) Tn:= f l { \ + i{t,XntJ)), j=o 

where symbol / denotes the imaginary unit, / = ( / l 5 4 ) is any vector, and ( . , .} 
denotes scalar product. 

L e m m a 2.2. Let the sequence {Xn j} satisfy the following conditions: 

a) max \X„ 0 as n — °°; 
jSn 

b) there exist constants /(, v, c, such that 

2(i>n,j)2JL~ HI 
0 J=0 

R Sifn.j-Vn.j)1-* c ; 

c) / o r a/ry vector t=(t1,t^ the sequence {7¡J « uniformly integrable and 

Then Sn= J? X„J-^JV(Q, R), w/iere R = | M | = fc f ) . 
/=o vC W 
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P r o o f . We use the relation 

exp (ix) = (1 +ix) ( e x p { - ^ - + r ( x ) } ) , where |r(x)| s \x\3 

for all |x| < 1. 
Let 

Vn := exp {/' -.(f, S„>} 
and 

C / „ : = e x p { - } Z{(t,<j)Y+ 2r{(t,XaJ))\. I j=0 . j=0 ' 
We have 

V„ = exp {/•</, 2 XnJ)} = exp {i • 2 <'. = 
]=0 ¿=0 

= r n . e x p { - I 2 «<- Xn.j)Y+ 2 r((t, *„„•>)} = 
l * J = 0 j=0 > 

= Tn • exp { - y </, R/>} + Tn \un - exp { - I </, Ri>}). 

By virtue of a theorem about the connection between the pointwise convergence 
and the convergence of corresponding distributions (see [14], p. 343) for the proof 
of Lemma 2.2 it will be sufficient to show that for any t=(tl, / J 

<2.5) M { | F n | } ~ e x p { - y < f , R / > } . 

Since Af{7],}—1 thus we have to verify only that 

<2.6) T„ [un - exp { - j (t, Rf>}) 0. 

First we show that 

<2.7) c / n _ e x p { - i < i , R i > } ^ 0 . 

According to b) 

j=o 
Furthermore 

\2r{(t,XnJ))\^\t\3- 2 \XnJ3 ^ I t f - m a x ^ J . 2 
j=0 7 = 0 j=0 

so long as 

' ¿ l * „ J 3 = ¿ ( n l j + vlJ — V + v 
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and max lA^ yl-^-O by condition a). This implies that 

C / „ - ! U e x p { - i < f , R * > } , 

i.e. (2.7) is valid. 
Since {7^} and {V„} are uniformly integrable (the uniform integrability of 

{Vn} follows f rom M{m= 1), thus the sequence of values 

In-=Vn-Tn. exp{- j (t, R í ) } = Tn (t/„ - exp { - (t, Ri>}) 

is also uniformly integrable as a convex set of uniformly integrable sequences (e.g. 
see M: -y. 27). 

By condition c), relation (2.7) and the uniform integrability of {rjn} we can 

see that for the sequences {7^} and j{/„—exp j — y (r, Rf}JJ all of the conditions 

of Lemma 2.1 are fulfilled. ^For it is sufficient to put £n=Un—exp j — y (f, Rf)|-j 

Applying Lemma 2.1 we obtain (2.6) and moreover (2.5). Consequently the proof is 
complete. 

The next lemma is basic for the proof of Theorem A. 

L e m m a 2.3. Let {X„j; J ^ y} be an M D A satisfying the conditions: 

a) max|A"n . | is uniformly bounded (in Li-norm)', 
is n 

b) m a x l ^ i - ^ O ; 
JS!I 

c) there exist constants ¡x, v, such that 

J=0 0 j=0 

where fin J ; vn J are the components of random vector Xn. Then 

sn = 2 xn, A R ) where * = ft Í ) • 

j=o VC t]J 

P r o o f . Let us define the sequence {Z n J } in the following way: 

ZnJ:= XnJ.I{2 S 2 ^ + v ) ) , 
fc=0 

where 1(A) denotes the characteristic function of A. 
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It is clear that {ZnJ ; also represents an MDA and 

(2.8) P{ZnJ * Xn,j for some ^ » } á P { Í \X„J2 > 2Qi + v)} - 0, 
j=o 

since \xnj\2 = (jintjyi + (vnj)2, and according to c) 

Í | X ^ ^ f i + v. 
j=o 

Therefore {Z n J} also satisfies the conditions a), b), c) of Lemma 2.3. Now for any 
t=(h, Q we put 

T„:= n{l + i-(t,Zn,j)). 
7=o 

Then M{T„}= 1 for all n, because {Z„tj\&n j} is an MDA. 
Put 

m i n Í \XttiU\* > 2(n + v)}, if J ^ „ J 2 > 2(/i + v); 
J„:= *=o *=o 

n, otherwise. 
We have 

M { m = M{n(í+((t,Zn,j)f)} - M{e X p[ | í | 2 . Y 
7=0 7=0 

X [ l + «í5X„,Jn>)2]} S exp{2|i |2 .(M + v ) . [ l + |/ |2 .M{|Zn>JJ2}]}. 

The right side of the last inequality is uniformly bounded (by condition a)). 
Therefore the set {7^} is uniformly integrable (see [14], p. 207). Taking into account 
b) and c), we can see that for {Z„tJ} all of the conditions of Lemma 2.2 are fulfilled. 
Therefore 

7=0 

whence, by means of (2.8), we obtain 

7=0 
which completes our proof. 

R e m a r k 2.1 (see [10]). Lemma 2.3 is the two-dimensional extension of 
Mc. Leish's theorem. 

3. Preparation to the proof of Theorem A. We shall suppose that the sequence 
{/>„} is bounded. Using notations (1.1), we can select for any N a number k such that 

(3.1) / ( * ) < 1). 
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Then 

T„(x) = ^ - 2 °mXnAx) = B l ~ l 1 V 

Put 

J_ * 
A^ m=1 A R 2 + 2 amX„Jx). "k-1 i — 0 AN m=f(k)+l 

A(x) * 
(3.2) JTM := - ^ p - , Sk:= 2 *t.ti * = 0, 1, . . . ; / = 0, 1, ..., k. a k ¡=0 
We rewrite TN (JC) in the following form: 

TN(x) = 
B k~ 

À 2Xk-i,i + ~ 2 anX„m(x) 
A N ¡=0 m=S(k) + l 

= 2 u j x ) . 
A N a N m = / ( * ) + l 

Hence, in order to prove Theorem A, it is enough to show that 
(3.3) there exist a vector m=(m1,m2) and a symmetrical positive semi-definite 

matrix R=||/*/||; k, 1= 1, 2; such that 

(3-4) 

(3.5) 

Sk±» jV{m, R); 

AN 
l ; 

1 N 

~A 2 amXnm(X) - 0. 

> as N-*• 

Assertions (3.4) and (3.5) follow from conditions (4)—(6) and (1.2). Now we 
show our assertions. 

L e m m a 3.1 ([8]). Let sequences {nk} and {ca(k)} satisfy the conditions (4) and 
(5), respectively. Then 

(3.6) 

• as k—°°. 
(3.7) / ( * + l ) - / ( * ) , 

(3.8) ©(/(*)) = 0{o>(*+l))}. 

Further, using (3.1), we have 
^ Bk-1 R - L ~ 
1 S ——- £ — g 0. 

AN Bk 
In order to verify (3.4) it is sufficient to prove that 

(3.9) 
Bk 

1. 

8« 
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By (1.2) and (3.3) we get 

consequently (3.9) and (3.4) are proved. 
Furthermore (1.2) and (3.9) imply that 

1 
An 

<k-i 
• o(Bk) = o( 1), as fc-co, 

1 
- . { V [ / ( f c + l) - / ( * ) ] } = 
i 

and by the previous reason (3.5) is proved. 
Since the functions %„(x) are two-dimensional random variables, defined on 

(Q, SF, P), we shall denote by (A:=0, 1, . . .; O^i^k) the sub <x-field of & 
generated by random variables {%m (x): O^s^i}. In this case the values Xk t(x), 
defined by (3.2), are ^¡ -measurable , ^.¡-iCz3Fk i and M{Xki|^,i_1}=0 a.e. 
for all k,i ( l s / ^ f c ) . These evidently follow from the properties of our system. 

In addition, we remark that 

Therefore M{\Xk i\}<~ for all k, i. Thus, the sequence represents 
an MDA and in order to prove (3.4) it is sufficient to verify the validity of the con-
ditions of Lemma 2.3 for the sequence {Ar

Jk> ¡}. 
Using the multiplicative property and the orthogonality of the system X, we get 

i 

s 4 - / i № № = i J / \Mx)\2dx = H = l, Bk J ¡=0 -Oit 1=0 o i»t 
Bl 

which means that condition a) is satisfied. 
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Furthermore, 

max = - J - • max №,(jc)| - L • max sup M,(x)| ^ 

l '<i+1> \ , . 
• = Tk • o ^ m J ) + 1

 | a J s Tk • (no J2Sfc+i>|flJ • '«> = 

= ^¿T- o ^ . ^ - ^ < - ^ ( 0 ) - O = -oW^, = as k^CO, 

and this proves b). 
For the direct proof of condition c) we require some lemmas. 

L e m m a 3.2. Let the sequences {nt}, (cu(fc)} and {ak} satisfy conditions (4)—(6), 
(1.2), respectively. Then 

f 2 \Mx)\2-i * On k=о 
dx = o(l) as N — °o. 

The proof of this lemma can be found in [8] (replacing only the symbol О by o), 

L e m m a 3.3. Let the sequences {nt}, {со(A:)} and {at} fulfil conditions (4)—(6) 
(1.2)—(1.4), respectively. Then 

f \ 4 r 2 {(Mx)f~ J dx = o(l) as 
о '"N *=0 1 

, P r o o f . The next equalities are evident 

(3.10) 

/ 4r 2{Mx)Y-4*dx= J 4r-{2<ЛТ-nBl}• { i ( A k f -rjB%}dx = 

= f { 4 r [ 2 W - 2 W - ^ и i Шг + 2 ( 2 k f ) dx = g trN k = 0 k = o k=о k=о f 

= 4r i f \ 2 ( A f f dx - r,B% f 2 + (2kf] dx + r? Я4*}, 
BN Y '*=<) ' S k—0 ' 

since 

2 W = 2 W and fj = r,. 
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Let us evaluate the values in the brace. We have 

(3.11) f \ Z V t ) 2 f dx= J 2 f (àl-2})dx. 

I 
The terms of the type J (Al • 3j) dx, in turn, consist of the summands containing 

o 
the expressions of the species 

i 
(3-12) f ( X „ q Xltfc 2nt) dx 

o 

(with corresponding coefficients), where 

f(k) < q, r ^f(k +1); / C O < h, i 1 ) ; 0 ^ k,j S N. 

Each of the integrals is equal to zero or one (by virtue of the multiplicative 
property and the orthogonality of the system X). We have to estimate the quantity 
of the non-zero summands. Let k>-j (the case k<-j can be treated similarly). 
Arguing the same way as in the proof of Lemma 2.4 in [8], we conclude that the 
functions xp(x)~x„ (x) • Xn (x) belong to a block, number of which is not larger 
than j (otherwise the integral (3.12) will become zero). Therefore the numbers nt 

and rtr have to be conjugate or (/, fc)-adjoint (moreover O^l^j). 
Now we rewrite the previous equality in the form 

/ 1 i ( ^ ) î dx = ¿' / (Al. 2)) dx + 2" S (àl- Â)) dx, 
S k = 0 k.j=0 g k,j=0 S 

where the symbol 2 ' denotes the set of that summands, for which the numbers 
nq and nr are conjugate in the fourfold product Xn • Xnr • X*h • Xnt and the symbol 2 " 
denotes the set of all other summands. 

In the sum 2' w e have to consider only the summands, for which n9 + nr=0 
and «/, + « ,=0 simultaneously; other summands, are equal to zero, because for 
them the equality 

Xltq ' Xltr ' Xnh ' Xtti = 1 
does not fulfil. 

Therefore, 
N } _ /(N +1) /(1V + 1) /(W+l) 

2' f (A\-A))dx = 2 2 (<V4Mvâ;) = { 2 (<V4)}2-

M = 0 g k j k 

Using (1.3) we get 
(3.13) 2' f(Al-ÂJ)dx = r, î-B% + o(B iN) as N 

k,j=0 f 
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In the sum 2" w e select the summands for the cases k=j, k>j and k<j: 

(3.14) 2" = 2" f(àl-2l)dx+ 2" 2 f(àî-2])dx+: 

k , j = o ; t = o g . * = o ¡ = o g 

+ 2" 2 f (¿J • AD dx = Z#> + LW + U3). 
7 = 1 t = o g 

Now we have 

(3.15) L<P = 2 " 2 f № \ d x = 2 ( W f d x . 
k=0 J k=0 0 . k=Of 

Since 
f(k +1) . f(k+1) f(k+1) f(k+1) 

M*l2 = 2 Wn, 2 ar?.nr = 2 ai{ 2 
9 = / (* ) + l r = / ( f c ) + l ? = / (* ) + L r = / ( f c ) + l 

therefore, applying Minkowski's inequality, we obtain 

{ ¡ W ? D X Y \ S F T K I - { / I / ( 2 + 1 ) ^ • X . H 1 ^ 
0 S=/("0+l V r=/(k)+l ' 

f(k +1) , -1. /(*+1) f(k+l) f(k+1) 

— 2 K l - / 2 2 K I - { 2 tf}1'8-

Hence, 

(3.16) 

!f } „ » , / ( * + D , / ( * + l ) AT f(k+l) 
2 f (\A\2)2 dx = 2 { 2 Kl}2- 2 2(M*)2x Z = 

t = » 0 lt=0 4=/(lfc) + l «•=/(*) + 1 fc=0 r = / ( * ) + l 

" f , „ I l 2 " /»+1) 
= 2\o(Bk.a>(f(k))).—_-} . 2 = Zo(Bt). 2 °*r = 

k=OV c o ^ / j / c y j r = / ( * ) + 1 ft=o r = / ( i t + i ) 

¡V /(*+l) = 2 2 a*r = o(B%)-Bl = o(B%) as W - o o 
* = O r = / ( * ) + l 

(we used relations (1.2) and (3.3)). 
Passing on to the estimation of Ljy2) in (3.14), we remark that 

} £ , lik+i) f ( j + l) 
f ( A l - A j ) d x = f ( 2 2 W n h y d x = 

o o «=/№)+!• I>=/U)+1 

} /№+1) /(fc+i) /0+1) /O'+i) (3.17) = / ( 2 2 0 r Z „ > ( 2 2 a d n ) d x = 
0 4 = / ( t ) + l r = / ( f c ) + l * = / U ) + l i = / ( / ) + l 

/(fc+D /O+D / ( *+« /U+1) -1 

= 2 2 2 ' ar 2 J (xnqXnrXnhXn,)dx. . 
q=f(k)+l i l = / 0 ) + l r=/ ( l [ ) + l i = / U ) + l o 
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<As it was mentioned above, for any non-zero term of 2 " there should exist 
an (/, &)-adjoint of the numbers nq and n,. Therefore the total quantity of the ap-
propriate pairs (ng, n r) is not-more than A{(q). 

Under fixed indices q, h and for any selected number nr there exists not more 
than one number such that 

XnQ' Xnr' Xnh' U = i • 

Thus, by (3.17), we get the estimation 

'•'.'}' " /<*+i) /(•./+1) 
(3.18) f (Af • J ? ) d x ^ b k - 2 ' K l ' №)•bj 2 ' 

o 9 = / ( t ) + l h=/(j) + l 

By Cauchy—Bunjakowski's inequality and by (1.2) and (3.3): 

/(*+D /(it+i) V 2 \a,\ ^o{Bk-a>(fm)-{ 2 ^}1/2"(«5 t)1/2 = 

« = / ( * ) + ! 4 = / ( * ) + l 

0 
This implies that under the realization of (1.4) the next relation holds 

/ (Al • A)) dx = o(Bk • y^Uik))) • ( f \Ak(x)\* d x f 2 X 
0 0 

Hence, 

Ltf = j t o(Bk• ^H/W))•0 ( " ^ 7 ^ ) • °(bJ• X 

x { / Mil ¿X • / M,l2rf*}1/2 = *(/&) • 2 k2 • - J _ x 0 0 J *=w=o ]/oi(f(k)) 

x { f \ A k | 2 • / | J , - |2¿x• co(/( j ) )} 1 / 2 as JV - c o . 
0 0 

Let us show that ¡,) as i V — I t is sufficient to show that 

1 2 • -J—^ • {/\AkI2 * . / . «(/O-))}1'2 = 0(B%). 
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t - 1 
Consider the sum 2 CJ~k' ^ ( / O ) ) - Since k-(o(k)\°°, thus for any natural 

j=o 
T S 2 we have 

from which 

(the symbol [x] denotes the integral part of x). 
By (3.7) there exists a number M such that if k>M then 

(3.20) /(A: + l ) < [ i ^ ± i i / ( A : ) ] . 

Relations (3.19) and (3.20) imply that if t = [ C + l ] s 2 and k>M, then 

„) , .([i^-H) - ̂  -
C+ 1 

i.e. c o ( / ( f c ) ) < — — - t u ( ( / + l ) ) as k>M. 

Therefore 
\k~J «,( > ( / 0 ) H ( ^ ) • «(/"(*)) if 

and thus 

(3.21) 

2 CJ~k • co ( / ( / ) ) < 2 f ^ Î J • « ( / ( * ) ) = 0{a>(/(*))} as 
j=M +1 j=M+1 \ / 

On the other hand 

J C ' - * . o ( / ( y ) ) = 0 ( C - * ) as k —oo. 

7 = 0 

At the same time, by (3.20), we have 

f ( k ) < C • f(k—\) < ... < c * - m - i . f ( M + 1) if fc>M+l, hence 

since /(&)• eo(/(/:))t°= as k—°°. 
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So 

(3.22) ¿ C ' - ' - « ( / ( y ) ) = 0 H / W ) } as A: — C O . 

By (3.21) and (3:22) we obtain that 

(3.23) 2 C ' ' - ' - « ( / ( i ) ) = 0{(D{f(k))} as o o . 

Applying Cauchy—Bunjakowski's inequality, by (3.23), 

x { k2 C'~k • / M,|2 dx}m = o { i ( / dx j1 '2. ( 2 0 ' k . f\Aj\* dx)in) = 
j = o 0 o ; = o 0 

Thus, the relation — O (B^) is proved. The proof of Lff = O (B/^) runs 
similarly. 

Using these relations, by (3.15) and (3.16), we get 

N r 
(3.24) 2" ((¿l-A))dx = o(B%) as N^ 

*.j=° 0 

By (3.13) and (3.24) we have 

= O (( i / K l 2 • ( i 2 1 C - ' • / m / ¿*)1/2) = 

= O . ( J 1 / M,|2 ¿x)1/2) = O ( ^ ) . 
t=o o 

(3.25) 

Now let us consider the value 

i 
The terms of the type J (Ak)2dx consist of the summands of the species 

o 
i 

o 
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where the functions Xn and /„ belong to the fc-th block. The quantity of non-zero 
' Q 

summands of this species depends on the number of conjugate pairs (nq, nr) in the 
k-th block. Therefore, using (1.3), we have 

N } f(N+l) 
(3.26) 2 j W d x = 2 ( a k - d k ) = r,B% + 0(B%) as 

t=o g k 
Analogously 

<3.27) 2 f (ÂDdx^^ + oiB^) as N 
v — n У 

N 1 

*=00 

Finally, substituting estimations (3.25)—(3.27) into (3.10), we receive that 

/ 1 4 - 2 ( A ) 2 = {,72 • B*N + o(B%)- t]B% • (2t,Bl + o(Bff)) + B% • r,2} = 0 I »N «1 = 0 "ff 

^ - L r W F N - l r f & N + tf&N + oiBS,)} = o(l) as N 
N 

Thus Lemma 3.3 is proved. 

4. The proof of Theorem A. Lemmas 3.2 and 3.3 imply that if the conditions of 
Theorem A are fulfilled then 

4 - ¿ I V - 1 - ^ 0 and - L Ok j = 0 Ok j=0 

Regarding the definitions (3.2), we obtain 

<4.1) ¿ l * M l 2 J U l a n d 
/=0 J=0 

Now we show that (4.1) implies the realization of condition c) of Lemma 2.3 
(for the sequence {xk j: ^¡¡j})-

Let XkJ=(nkJ\ vkJ)-, k=0, 1, ...; O^j^k, where 

Hk.j = Re {XkJ}; vkJ = Im {XkJ}. 
Then 

\Xk.j\2 = f e , ; ) 2 + K,J-)2, 

= {(Hkjf ~ K , ) 2 } + 2i • (vktJ • vkJ) 
(here i denotes the imaginary unit). 

Substituting it into (4.1), we get 

(4.2) ¿ { W + K , ; ) 2 } — 1 
;=o 

<4-3) ¿ {(Hkj? ~ (Vkj)2} + 2i(fikJ • v M ) r,-
j=o 
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Adding and subtracting equalities (4.2) and (4.3) we conclude that 

(4.4) 

„ „ 1 
2 M 

7 = 0 

I k / ^ ' - T - » 
7 = 0 

¿ O ' w O ^ o . 
7 = 0 

Relations (4.4) show that Lemma 2.3 is applicable for the sequence {XkJ; 
It implies the validity of (3:6). Thus we have 

S* = 2 Xkj —- Jf (m, R), 
7 = 0 

where m = (0, 0), R = J . 

Finally, taking into account the definition of the value TN(x) and relations 
(3.4)—(3.6), we obtain that 

T N (x)±~Jr{m, R), 

where W = (0,0), R = | | r J | , r N = - I (1+T/ ) , r12=r21=0, r22=j (1-r/). 

Herewith Theorem A is proved completely. 

R e m a r k 4.1. The foregoing proof implies that if our system X= {/„(x)}~=0 

is real-valued then Ak(x)=Ak(x) and the assertions of Lemmas3.2 and 3.3 co-
incide, therefore we have t]= 1 (because (x)=/n(x) for all n). Then, in the 
case of Walsh—Paley's system, the realization of condition (1.2) already is suffi-
cient. Condition (1.3) is fulfilled automatically (>7=1), and condition (1.4) is furnished 
by conditions (4)—(6) and (1.2) (see, e.g., the proof of Lemma 2.4 in [8]). The co-
variant matrix in this case is the following: 

- n 

(it conforms to the normal distribution of a vector such that one of its components 
— the imaginary part in our case — equals zero identically). 

R e m a r k 4.2. Since the divergence of the series 2 implies the divergence 
*=i 
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00 Ujfc 
of the series 2 —7» thus the sequence {a>(k)) in Theorem A must satisfy the 

*=i A\ 
W 

condition: 2 {w(k))2— 
k — l 

As a sample example realizing the conditions of Theorem A for complex-valued 
PMONS we bring the next one. 

Let us consider the Chrestenson—Levy's system generated by pk =3. Then 
m0= 1, m1=3, ..., mk=3k; k= 1, 2 , . . . ; the functions Xmk(x) a r e "basis" in the blocks 
[mfc,mk+1). Put n^mL, ns=2m1, ..., n2i_1 = mi, n2i=2m,-; i = l , 2, ... . Let ak=l 

1 3 for all k. So, for our sequence {nk\ =—, k= 1,2, ... hold, and we can put 
nk 2 

o , (A: )= i . 

Then the conditions of Theorem 1 are fulfilled trivially. Indeed, Ak=^k for 
all k. It is also clear that Xmk(x)=(Xmk(x))z=X2mk(x)- Consequently the quantity 
of the conjugate pairs is equal to 2 in each block (we remind that the pairs ( n v nr) 
and (n r ,nq) are considered as distinct if q ^ r ) . 

At the same time Bl=f(k+\)=2k. Thus, 

1 f(N+1 2 N 
* = % = IN = L 

The validity of (1.4) follows from the fact that there are no (/, A:)-adjoint num-
bers in our sequence {nk}, i.e. )!k(q) = Q for all k,l,q (O^lsk). Therefore, the 
constructed subsystem xn ( x ) is a subject to CLT with the covariant matrix 

We also note that taking the subsystem {x„k(x)} such that nk = mk (i.e. {x„fc(x)} 
consists of the "basis" functions), then all of the conditions of Theorem A are 
fulfilled and we evidently have t ]=0 in this case. So the covariant matrix is 

¿ J (as before we put ak=1 for all k). 

5. The sharpness of conditions of Theorem A. The following theorem shows 
that conditions (1.2)—(1.4) in Theorem A cannot be weakened, generally. 

T h e o r e m B. There exist sequences {ak}, {nk} and {co(k)}, satisfying conditions 
(4)—(6) and there exists a PMONS { ^ ( x ) } such that if even any of conditions 
(1.2)—(1.4) is broken then the subsystem { ^ ^ ( x ) } is not the subject to CLT. 

In the proof of Theorem B we shall use the following fact (see e.g. [9], pp. 
195—198): 
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Let the sequence {cn} of random vectors be given, where q n =(c \ , c2 , ...,<?„) 
weakly converges to some random vector i 2 , . . . , £*). Also let and 
denote the r-th absolute moment and the v-th (v=(v l 5 v2, ..., vt)) mixed moment 
of random variable c„, respectively; i.e. 

M<'> = M\UR and mi" = M { ( S ) " • (£2)V2 ... (av*}> 

where v fsO, / = 1 ,2 , . . . , A:. 
In this case, if the sequence is bounded for some ¿ > 0 , then the se-

quences and {mj;v)} of the moments converge to the corresponding moments 
k 

of the distribution of vector £ for all r, |v |^r„ (here |v |= £ v,), i.e. 
¡=i 

(5.1) pW - n ( r \ mW = m<Vl'Vt V k ) - w ( v ) as n->=o. 

Moreover, the mentioned limits are finite. 
The direct proof of Theorem B requires constructions of counterexamples, that 

are showing the necessity of conditions (1.2)—(1.4), by turns. First we notice that 
the necessity of (1.2) was shown in [7]. 

6. Counterexamples. Passing to the proof of the necessity of (1.3), let us choose 
the Chrestenson—Levy's system generated by pk =3. Put ak= 1 for all k. The 
sequence {nfc} is constructed in the following way: 

«i = nz = 2m1, n2k_1 = mk (mk = 3k, k = 1, 2, ...) 

(6.1) (2mk— 1, if 102' < k 102 '+1; 
M 2 * = l 2 m k ; i f 102,+1 < k ^ 102,+2; / s = 0 ' 1 ' -

Thus there exists one pair of the terms of {x„k(x)} in every block [mk, mk+1)* 
The terms of nk can be conjugate if n2k—2nik^1. Let us check the fulfilment of the 
conditions of Theorem A for {nt}. 

3 1 
Since nk+1^—nk for all k, it is clear that we can put co(k)=—. Further, 

Ak=ik-*°° and ak=l=o(Akat(k)) as For these reasons conditions (4)—(6) 
and (1.2) are fulfilled. 

The verification of condition (1.4) is trivial, because AJ
k(q)=0 for all q, k and 

and lk(q) = 1 for q=2k, 10 2 ' + l^A:S l0 2 ' + 1 . 
In the same time the value 

1 HN+1) 
CN = -ST 2 (aj-nN j 

has no limit, since 
2 • 102' 1 
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but 
2 - 9 - 1 0 2 , + 1 9 

Cio»+= ^ 2 . io2<+2 = l a f o r 1 = 1? " ' 

So, (1.3) is failed. Now we shall show that CLT for {z„k(x)} does not hold. 
Let us estimate the absolute moment of the 4-th power of the random variable 

TN(x) = -j= 2 x„kM-
yN 

We have 

(6.2) № = f |rw(x)la<& = - i - 2 f (XnqXnpXnjXn,)dx. 

The summands in the right side of (6.2) are distinct from zero if and only if 

(6.3) Xn„-Xnq-Xni-Xnj= 1-

Arguing the same way as in the proof of Lemma 2.4 in [8], we conclude that (6.3) 
holds only if the fourfold product yn %„ £„ %„ has a decomposition of two pairs p i i i 
such that each of the pairs belongs to certain block [mk ,mk + 1), perhaps, to the 

riVi 
same. Since the number of the blocks is not more than I—I +1 , thus the number 

of the non-zero summands in the right side of (6.2) does not exceed the value 

4! J + 1 j . Consequently, 

Thus, the sequence {¿ij^} is bounded. 
Now let us use relations (5.1). If the sequence {7^00} weakly converged to 

some (Gaussian) random variable T(x)=(l;1(x), £2(x)), then the following limits 
would exist: 

h m / < ° > = l imM{(e N W) 2 } = HmM{(Re(rN0i)))2}, 

H m > < 2 ) = Um M{(^N{x)f) = J im M{(Im(r„(x)))2}, 

Jim m f r * = = Jim Jlf {(Re(Tw(*)))(Im(Tff(*)))}. 

These relations imply that under the assumption TN(x)—*T(x) there exists a 
finite limit of the value 

M{Re 2 (7 ] v (x ) ) - Im 2 ( r J ¥ (x ) )+2 / .Re( r w (x ) ) . Im (r„(x))} 

(where i denotes the imaginary unit). 
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In other words, the limit ought to exist 

(6.4) l i m / { № W ) 1 = lim f(TN(x)fdx = J i m J [ w ^ d x . 

i 
The quantity of the non-zero summands of f (x„ x„ )dx is given by the num-j t J o 

ber of the conjugate pairs (n^tij) in our sequence By (6.1) it is easy to see that 

/ ( r 2 0 ( x ) ) ^ x = A = 

and so on, generally, 
1 1 1 9 

(6.5) / ( W . - . W f r f x s — , f (T2.10«(x)fdx> — for all / = 1 , 2 , . . . . 
0 0 l u 

Inequalities (6.5) show that limit (6.4) for the subsystem {/„k(x)} does not 
exist. Therefore, the sequence (7^(x)} cannot converge (with respect to distribu-
tion) to any random variable T(x). This contradiction proves that CLT does not 
hold for the subsystem {z„k M} , and this completes the proof. 

Furthermore, for the proof of the necessity of (1.4), let us take the Chrestenson— 
Levy's system generated by pk = 5. As before we put ak= I for all A;. The sequence 
{nt} will be defined in the following way: 

= 2m1, ^ - 4 m b «24-1 = 2mk (mk — 5k, k = 1, 2, ...) 

(6.6) f 3 m t + l , 102' < k s 102,+1; 
" 2 k = Umk, 102 ( + 1 < k s 102,+2 1 = - ' 

5 
Let us verify the fulfilment of Theorem A. We have nk+l ^ — n k for all k, 

4 
consequently we can put co(k)=i/4. Conditions (4)—(6) and (1.2) in this case 
are also fulfilled evidently. Condition (1.3) is fulfilled because there are no con-
jugate numbers in our sequence {«J and by the same reason the limit in (1.3) is 
equal to zero. 

But condition (1.4) does not fulfil. Indeed, the numbers 2rnk and 3 m t + 1 are 
(0, A)-adjoint, therefore 

X\(q) = 1 for q = 2k and 102' + 102l+1, 
hence 

V C > 1 X i m - C k * O i l ) = o { 1 A as A : — . 
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Let us show that CLT for {x„k(x)} also does not hold. Now we consider the 
6-th absolute moment of the random variable TN(x). We have 

i j I 
= f\TN(x)\*dx = 2 f (Xn„Xn,XnrX«hXn,Xnj) dx. . 

0 " ISi.i.fc.p.i.fS»,) . 

Arguing as in the proof of the previous counterexample of the boundedness 
of we can see that the sequence {/iff} is bounded. Now if we assume that (7J,(x)} 
weakly converges to some Gaussian random variable T(x) then (5.1) implies that 
the limit of the sequence {//J?*} exists. So we get 

(6.7) № = f \TN(xWdx = 2 f(XnpXnMni)dx. 

The definition of {/ifc} (see (6.6)) shows that the summands of the type 
i 

/ (Xn Xn Xn,Xn)dx differ from zero if the fourfold product xn x„ x„xn, either ^ p A « / p a i j 

consists of the factors belonging to the same block or this product decomposes 
into two pairs of the factors such that each of the pairs belong to different block. 
Therefore, if N=2M then we can rewrite (6.7) in the following form: 

i } U i } M M 
( 6 8 ) ^ > = 4Apf 4 J ' } 1 d x = u p f V Z ¿JYdx = 

0 FC = U TIR-M. 0 FCAL J = 1 

= -AT? 2 2 { f {\^-\2j\2+(Akf.(Ajf)dx} = 
k = l j~l Q 

= - ¿ r I I / (M.I2 • Mil2) + i I / (¿1 • ¿j) dx = LW + Li?>. 

By a direct calculation it is possible to see that 

r - f4> if fc ^ j, 
6, if J j . 

Hence 

(6.9) L") = ¿ - { I / \dk\s-\2k\*dx + 2 k2 / M*l2- \Aj\2dx] = 

So, if M—°° (i.e. as TV—°°) 

(6.9) = 
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At the same time we have 

(6.10) 

f (Akf-(Ajfdx = 
0 

Therefore 

6, if k = j; 
Î102' < k s 102,+1; 

' llO2"1 < ; s lO2""1"1; / ,m = 0 , l , . . . ; l ? i m : 
0, othervise 

1 iS 2! . 4 - 9 - 9 81 
400 t=2 J=2 0

J 400 100 ' 

and so on, generally, 

(6.11) 
10« + 1 10*' + 1 1 A . (Q . 1 n21'»2 81 

L(io«+i ^ (4 • 104 , + 2)_ 1 • 2 2 j(At-~A))dx= = 
f = i o » ' + i ; = i o " + i f 4 • 10 T 100 

i io2l + 1 IO*^1 1 

(6.12) s ' • (6 • ^ 2 f VI• ¿5) dx + 6-102,+2) = 

6 . (10 2 ' + 2 +10 4 l + 2 ) _ 12-104 t+2 _ 3 
4 • 104 '+4 ~ 4-10 4 , + 4 ~~ 100 

for all /=0 , 1,2, ... . 
Inequalities (6.11)—(6.12) show that the value has no limit if M— <=°, 

and so if N— Comparing it with (6.9) and (6.10) we can conclude that the se-
quence {/44)} also diverges as TV-* The obtained contradiction (with assumption 
about the weak convergence of {TN(x)}) implies that the subsystem {x„fc(x)} is not 
subjected to CLT as desired. 

Theorem B is proved completely. 

R e m a r k 6.1. Theorems A and B demonstrate that the known results on CLT 
with respect to.real-valued orthonormal systems (for example, trigonometric system 
or Walsh's system) have no direct analogues in the case of general PMONS. Namely, 
in order to prove the validity of CLT in our case, it is not sufficient to know the 
ratio of the lacunarity of {nk} and the magnitude of the coefficients {ak} but we 
have to know certain facts about the existence and the regularity of the conjugate 
and the (/, &)-adjoint numbers in the sequence {nt}. We also mention that in our 
case it can occur, despite a very good lacunarity of {wt}, that conditions (1.3) and 
(1.4) are not fulfilled independently of each other. 
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It should be no ted tha t some problems, closely connected with t h e m here, 
were studied in [4]—[5], bu t they were formula ted in a different way ; in addi t ion , 
fo r the sequences {/j t} there were assumed certain "a r i thme t i ca l " condi t ions . 

Acknowledgement. T h e a u t h o r is grateful to L. A . Balashov a n d V. F . G a -
poshkin for useful discussions regarding this work . T h e au tho r also thanks Professor 
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