Some nontrivial implications in congruence varieties

GÁBOR CZÉDLI

Dedicated to Professor Béla Csákány on his 60th birtday

A congruence variety is a lattice variety generated by the class of congruence lattices of all members of some variety of algebras. The most known examples are $\mathscr{V}(R)$, the lattice varieties generated by congruence (or submodule) lattices of *R*modules for rings *R* with 1. Given a lattice identity α and a set Γ of lattice identities, we write $\Gamma \models_c \alpha$ if every congruence variety satisfying Γ also satisfies α (cf. Jónsson [8]). The implication $\Gamma \models_c \alpha$ is called nontrivial if $\Gamma \nvDash \alpha$ (in the class of all lattices). For $\Gamma = \{\gamma\}$ we will write γ rather than $\{\gamma\}$.

There are many results stating that $\gamma \models_c \alpha$ without $\gamma \models \alpha$ for certain pairs (γ, α) of lattice identities. These results are surveyed in JÓNSSON [8]; for a further development cf. FREESE, HERRMANN and HUHN [3]. However, all the known results are located at distributivity or modularity in the sense that either $\gamma \models_c \alpha \models_c$ distributivity $\models_c \gamma$ or $\gamma \models_c \alpha \models_c$ modularity $\models_c \gamma$. Now [1] offers an easy way to achieve $\gamma \models_c \alpha$ results of a different nature.

For an integer n>2 and a modular lattice L, a system

$$\overline{f} = (a_i, c_{ij}: 1 \leq i \leq n, 1 \leq j \leq n, i \neq j)$$

of elements of L is called a (von Neumann) *n*-frame in L if $a_j \sum_{i \neq j} a_i = 0_{\bar{f}}, c_{jk} = c_{kj}, a_j c_{jk} = 0_{\bar{f}}, a_j + c_{jk} = a_j + a_k$ and $c_{jk} = (a_j + a_k)(c_{jl} + c_{lk})$ for all distinct *j*, *k*, $l \in \{1, 2, ..., n\}$ where $0_{\bar{f}}$ resp. $1_{\bar{f}}$ are the meet resp. join of all elements of \bar{f} (cf. VON NEUMANN [9]). We write x + y and xy for the join and meet of x and y.

Given $m \ge 0$ and $n \ge 1$, a lattice identity $\Delta(m, n)$ is defined in [7, page 289] such that, for any ring R with 1, $\Delta(m, n)$ holds in $\mathscr{V}(R)$ iff the divisibility condition $(\exists r)(m \cdot r = n \cdot 1)$, abbreviated by D(m, n), holds in R (cf. [7, Prop. 6]). What else

Research partially supported by Hungarian National Foundation for Scientific Research grant no. 1813.

Received January 9, 1990.

we need to know about $\Delta(m, n)$ is that $\Delta(m, n)$ is of the form

$$(x_1 + x_2)(x_3 + x_4) \leq q_{m,n}(x_1, x_2, x_3, x_4).$$

Frames are projective in the variety of modular lattices. This was proved in two steps; first for (Huhn) diamonds in HUHN [6] (for a more explicit statement cf. FREESE [2]) and then frames and diamonds turned out to be equivalent in HERRMANN and HUHN [5, page 104]. Therefore there are lattice terms $b_i(\vec{x})$ and $d_{ij}(\vec{x})$ in variables $\vec{x} = (x_i, x_{ij}: 1 \le i, j \le k, i \ne j)$ such that these terms produce a k-frame $(b_i(\vec{y}), d_{ij}(\vec{y}): 1 \le i, j \le k, i \ne j)$ from any system \vec{y} of elements of a modular lattice L and, in addition, if $\vec{f} = (a_i, c_{ij}: 1 \le i, j \le k, i \ne j)$ is a k-frame in L then $b_i(\vec{f}) = a_i$ and $d_{ii}(\vec{f}) = c_{ii}$ for every $i \ne j$.

For $k \ge 4$ the conjugation of the modular law and the identity

$$(d_{13}(\vec{x}) + d_{23}(\vec{x})) (d_{14}(\vec{x}) + d_{24}(\vec{x})) \leq q_{m,n} (d_{13}(\vec{x}), d_{23}(\vec{x}), d_{14}(\vec{x}), d_{24}(\vec{x})),$$

where $\vec{x} = (x_i, x_{ij}; 1 \le i, j \le k, i \ne j)$, will be denoted by $\Delta(m, n, k)$. Clearly, $\Delta(m, n, k)$ is equivalent to a single lattice identity modulo lattice theory.

Theorem. Consider arbitrary integers $m', m_i \ge 0, n', n_i \ge 1$, and $k', k_i \ge 4$ ($i \in I$) where I is an index set. Then $\{\Delta(m_i, n_i, k_i): i \in I\} \models_c \Delta(m', n', k')$ if and only if $\{D(m_i, n_i): i \in I\}$ implies D(m', n') in the class of rings with 1.

In particular, if $m \nmid n$ and $k \ge 5$ then $\Delta(m, n, k) \models_c \Delta(m, n, k-1)$. This is a nontrivial implication, for we have the following

Proposition. If $m \nmid n, m \ge 0, n \ge 1$ and $k \ge 5$ then $\Delta(m, n, k) \nvDash \Delta(m, n, k-1)$.

To point out that the $\Delta(m, n, k)$ in the proposition are essentially distinct we present the following.

Remark. The set $\{\Delta(p, 1, k): p \text{ prime}\}\$, where $k \ge 4$, is independent in congruence varieties in the sense that for every prime q

$$\{\Delta(p, 1, k): p \text{ prime, } p \neq q\} \nvDash_c \Delta(q, 1, k).$$

Proof of the theorem. Since frames and diamonds are equivalent (cf. HERRMANN and HUHN [5, page 104]), the identities $\Delta(m, n, k)$ are diamond identities in the sense of [1]. What we need from [1] is only its Theorem 2, which we reformulate less technically as follows: For any diamond identity α , $\Gamma \models_c \alpha$ iff for any ring R with 1 Γ implies α in $\mathscr{V}(R)$. Therefore it suffices to show that $\Delta(m, n, k)$ and $\Delta(m, n)$ are equivalent in any $\mathscr{V}(R)$. Clearly, $\Delta(m, n)$ implies $\Delta(m, n, k)$ in $\mathscr{V}(R)$. Conversely, assume that $\Delta(m, n, k)$ holds in $\mathscr{V}(R)$. Let $M = M(u_1, u_2, ..., u_k)$

denote the *R*-module freely generated by $\{u_1, u_2, ..., u_k\}$. Then $\Delta(m, n, k)$ holds Sub (M), the submodule lattice of *M*. It is easy to see (or cf. NEUMANN [9]) that the cyclic submodules $(Ru_i, R(u_i-u_j): 1 \le i, j \le k, i \ne j)$ constitute a *k*-frame in Sub (M). (In fact, this is the most typical example of a *k*-frame.) Therefore

(1)
$$(R(u_1-u_3)+R(u_2-u_3))(R(u_1-u_4)+R(u_2-u_4)) \leq \\ \leq q_{m,n}(R(u_1-u_3), R(u_2-u_3), R(u_1-u_4), R(u_2-u_4))$$

holds in Sub (M) and even in Sub $(M(u_1, u_2, u_3, u_4))$. Now the theory of Mal'tsev conditions (cf. WILLE [11] or PIXLEY [10]) together with the canonical isomorphism between Sub $(M(u_1, u_2, u_3, u_4))$ and the congruence lattice of $M(u_1, u_2, u_3, u_4)$ yield easily that $\Delta(m, n)$ holds in $\mathscr{V}(R)$. (Note that the first nine rows in the proof of [7, Prop. 6] supply a detailed proof of the fact that (1) implies the satisfaction of $\Delta(m, n)$ in $\mathscr{V}(R)$.)

Proof of the proposition. Let Z denote the ring of integers. Since $m \nmid n$ and $\Delta(m, n, k-1)$ implies $\Delta(m, n)$ in $\mathscr{V}(Z)$ by the proof above, $\Delta(m, n, k-1)$ fails in $\mathscr{V}(Z)$. It is shown in HERRMANN and HUHN [4, Satz 7] that $\mathscr{V}(Z)$ is generated by its finite members. Therefore there is a finite modular lattice L with minimal number of elements such that $\Delta(m, n, k-1)$ fails in L. We intend to show that $\Delta(m, n, k)$ holds in L. Assume the contrary. Then there is a k-frame $\tilde{f} = (a_i, c_{ij}: 1 \le i, j \le k, i \ne j)$ such that $\Delta(m, n)$ fails when $c_{13}, c_{23}, c_{14}, c_{24}$ are substituted for its variables. It is known that either all elements of a frame are equal or a_1, a_2, \ldots, a_k are distinct atoms of a Boolean sublattice of length k (cf., e.g., HERRMANN and HUHN [5, (iii) on page 101 and page 104]). Now only the latter is possible since the one element lattice satisfies any identity. Hence the subframe $\tilde{g} = (a_i, c_{ij}: 1 \le i, j \le k-1, i \ne j)$ lies in the interval $L' = [0_{\tilde{g}}, 1_{\tilde{g}}]$. From $1_{\tilde{g}} = a_1 + \ldots + a_{k-1} < a_1 + \ldots + a_k = 1_{\tilde{f}}$ we obtain |L'| < |L|. The frame \tilde{g} witnesses that $\Delta(m, n, k-1)$ fails in L', which contradicts the choice of L.

The remark is concluded from the theorem quite easily; we need only to consider the ring of those rational numbers whose denominator is not divisible by q.

References

- [1] G. CZÉDLI, How are diamond identities implied in congruence varieties, Algebra Universalis, to appear.
- [2] R. FREESE, Planar sublattices of FM(4), Algebra Universalis, 6 (1976), 69-72.
- [3] R. FREESE, C. HERRMANN and A. P. HUHN, On some identities valid in modular congruence varieties, Algebra Universalis, 12 (1981), 322-334.
- [4] C. HERRMANN and A. P. HUHN, Zum Wortproblem f
 ür freie Untermodulverb
 ände, Archiv der Mathematik, 26 (1975), 449—453.

- [5] C. HERRMANN and A. P. HUHN, Lattices of normal subgroups generated by frames, in Coll. Math. Soc. J. Bolyai 14 (1974), pp. 97-136.
- [6] A. P. HUHN, Schwach distributive Verbände. I, Acta Sci. Math., 23 (1972), 297-305.
- [7] G. HUTCHINSON and G. CZÉDLI, A test for identities satisfied in lattices of submodules, Algebra Universalis, 8 (1978), 296—309.
- [8] B. JÓNSSON, Congruence varieties, Algebra Universalis, 10 (1980), 355-394.
- [9] J. VON NEUMANN, Continuous Geometry, Princeton University Press (Princeton, N.J., 1960).
- [10] A. F. PIXLEY, Local Mal'cev conditions, Canadian Math. Bull., 15 (1972), 559-568.
- [11] R. WILLE, Kongruenzklassengeometrien, Lecture Notes in Math. 113, Springer-Verlag (Berlin-Heidelberg-New York, 1970).

JATE BOLYAI INSTITUTE SZEGED, ARADI VÉRTANÚK TERE I HUNGARY, H-6720