Some nontrivial implications in congruence varieties

GÁBOR CZÉDLI
Dedicated to Professor Béla Csákány on his 60th birtday

A congruence variety is a lattice variety generated by the class of congruence lattices of all members of some variety of algebras. The most known examples are $\mathscr{V}(R)$, the lattice varieties generated by congruence (or submodule) lattices of R modules for rings R with 1 . Given a lattice identity α and a set Γ of lattice identities, we write $\Gamma \vDash_{c} \alpha$ if every congruence variety satisfying Γ also satisfies α (cf. Jónsson [8]). The implication $\Gamma \vDash_{c} \alpha$ is called nontrivial if $\Gamma \nless \alpha$ (in the class of all lattices). For $\Gamma=\{\gamma\}$ we will write γ rather than $\{\gamma\}$.

There are many results stating that $\gamma \vDash_{c} \alpha$ without $\gamma \vDash \alpha$ for certain pairs (γ, α) of lattice identities. These results are surveyed in Jónsson [8]; for a further development cf. Freese, Herrmann and Huhn [3]. However, all the known results are located at distributivity or modularity in the sense that either $\gamma \models_{c} \alpha \models_{c}$ distributivity $\vDash_{c} \gamma$ or $\gamma \vDash_{c} \alpha \vDash_{c}$ modularity $\vDash_{c} \gamma$. Now [1] offers an easy way to achieve $\gamma \vDash_{c} \alpha$ results of a different nature.

For an integer $n>2$ and a modular lattice L, a system

$$
\bar{f}=\left(a_{i}, c_{i j}: 1 \leqq i \leqq n, 1 \leqq j \leqq n, i \neq j\right)
$$

of elements of L is called a (von Neumann) n-frame in L if $a_{j} \sum_{i \neq j} a_{i}=0_{\bar{J}}, c_{j k}=c_{k j}$, $a_{j} c_{j k}=0_{j}, a_{j}+c_{j k}=a_{j}+a_{k}$ and $c_{j k}=\left(a_{j}+a_{k}\right)\left(c_{j l}+c_{l k}\right)$ for all distinct $j, k, l \in\{1,2, \ldots, n\}$ where 0_{f} resp. 1_{f} are the meet resp. join of all elements of f (cf. von Neumann [9]). We write $x+y$ and $x y$ for the join and meet of x and y.

Given $m \geqq 0$ and $n \geqq 1$, a lattice identity $\Delta(m, n)$ is defined in [7, page 289] such that, for any ring R with $1, \Delta(m, n)$ holds in $\mathscr{V}(R)$ iff the divisibility condition ($\exists r)(m \cdot r=n \cdot 1)$, abbreviated by $D(m, n)$, holds in R (cf. [7, Prop. 6]). What else

[^0]we need to know about $\Delta(m, n)$ is that $\Delta(m, n)$ is of the form
$$
\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right) \leqq q_{m, n}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Frames are projective in the variety of modular lattices. This was proved in two steps; first for (Huhn) diamonds in HuHn [6] (for a more explicit statement cf. Freese [2]) and then frames and diamonds turned out to be equivalent in Herrmann and HuHN [5, page 104]. Therefore there are lattice terms $b_{i}(\vec{x})$ and $d_{i j}(\vec{x})$ in variables $\vec{x}=\left(x_{i}, x_{i j}: 1 \leqq i, j \leqq k, i \neq j\right)$ such that these terms produce a k-frame $\left(b_{i}(\vec{y})\right.$, $d_{i j}(\vec{y}): 1 \leqq i, j \leqq k, i \neq j$) from any system \vec{y} of elements of a modular lattice L and, in addition, if $\vec{f}=\left(a_{i}, c_{i j}: 1 \leqq i, j \leqq k, i \neq j\right)$ is a k-frame in L then $b_{i}(\vec{f})=a_{i}$ and $d_{i j}(f)=c_{i j}$ for every $i \neq j$.

For $k \geqq 4$ the conjugation of the modular law and the identity

$$
\left(d_{13}(\vec{x})+d_{23}(\vec{x})\right)\left(d_{14}(\vec{x})+d_{24}(\vec{x})\right) \leqq q_{m, n}\left(d_{13}(\vec{x}), d_{23}(\vec{x}), d_{14}(\vec{x}), d_{24}(\vec{x})\right),
$$

where $\vec{x}=\left(x_{i}, x_{i j}: 1 \leqq i, j \leqq k, i \neq j\right)$, will be denoted by $\Delta(m, n, k)$. Clearly, $\Delta(m, n, k)$ is equivalent to a single lattice identity modulo lattice theory.

Theorem. Consider arbitrary integers $m^{\prime}, m_{i} \geqq 0, n^{\prime}, n_{i} \geqq 1$, and $k^{\prime}, k_{i} \geqq 4(i \in I)$ where I is an index set. Then $\left\{\Delta\left(m_{i}, n_{i}, k_{i}\right): i \in I\right\} \models_{c} \Delta\left(m^{\prime}, n^{\prime}, k^{\prime}\right)$ if and only if $\left\{D\left(m_{i}, n_{i}\right): i \in I\right\}$ implies $D\left(m^{\prime}, n^{\prime}\right)$ in the class of rings with 1.

In particular, if $m \nmid n$ and $k \geqq 5$ then $\Delta(m, n, k) \models_{c} \Delta(m, n, k-1)$. This is a nontrivial implication, for we have the following

Proposition. If $m \nmid n, m \geqq 0, n \geqq 1$ and $k \geqq 5$ then $\Delta(m, n, k) \not \models \Delta(m, n, k-1)$.
To point out that the $\Delta(m, n, k)$ in the proposition are essentially distinct we present the following.

Remark. The set $\{\Delta(p, 1, \mathrm{k}): p$ prime $\}$, where $k \geqq 4$, is independent in congruence varieties in the sense that for every prime q

$$
\{\Delta(p, 1, k): p \text { prime, } p \neq q\} \nvdash_{c} \Delta(q, 1, k) .
$$

Proof of the theorem. Since frames and diamonds are equivalent (cf. Herrmann and Huhn [5, page 104]), the identities $\Delta(m, n, k)$ are diamond identities in the sense of [1]. What we need from [1] is only its Theorem 2, which we reformulate less technically as follows: For any diamond identity $\alpha, \Gamma \vDash_{c} \alpha$ iff for any ring R with 1Γ implies α in $\mathscr{V}(R)$. Therefore it suffices to show that $\Delta(m, n, k)$ and $\Delta(m, n)$ are equivalent in any $\mathscr{V}(R)$. Clearly, $\Delta(m, n)$ implies $\Delta(m, n, k)$ and $\Delta(m, n)$ are equivalent in any $\mathscr{V}(R)$. Clearly, $\Delta(m, n)$ implies $\Delta(m, n, k)$ in $\mathscr{V}(R)$. Conversely, assume that $\Delta(m, n, k)$ holds in $\mathscr{V}(R)$. Let $M=M\left(u_{1}, u_{2}, \ldots, u_{k}\right)$
denote the R-module freely generated by $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Then $\Delta(m, n, k)$ holds Sub (M), the submodule lattice of M. It is easy to see (or cf. Neumann [9]) that the cyclic submodules $\left(R u_{i}, R\left(u_{i}-u_{j}\right): l \leqq i, j \leqq k, i \neq j\right)$ constitute a k-frame in Sub (M). (In fact, this is the most typical example of a k-frame.) Therefore

$$
\begin{align*}
& \left(R\left(u_{1}-u_{3}\right)+R\left(u_{2}-u_{3}\right)\right)\left(R\left(u_{1}-u_{4}\right)+R\left(u_{2}-u_{4}\right)\right) \leqq \tag{1}\\
& \leqq q_{m, n}\left(R\left(u_{1}-u_{3}\right), R\left(u_{2}-u_{3}\right), R\left(u_{1}-u_{4}\right), R\left(u_{2}-u_{4}\right)\right)
\end{align*}
$$

holds in $\operatorname{Sub}(M)$ and even in $\operatorname{Sub}\left(M\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right)$. Now the theory of Mal'tsev conditions (cf. Wille [11] or Pixley [10]) together with the canonical isomorphism between $\operatorname{Sub}\left(M\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right)$ and the congruence lattice of $M\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ yield easily that $\Delta(m, n)$ holds in $\mathscr{V}(R)$. (Note that the first nine rows in the proof of [7, Prop. 6] supply a detailed proof of the fact that (1) implies the satisfaction of $\Delta(m, n)$ in $\mathscr{V}(R)$.)

Proof of the proposition. Let $\underset{\sim}{Z}$ denote the ring of integers. Since $m \nmid n$ and $\Delta(m, n, k-1)$ implies $\Delta(m, n)$ in $\mathscr{V}(\underset{\sim}{Z})$ by the proof above, $\Delta(m, n, k-1)$ fails in $\mathscr{V}(\underset{\sim}{Z})$. It is shown in Herrmann and Huhn [4, Satz 7] that $\mathscr{V}(\underset{\sim}{Z})$ is generated by its finite members. Therefore there is a finite modular lattice L with minimal number of elements such that $\Delta(m, n, k-1)$ fails in L. We intend to show that $\Delta(m, n, k)$ holds in L. Assume the contrary. Then there is a k-frame $\bar{f}=\left(a_{i}, c_{i j}: 1 \leqq i, j \leqq k, i \neq j\right)$ such that $\Delta(m, n)$ fails when $c_{13}, c_{23}, c_{14}, c_{24}$ are substituted for its variables. It is known that either all elements of a frame are equal or $a_{1}, a_{2}, \ldots, a_{k}$ are distinct atoms of a Boolean sublattice of length k (cf., e.g., Herrmann and Huhn [5, (iii) on page 101 and page 104]). Now only the latter is possible since the one element lattice satisfies any identity. Hence the subframe $\vec{g}=\left(a_{i}, c_{i j}: 1 \leqq i, j \leqq k-1, i \neq j\right)$ lies in the interval $L^{\prime}=\left[0_{\vec{g}}, 1_{\vec{g}}\right]$. From $1_{\bar{g}}=a_{1}+\ldots+a_{k-1}<a_{1}+\ldots+a_{k}=1_{\vec{f}}$ we obtain $\left|L^{\prime}\right|<|L|$. The frame \vec{g} witnesses that $\Delta(m, n, k-1)$ fails in L^{\prime}, which contradicts the choice of L.

The remark is concluded from the theorem quite easily; we need only to consider the ring of those rational numbers whose denominator is not divisible by q.

References

[1] G. CzÉdlı, How are diamond identities implied in congruence varieties, Algebra Universalis, to appear.
[2] R. Freese, Planar sublattices of FM(4), Algebra Universalis, 6 (1976), 69-72.
[3] R. Freese, C. Herrmann and A. P. Huhn, On some identities valid in modular congruence varieties, Algebra Universalis, 12 (1981), 322-334.
[4] C. Herrmann and A. P. Huhn, Zum Wortproblem für freie Untermodulverbände, Archiv der Mathematik, 26 (1975), 449-453.
[5] C. Herrmann and A. P. Huhn, Lattices of normal subgroups generated by frames, in Coll. Math. Soc. J. Bolyai 14 (1974), pp. 97-136.
[6] A. P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math., 23 (1972), 297-305.
[7] G. Hutchinson and G. Czédli, A test for identities satisfied in lattices of submodules, Algebra Universalis, 8 (1978), 296-309.
[8] B. Jónsson, Congruence varieties, Algebra Universalis, 10 (1980), 355-394.
[9] J. von Neumann, Continuous Geometry, Princeton University Press (Princeton, N.J., 1960).
[10] A. F. Pixley, Local Mal'cev conditions, Canadian Math. Bull., 15 (1972), 559-568.
[11] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math. 113, Springer-Verlag (Ber-lin-Heidelberg-New York, 1970).

JATE BOLYAI INSTITUTE

SZEGED, ARADI VÉRTANÚK TERE I
HUNGARY, H-6720

[^0]: Research partially supported by .Hungarian National Foundation for Scientific Research grant no. 1813.

 Received January 9, 1990.

