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Some nontrivial implications in congruence varieties

GABOR CZEDLI

Dedicated to Professor Béla Csdkdny on his 60th birtday

A congruence variety is a lattice variety generated by the class of congruence
lattices of all members of some variety of algebras. The most known examples are
¥ (R), the lattice varieties generated by congruence (or submodule) lattices of R-
modules for rings R with 1. Given a lattice identity « and a set I" of lattice identities,
we write I'k=.a if every congruence variety satisfying I' also satisfies a (cf. JONSsoN
[8]). The implication I'k=.a is called nontrivial if I'k=a (in the class of all lat-
tices). For I'={y} we will write y rather than {y}.

There are many results stating that ykE.o without y=a for certain pairs
(y, «) of lattice identities. These results are surveyed in JONssoN [8]; for a further
development cf. FREeSE, HERRMANN and HunN [3]. However, all the known results
are located at distributivity or modularity in the sense that either yk. o=, dis-
tributivity .y or yk.ak=, modularity k.y. Now [1) offers an easy way to achieve
yi=.a results of a different nature.

For an integer n>2 and a modular lattice L, a system

f=(a,-,cij: l=i=nl1=j=n,i#j)

of elements of L is called a (von Neumann) n-frame in L if g; 2’ a;=0;, J,,-c,, "

a;c;,=0;, a;+cy=a;+a.and c=(a;+a)(c;+cy) for all d1st1nct J k, 1€{1,2,...,n}
where 0; resp. 1; are the meet resp. join of all elements of f (cf. voN NEUMANN [9]).
We write x+y and xy for the join and meet of x and y.

Given m=0 and n=z=1, a lattice identity A(m, n) is defined in [7, page 289]
such that, for any ring R with 1, 4(m, n) holds in ¥"(R) iff the divisibility condition
(3r)(m-r=n-1), abbreviated by D(m, n), holds in R (cf. [7, Prop. 6]). What else
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we need to know about 4(m, n) is that A4(m, n) is of the form
(xl +x2)(x3+x4) = qm,n(xla x?.a xsa x4)'

Frames are projective in the variety of modular lattices. This was proved in
two steps; first for (Huhn) diamonds in HunN [6] (for a more explicit statement cf.
FREESE [2]) and then frames and diamonds turned out to be equivalent in HERRMANN
and HunN [5, page 104]. Therefore there are lattice terms b;(X) and d;;(X) in variables
X=(x;, x;j: 1=i,j=k, i#j) such that these terms produce a k-frame (b,(y),
d;(7): 1=i, jsk, i2j) from any system j of elements of a modular lattice
L and, in addition, if f=(a;, ¢ij: 1=i,j=k, i#)) is a k-frame in L then b:(f)=a;
aid d;;(f)=c;; for every isj.

For k=4 the conjugation of the modular law and the identity

(d13() + d2a(%)) (d1a (%) + dea () = G, (A3 (%), dea (%), d1a (%), daa (7)),

where X=(x;, x;;: 1=i, j=k, i#j), will be denoted by A(m,n, k). Clearly,
A(m, n, k) is equivalent to a single lattice identity modulo lattice theory.

Theorem. Consider arbitrary integers m’, m;=0, n', n;=1, and k', k;=4 (icI)
where I is an index set. Then {d(m;, n;,k): icI}=A(m',n', k") if and only if
{D(m;, n;): icI} implies D(m’, n’) in the class of rings with 1.

In particular, if mfn and k=S5 then A(m, n, k)=.A4(m, n,k—1). This is a
nontrivial implication, for we have the following

Proposition. If min, m=0, n=1 and k=5 then A(m,n,k)A(m,n, k—1).

To point out that the A(m, n, k) in the proposition are essentially distinct we
present the following.

Remark. The set {4(p, 1,k): p prime}, where k=4, is independent in con-
gruence varieties in the sense that for every prime ¢

{4(p, 1, k): p prime, p = g}k 4(q, 1, k).

Proof of the theorem. Since frames and diamonds are equivalent (cf.
HERRMANN and HUHN [5, page 104]), the identities 4(m, n, k) are diamond iden-
tities in the sense of [1]. What we need from [1] is only its Theorem 2, which we re-
formulate less technically as follows: For any diamond identity «, I'k.a iff for
any ring R with 1 I’ implies a in ¥"(R). Therefore it suffices to show that A(m, n, k)
and A(m, n) are-equivalent in any ¥ (R). Clearly, 4(m,n) implies A(m,n, k)
and 4(m, n) are equivalent in any ¥ (R). Clearly, 4(m, n) implies 4 (m, n, k) in ¥ (R).
Conversely, assume that A(m,n, k) holds in ¥'(R). Let M=M(u,, us,, ..., u,)
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denote the R-module freely generated by {uy, u,, ..., %}. Then A(m,n, k) holds
Sub (M), the submodule lattice of M. It is easy to see (or cf. NEUMANN [9]) that
the cyclic submodules (Ru;, R(u;—u;): 1=i, j=k, i) constitute a k-frame in
Sub (M). (In fact, this is the most typical example of a k-frame.) Therefore

) (R(u,—u3)+R(u2—u3)) (R(u1_“4)+ R(uy— u4)) =
= qm,n (R(ul - u3)’ R(u2 - u3)9 R(ul - u4), R(u2 - u4))

holds in Sub (M) and even in Sub (M(uy, u,, ug, u,)). Now the theory of Mal'tsev
conditions (cf. WILLE [11] or PIXLEY [10]) together with the canonical isomorphism
between Sub (M (u,, u,, 15, 4,)) and the congruence lattice of M (uy, uy, ug, uy)
yield easily that 4(m, n) holds in #"(R). (Note that the first nine rows in the proof of
[7, Prop. 6] supply a detailed proof of the fact that (i) implies the satisfaction of
4(m, n) in ¥ (R).)

Proof of the proposition. Let Z denote the ring of integers. Since m{n and
A(m, n, k—1) implies A(m,n) in ¥ (Z) by the proof above, 4d(m,n, k—1) fails
in ¥ (Z). 1t is shown in HERRMANN and HUHN [4, Satz 7] that ¥"(Z) is generated by its
finite members. Therefore there is a finite modular lattice L with minimal number of
elements such that 4(m, n, k— 1) failsin L. We intend to show that 4 (m, n, k) holds
in L. Assume the contrary. Then there is a k-frame f=(a;, ciir 1=i,j=k, i#))
such that A(m, n) fails when c¢;3, a3, €14, Cas are substituted for its variables. It is
known that either all elements of a frame are equal or q,, a,, ..., q, are distinct
atoms of a Boolean sublattice of length k (cf., e.g., HERRMANN and HunN [5, (iii)
on page 101 and page 104]). Now only the latter is possible since the one element lat-
tice satisfies any identity. Hence the subframe g=(a;, ¢;;: 1=i,/=k—1, i) lies
in the interval L'=[0;, 1;]. From l;=a+...+a._1<a+...+a=1; we obtain
|L'}<|L|. The frame g witnesses that 4(m, n, k—1) fails in L’, which contradicts
the choice of L.

The remark is concluded from the theorem quite easily; we need only to con-
sider the ring of those rational numbers whose denominator is not divisible by gq.
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