On the additive groups of m-rings

SHALOM FEIGELSTOCK and JOSEPH B. MUSKAT

Notation.
$Z(n)$ a cyclic group of order n.
$R \quad$ a ring.
$R^{+} \quad$ the additive group of R.
$R_{p} \quad$ the p-primary component of R^{+}, p a prime.
$P_{m} \quad\{p$ a prime $\mid m \equiv 1(\bmod p-1), m>1\}, m$ a positive integer.
Definition. Let $m>1$ be a positive integer. A ring R is said to be an m-ring if $a^{m}=a$ for all $a \in R$.

Pierce [2, Corollary 12.5, and following comments] showed that an m-ring R with unity satisfies $R=\underset{p \in P_{m}}{\oplus} R_{p}$, with R_{p} of characteristic p for each $p \in P_{m}$. The existence of a unity in R is essential to Pierce's proof, as is the sheaf representation theory for commutative regular rings. In this note m-rings are not assumed to possess a unity. A complete description of the additive groups of m-rings will be obtained by elementary means. This classification contains the Pierce result.

Using Fermat's little theorem, and the existence of a primitive root of unity modulo p for every prime p, (see [1]), one can prove:

Lemma 1. Let $m>1$ be a positive integer. A prime p satisfies $p \mid q^{m}-q$ for all positive integers q and m if and only if $p \in P_{m}$.

Lemma 2. Let R be a ring which does not possess non-zero nilpotent elements. Then $R_{p}=\oplus \alpha_{\alpha_{p}} Z(p)$ with α_{p} a cardinal, for every prime p.

Proof. Let $a \in R_{p}$ with $|a|=p^{k}$. Then $(p a)^{k}=\left(p^{k} a\right) a^{k-1}=0$, and so $k=1$.

Theorem 3. Let $m>1$ be a positive integer, and let G be an additive abelian group. There exists an m-ring R with $R^{+}=G$ if and only if

$$
G=\underset{p \in P_{m} \alpha_{p}}{\oplus} Z(p)
$$

with α_{p} an arbitrary cardinal for each $p \in P_{m}$.
Proof. Let R be an m-ring, $a \in R$, and $q>1$ be an arbitrary integer. Then $q^{m} a=q^{m} a^{m}=(q a)^{m}=q a$, i.e., $\left(q^{m}-q\right) a=0$. Therefore R^{+}is a torsion group, and by Lemma 1 it follows that $R=\underset{p \in P_{m}}{\oplus} R_{p}$. Clearly R does not possess non-zero nilpotent elements, and so Lemma 2 yields the result.

Conversely, let $G=\underset{p \in P_{m}}{\oplus} \oplus Z(p)$ with α_{p} an arbitrary cardinal for each $p \in P_{m}$. Let F_{p} be a field of order p. Every non-zero element $a \in F_{p}$ satisfies $a^{p-1}=1$. If $p \in P_{m}$, then $a^{m-1}=1$, and so $a^{m}=a$. Clearly $R=\underset{p \in P_{m}}{\oplus} \underset{a_{p}}{\oplus} F_{p}$ is an m-ring with $R^{+} \cong G$.

The m-ring R with additive group $G=\underset{p \in P_{m}}{\oplus} \oplus \underset{\alpha_{p}}{\oplus} Z(p)$ is not unital if α_{p} is an infinite cardinal for some prime p. To construct a unital m-ring with additive group G, it clearly suffices to consider $G=\underset{\alpha}{\oplus} Z(p)$, with p a prime.
R. S. Pierce communicated to us the following example:

View F_{p} as a topological space with the discrete topology, and let X_{p} be the one point compactification of a discretely topologized set of cardinality α. Then $C\left(X_{p}, F_{p}\right)$, the ring of F_{p}-valued continuous functions, is a unital m-ring with additive group isomorphic to G.

Another example of a unital m-ring with additive group $\underset{\alpha}{\oplus} Z(p)$ is the following:

Let I be an index set, $|I|=\alpha$, and let $S=\prod_{|I|} F_{p}$, with elements of S regarded as generalized sequences $\left(a_{i}\right)_{i_{I}}$. Let R be the subring of S consisting of $a \in S$ for which there exists a finite subset $J \subseteq I$ such that $a_{i}=a_{j}$ for all $i, j \in I \backslash J$. Clearly R is a unital m-ring, with $R^{+}=\underset{\alpha}{\oplus} Z(p)$.

An argument similar to that used in proving Theorem 3 yields:
Theorem 4. Let R be a ring such that for every $a \in R$ there exists a positive integer $m(a)>1$, depending on a, with $a^{m(a)}=a$. Then $R^{+}=\underset{p \in P}{\oplus} \underset{\alpha_{p}}{\oplus} Z(p)$ with P a set of primes. Conversely, every such group is the additive group of ${ }^{p}$ a ring with the above property.

For a different elementary approach to m-rings see [3].

References

[1] W. J. LeVeque, Topics in Number Theory, vol. I, Addison-Wesley (Reading, Mass., 1956).
[2] R. S. Pierce, Modules over commutative regular rings, Memoirs of the Amer. Math. Soc., no. 70, A.M.S. (Providence, R.I., 1967).
[3] T. Chinburg and M. Henriksen, Multiplicatively periodic rings, Amer. Math. Monthly, 83 (1976), 547-549.

