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On commutativity of left s-unital rings

HAMZA A. S. ABUJABAL

1. Introduction. In this paper we study the commutativity of a left s-unital
ring R satisfying the polynomial identity
M X[x", y] = £ [x, y"]y* forall x,y€R,
where m, n, r, sand ¢ are fixed non-negative integers. To establish commutativity,
we need some extra conditions. The results of this paper generalize some of the well-
known commutativity theorems.

2. Preliminary results. Throughout the present paper, R will represent an as-
sociative ring (not necessarily with unity 1), Z(R) the center of R, C(R) the com-
mutator ideal of R, N(R) the set of all nilpotent elements in R, N’(R) the set of all
zero-divisors in R, and R* the additive group of R. As usual, for each x, y€R,
we write [x, y]=xy—yx. By GF(q) we mean the Galois field (finite field) with ¢
elements, and (GF(g)), the ring of all 2X2 matrices over GF(g). Set

_(l 0] _ _ (O O) d _(O 0)
911-0(): 312-00, 921—10, an 922—01

in (GF(p)),, for a prime p.

Definition 1. A ring R is called left (resp. right) s-unital if x€Rx (resp.
x€xR) for each x€R. Further, R is called s-unital if it is both left as well as right
s-unital, that is, xéxRMNRx for each x€R.

Definition 2. If R is an s-unital (resp. a left or right s-unital) ring, then for
any finite subset F of R, there exists an element e€R such that ex=xe=x (resp.
ex=x or xe=x) forall x¢F. Such an element e is called the pseudo (resp. pseudo
left or pseudo right) identity of F in R.

Definition 3. For any positive integer n, the ring R is said to have prop-
erty Q(n) if for all x, y€R, nlx, y]=0 implies [x, y]=0.
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The property Q(n) is an H-property in the sense of [9]. It is obvious that every
n-torsion free ring R has the property Q(n), and every ring has the property Q(1).
Also, it is clear that if a ring R has the property Q(n), then R has the property Q(m)
for every divisor m of n.

In the proof of our results, we shall require the following well-known results.

Lemma 1 ({3, Lemma 2]). Let R be a ring with unity 1, and let x and y be ele-
ments in R. If kx"[x,y]=0 and k(x+1)"[x, y]=0 for some integers m=1 and
k=1, then necessarily k[x,y]=0.

Lemma 2 ({14, Lemma 3]). Let x and y be elements in aring R. If [x, [x, ¥1}=0,
then [x*, y]=kx*"'[x,y] for all integers k=1.

Lemma 3 ([18, Lemma 3]). Let R be a ring with unity 1, and let x and y be
elements in R. If (1—y*)x=0, then (1—y*")x=0 for some integers k>0 and
m=0,

" Lemma 4. Let x and y be elements in a ring R. Suppose that there exists rela-
tively pnme positive integers m and n such that m[x y] 0 and n[x, y] 0. Then
[x, y]=0. :

* Lemma 5 ([4, Theorem 4 (C)]). Let R be a ring with unity 1. Suppose that for
each X€R there exists a pair n and m ‘of relanvely prime posmve integers for which
x"E Z (R) and x"E€Z (R) Then R is commutative.

Followmg results play an important role in proving.the main results of this
paper. The first is due to KezLAN [10, Theorem] and BELL [3, Theorem 1] (also see
[9, Proposition 2]), the second and third are due to Herstein.

Theotem KB. Let f be -a polynomial in n non-com}nuting indeterminates
X1, ---s X, With relatively prime integral coefficients. The;r; the . foIlowing are equi—_
valent

ay For any rmg satzsfymg the polynomml tdentlty f-O C(R) is a ml ideal.

(2) For every prime p, (GF(p)). fails to satisfy f=0.

(3) Every semi-prime ring satisfying f=0 is commutative.

Theorem H ({7, Theorem 18]). Let R be a ring and let n>1 be an integer.
Suppose that x"—x€Z(R) for all x¢R. Then R is commutative.

Theorem H’ (I8, Theorem]) If for every x and y in a ring R we éan‘ find a
polynomial p; ,(t) with - integral coefficients which depends on x and y such that
[x2p,,,(x)—x, y]=0, then R is commutative. : :

3. Main Results. Now, we present our results.
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Theorem 1. Let n=>1, m, r, s and t be fixed non-negative integers, and let R
be a left s-unital ring satisfying the polynomial identity (1). Further, if R possesses
Q(n), then R is commutative.

, Following lemma shows that the ring considered in Theorem 1 is in fact an
s-unital ring. According to Proposition 1 of [9] this lemma enables us to reduce the
proof of Theorem 1 to a ring with unity 1.

Lemma 6. Let n>0, m, r, s and t be fixed non-negative integers such that
(r,n,5,m, 1)#(0,1,0,1,0), and let R be a left s-unital ring satisfying the polynomial
identity (1). Then R is s-unital.

“Proof. Let x and y be arbitrary elements in R. Suppose that R is a left s-unital
ring. Then there exists an element e€R such that ex=x and ey=y. Replace x
by e in (1). Then e*"y—é'ye"=1(y ey™ts—y"t™ey’). Thus p=ye"€yR for all
y€R. Therefore, R is s-unital. :

Lemma 7. Let n=>0, m, r, s and t be fixed non-negative integers, and let R be
a ring satisfying the polynomial identity (1). Then C(R) is nil.

Proof. Let x=e;; and y=e;,. Then x and y fail to satisfy the polynomial
identity (1) whenever n>0 except for r=s5s=0, m=1. In this later case one can
choose x=e;, and y=e,. By Theorem KB, '

) "‘C(R) € N(R).

Combining Lemma 7 with Theorem K B gives the following commutativity theo-
rem for semi-prime rings.

Theorem 2. Let n>0, m, r, s and t be fixed non-negative integers. If R is a
semi-prime ring satisfies the polynomial identity (1), then R is commutative.

Lemma 8. Let n>1, m,r, s and t be fixed non-negative integers, and let R be a
ring with unity 1. Suppose that R satisfies the polynomial identity (1). Further, if R
has O(n), then N(R)SZ(R). '

Proof. If a€N(R), then there exists a positive integer p sucﬁ that
3 a*¢Z(R) forall .k=p, and p minimal.

Let p=1. Then a¢Z(R). Suppose that p>1 and b=a""'. Replace x by b in
(D) to get B'[b", y]==13"[b, y"1y°. In view of (3) and the fact that (p—Dn=p
for n>1,

4) y[b,y"]y* =0 forall yeR.
Now, replace x by 1+b in (1) to get (1+b)[(1+b)", y]=Z)'[1+b, y]y*. As 1+b
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is invertible, using (4), the last identity gives
(5) [(14b6),y] =0 forall yeR.

Combining (3) and (5) yield O0=[(1+b)", y]=[1+nb, y}=n[b,y]. Now, Q(n) im-
plies that [b, y]=0 for all y€ R, thatis a?—'€ Z(R). This contradicts the minimality
of p. So, p=1 and a€Z(R). Therefore,

) N(R) S Z(R).
Remark 1. Combining (2) and (2"), one gets
® C(R)S N(R) S Z(R),

for any ring R with unity 1 which satisfies the polynomial identity (1) for all fixed
non-negative integers n>1, m, r, s and ¢t and whenever R has Q(n). Hence, in view
of (6), [x,[x,y]]=0 forall x, y€R and thus the conclusion of Lemma 2 holds. In
the proof of Theorem 1, we shall therefore routinely use Lemma 2 without explicit
mention.

Proof of Theorem 1. According to Lemma 6, R is s-unital. Therefore, in
view of Proposition 1 of [9], it suffices to prove the theorem for R with unity 1.

It m=0, then (1) gives x'[x",y]=0." Thus, nx**""[x, y)=0. Replace x by
x+1 and apply Lemma 1 to obtain n[x, y]=0 which by Q(n), we get [x, y]=0 for
all x, ye¢R. Therefore, R is commutative.

Suppose that m=1. Let g=(p'*"—p) (for a prime p). Then from (1)
we have gx'[x", y]=(p'*"—p)x'[x", yl=p"*"¥'[x", yl—px'[x", y)=(px)'(px)", Y| F
Foy'Ix, y™y =(px) [(px)", Y1 F ¥ [(px), y"]y°=0. Therefore, gnx'*"~'[x, y]=0. If
we set k=gn, then k[x,y]=0 and thus [x*, y]=kx*"'[x, y]=0. So
D x*¢Z(R) forall x¢R.

We consider two cases:
Case (a): If m=>1, then X[x",y]=Lm[x,yly" **™ 1 and x'[x",y"]=+

Emlx, y"lymCretm=D. S0 m[x", ylyn-t=—m[x, y"]y"¢tt+m=1 By using (1),
we obtain my”[x, y"]y** " 1=m[x, y]y"C+s+™=D, Using Lemma 3, we get

®) m[x, ym}y tstm=1(] —pkm=-Dl+s+m-1)y — 0 for all x,yeR.
Now, by (6), the polynomial identity (1) becomes
9) nx*+t"lx, 3] = £my t547 " x, y] = £ mx, ¥}y *s+™-1 forall x, yeR.

It is well-known that R is isomorphic to a subdirect sum of subdirectly irre-
ducible rings R; (i€], the index set). Each R; satisfies (1), (6), (7), (8) and (9). We
consider the ring R; (i€I). Let S be the intersection of all non-zero ideals of R,
Then §+#(0), and Sd=0 for any central zero-divisor d.
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Let a€N’(R). By (8), mlx, a™a ™ 1(1 =gt Dr+stm-1y—0 If
m[x, a"|a@ t5t™ 120, then m—Dr+stm—D apd |—gm-Dr+stm-D gre central
zero-divisors. So (0)=S(1—g"mVr+stm-1y= 920, which is a contradiction.
Thus

(10) mix,a™)a*+s¥"-1 =0 forall x¢R,.

From (9) and (10), nx'*""![x, @")=+m[x, a"a""+*+*m" D=0 and n[x, a"]=0.
Therefore, nm[x, ala"~'=0. Now,

mx+"1x, a] = n(nx**""1[x, a]) = £ nm(x, ala"+3+"-1 = 0
and n%[x,a]=0. But [x™, al=n2x""'[x, a]. Therefore,
(1) [x*,a]l =0 forall x¢R,.

“If ¢c€Z(R), then by (1), (c""—o)x'[x", y]=(cx)[(cx)", y]—cx'[x", y]=
(€x) [(cx)", Y1 F¥ [(cx), y"1»*=0 and thus n(c'*"—c)x**""[x, y]=0. By Lemma 1
n(c't"—c)[x, y]=0. So

(12) (" —o)[x",y] =0 forall x,yeR;.
Using (7), we get
(13) (PO ) [x", y] =0 for all x,yeR;.

Suppose that y€R;. If [x", y]=0, then [x", y'—y]=0 for all positive integers
jand x€R;. If [x™, y]#0, then [x", y]>0, for [x", y]=0 implies that [x", y]=0,
which is a contradiction. If [x", y]20, then (13) implies that p*¢+"—_3k s a zero-
divisor. Therefore, y**+"-D+1_y is also a zero-divisor. By (11), we have

(14) [x", yFC+s-D+1_y) = 0 for all x, y€R,.

As each R satisfies (14), the original ring R also satisfies (14). But R has Q(n).
Combining (14) with Lemma 2, we obtain [x, y**+*-D+!_y)=0. Therefore, R is
commutative by Theorem H.

Case (b): Let m=1. Then x'[x", y]=%y'[x, y]y* and nx'+"-[x, y]=%[x, y]y/ +*.
Replace x by x" to get

nx"+r=Vx" y] = £ [x", y]yF = £ax"7Ux, y]y = £l x, y]
Thus n(l—x®-D0+n=D)yf+r=1fn y1=0, which in view of Lemma 3, we get
(15) (1 = kO-DEEn-D) yt4n-11xn 31— 0 for all x, yeR.

As in case (a) if acN’(R), then by (15), n(1—g""=Du+n=-1gt4s-11p 310, Also,
we can prove that
(16) na+m-1[g" y] = 0 for all yeR,.
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Now, we have +[a" y|yr+*=na"t+*-V[a", y}= 0 and thus [4", y]=0. Therefore,
fa, yly *>= a'[a" y}=0. So

an [a,5] =0 forall yeR,.

If c€Z(R)), then as in case (a), we get (¢*+"—c)[x, y]=0. In particular, by (7),
U+ —xN[x, y]=0.for all x, y€R;. If [x, y]=0 for-all -x, y€R;, then R satisfies
[x,y]=0 for all x, y€R. Therefore, R is commutative. Now; if for each x, y€R,,
[x, y]#0, then x*¢+"-D+l_xcN’(R), and hence x*¢+"-D+!_xcN’(R). But the
identity (17)is satisfied by R. So [x*¢+"~ 1)“1—-x y] 0 foreach x, y€R. Therefore
R is commutative by Theorem H.

In Theorem 1, Q(n) is essential. To see thxs we con51der the following example:

Example 1. Let

010 001

000
4, =000, B,={000|, and C,={001
000 looo) . 000

be elements of the ring of all 3X3 matrices over Z,, the ring of integers mod 2.
If R is the ring generated by the matrices A4,, B, and C,, then using Dorroh con-
struction with Z, (see [4, Remark]), we obtain a ring R with unity 1. Then R is non-
commutative and satisfies [x%, y]=[x, »?] for all x, y€R.

The-presence of the identity in Theorem 1 is not superfluous. To see this we
consider the following example. '

Example 2. Let -

000

000 000
A4,=000|, B,=[000| and Cc,=|g 01
010 000

’ 100
be elements of the ring of all 3 X3 matrices over Z,. If R is the ring generated by
the matrices -4,, .B, and C,,. then-for. each integer n=1, the ring R satisfies the

identity [x", y]=[x, y"] for all x, y¢R, but R is not commutative.

Corollary 1 ([4, Theorem 5]). Let R be a ring with unity 1, and n>1 be a
fixed integer. If R is n-torsion free and R satisfies the identity {x", y]=[x, y"] for all
x, y€ R, then R is commutative.

Corollary 2 (15, Theorem 2]) Let n>m>1 be fixed integers such that mn>1,
and let R be an s-unital ring. Suppose- that every commutator in R is m!-torsion free.
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Further, if R satisfies the polynomial identity
(18) [x, ] = [x,y"] forall x,y€R,
then R is commutative. _

Corollary 3 ([16, Theorem 1]). Let n>1 and m be positive integers, and let s
and t be any non-negative integers. Let R be an associative ring with unity 1. Suppose
(19) x'[x", ¥y} =[x, y™]y* forall x,y€ER.

Further, if R is n-torsion free, then R is commutative.
In the following result we show that the conclusion of Theorem 1 is still valid
if Q(n) is replaced by requiring m and n to be relatively prime positive integers.

Theorem 3. Let m=>1, and n>1 be relatively prime integers, and let r, s, and
t be non-negative integers. If R is a left s-unital ring satisfies the polynomial identity
(1), then R is commutative.

Proof. According to Lemma 6, R is s-unital. Therefore, in view of Proposi-
tion 1 of [9], it is sufficient to prove the theorem for R with unity 1.

Without loss of generality, we assume that R is subdirectly irreducible. Let
a€N(R). Consider p and b as in Lemma 7. Following the proof of Lemma 7,
we obtain n[b, y]=0 and m[b, y]=0. By Lemma4, [b,y]=0. So «’~'€Z(R),
which contradicts the minimality of p. Therefore p=1 and a€Z(R). Thus
N(R)YSZ(R). By Lemma 6,

(20) C(R)& N(R) & Z(R).

The proof of (7) also works in the present situation. So there exists an integer
k (as in the proof of Theorem 1) such that

@D x*¢Z(R) forall x¢R.

Let u€N’(R). Using argument similar to one as in the proof of Theorem 1 (see
(11)), we get [x™,u]=0 and [x™, u]=0. By Lemma 4,

(22) [x,u] =0 forall x€R.

If c€Z(R), then, as observed in the proof followed by (11), we can prove that
n(c*+"—c)[x, y)=0 and m(c'*"—c)[x, y]=0. By Lemma 4,

(23) (" —¢)[x,y] =0 for all x,y_ER.

By (21), (3***t™—3")[x, y]=0. Arguing as in the proof of Theorem 1, we finally get
ye+n=D+1_ e N7(R). Hence (22) yields y*+"-V+'_pcZ(R) for all ycR. By
Theorem H, R is commutative.
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Corollary 4 ([16, Theorem 2]). Let m and n be relatively prime positive integers,
and let s and t be any non-negative integers. Suppose that R is an associative ring
with unity 1 satisfies the polynomial identity (19). Then R is commutative.

Next result deals with the commutativity of R satisfying (1) for the case n=1.

Theorem 4. Let R be a left s-unital ring, and let m, r, s and t be fixed non-
negative integers such that (t,m,r,s)#(0,1,0,0). If R satisfies the polynomial
identity
(24) X[x,y] = £y [x, y")y* for all x,y€R,
then R is commutative.

Proof. According to Lemma 6, R is an s-unital ring. In view of proposition 1
of [9], we prove the result for R with unity 1.

Case (I): If m=0, then the identity (24) becomes x'[x, y]=0. By Lemma 1,
[x, y]=0 for each x, y€R. Therefore, R is- commutative.

Case (1I): Let m=>1, x=e,,, and y=e;;. Then x and y fail to satisfy the
identity (24). By Theorem KB, C(R)SN(R). If ac¢ N(R), then there exists a posi-
tive integer p such that

(25) a*€Z(R) for all k = p, and p minimal.

If p=1, then a€Z(R). Now, let p>1, and let b=a’~'. Replace y by b in (24)
to get x‘[x, b]==%b"[x, b™b°. In view of (25), x'[x, b]=0. By Lemma 1, [x, b]=0
for all x€R. Therefore, a?~'€Z(R) which is a contradiction. Thus p=1, and
hence N(R)SZ(R). So C(R)SN(R)SZ(R). The method of proof of Theorem 1
enables us to establish the commutativity of R.

Case (I11): Let m=1. Then (24) becomes
(26) x'[x,y] =1y [x,y]y° forall x,y€R.

We consider the following cases.
(i): Let r=0. Then (26) becomes

27 x[x,y] = +[x,y]y° forall x, yeR.

If §=0, then £=0. Thus, X[x,y]=%[x,y] for all x, y€R. Therefore, R is com-
mutative by [11, Theorem]. Similarly, if =0 in (27), then R is commutative by
{11, Theorem]. Let =0 and s=0. Then x=e);, and y=e,, fail to satisfy the
identity (27). By Theorem KB, C(R)EN(R). Now, for any positive integer g, we
can easily see that

(28) x[x,y] = £[x,y]y* forall x,yeR.



Left s-unital rings 59

If a¢N(R), then for sufficiently large g, we get x%[x, a]=0 for all x, yc¢R. By
Lemma 1, a€ Z(R). Therefore C(R)SN(R)SZ(R).

Let /I=(p**'—p)>0 for s=0 (p is a prime). Then we can prove that
(29) x'¢Z(R) forall x¢R.

By (28) and (29), [x!*,y]==*[x, y**+'] for all x, ycR. In view of Proposition 3
(i) of [9], there exists positive integer j such that [x, y*+*Y)=0 for each x, y¢R.
But (/s+1)/=Ik+1. Then (28) yields [x, y]y*=0, and so by Lemma 1, we obtain
[x,y]=0 for all x, y€R. Therefore, R is commutative.

(ii): If s=0, then (26) becomes

(30) x'[x,y] = £y [x,y] forall x,yeR,

and so either =0 or r=0. Without loss of generality, we can suppose that r=0.
Clearly, x=e,, and y=e,, fail to satisfy (30). By Theorem KB, C(R)SN(R).
Following the same argument as in (i) we can prove the commutativity of R.

(iii): If r=0, then (26) gives

(k13)] [x,y] = +)y"[x,y]y* forall x,y€eR.

Then either r=>0 or s>0. Clearly x=e,; and y=e;, fail to satisfy (31). There-
fore, C(R)SN(R). Let p and b as defined in case (IT). Then (31) holds and [x, b}=
=xb"[x, b)b*=0 for all x€R, which is a contradiction. Therefore acZ(R) and
N(RYSZ(R). Thus

(32 C(R) & N(R) & Z(R).

By (32) and Lemma 2, [x, y]=+)"*"*[x,y] for all x,y¢R. Therefore, R is com-
mutative by [11, Theorem].

(iv): Let r>0, s=>0 and ¢>0. Then x=e,; and y=e,;, fail to satisfy (26).
Therefore, C(R)YSN(R). If p and b are as defined in case (II), then x'[x, b]=+%
15 [x, b]b°=0. So by Lemma 1, [x, b]=0, which contradicts the minimality of p.
Therefore, N(R)SZ(R), and thus
(33) C(R) S N(R) & Z(R).

By (33), the identity (26) becomes
(34 x'[x,y] = 2[x, y]y'** forall x,yeR.

Following the p}oof of (i), we can establish the commutativity of R.

Corollary 5 ([12, Theorem]). Let t and m be two fixed non-negative integers.
Suppose that R satisfies the polynomial identity

(35) x[x, y] = [x,y"] forall x,y€R.



60 Hamza A. S. Abujabal

() If R is left s-unital, then R is commutative except when (m,t)=(1,0).
(ii) If R is right s-unital, then R is commutative except when (m,t)=(l,0);
and m=0 and t=>0.

Remark 2. In Corollary 5, for m=1, R is commutative by Theorem 1. How-
ever, for m=0 (resp. m=1 and ¢=0), it is easy to prove the commutativity of R.

Corollary 6. Let n=0 and m (resp. m=0, and n) be fixed non-negative
integers. Suppose that a left (resp. right) s-unital ring R satisfies the polynomial
identity : : ' :

(36) [xy, x"£y"1 =0 forall x y€R.
If R has Q(n), then R is commutative. '

Proof. Actually, R satisfies the identity x[x", y]=%[x, y"ly for all x, y€R.
Therefore, R is commutative. '

Corollary 7. Let m=1 and n=>1 be relatively prime integers, and let R be
a left s-unital ring satisfying the polynomial identity (36). Then R is commutative.

In [6, Theorem B], Harmanci proved that “If #>1 1is a fixed integer and R
is a ring with unity 1 which satisfies the identities [x", y]=[x, y"] and [x"*!, y]=
=[x, y"*'] for each x, y€R, then R must be commutative.” In [5, Theorem 6] BELL
generalized this result. The following theorem further extends the result of Bell.

Theorem 5. Let m=1 and n=>1 be fixed relatively prime integers, and let
r, s and t be fixed non-negative integers. If R is a left s-unital ring satisfies both the
identities

BN Hx" ¥ =Y [x, ¥y and X'[x",y] = 1yY[x,y"1y* forall x,y€R,
then R is commutative.

Proof. According to Proposition 1 of [9], we prove the theorem for R with 1.
Let b as in the proof of Lemma 8. Following the proof of Theorem 1 and Theo-
rem 2 of [16], we can prove that n[b, y]=0 and mIb, y)=0. By Lemma 4, [b, y]=0
for all y€R. The argument in the proof of Lemma 8, gives N(R)SZ(R). Also,
Xx=ey; and y=e, +e,, fail to satisfy the polynomial identities in (37). Hence, by
Theorem KB, C(R)SN(R), and thus C(R)EN(R)SZ(R). The argument of
subdirectly irreducible rings can then be carried out for n and m, yielding integers
j=>1 and k=1 such that [x/—x, y*]=0 and [x*—x, y™]=0 for all x, y€R. Let
)= —x)*~(x'—x). Then 0=[/(x), y"1=r*[f(x), y]y" 7, and 0=[f(x), y™]=
=m2[f(x), y]y™ . By Lemma4 and Lemma 5, [f(x),y]y’=0 for all x, y€R,
and r=max {m®—1, n*—1}. Therefore, f(x)€ Z(R). Since f(x)=x2g(x)—x with
g(x) having integral coefficients, Theorem H’ shows that R is commutative.
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Corollary 8 (14, Theorem 6]). Ler m=>1 and n>1 ‘be relatively prime positive
integers. If R is any ring with unity 1 satisfies both the identities [x™, y1=[x, y™
and [x", yl=[x, y") for all x,yER, then R is commutatwe

Remark 3. In case m=0 and n=1, Theorem 1 need not be true for right
s-unital ring. Also, when m=0 and t=1, Corollary 4 is not valid for s-unital
ring. In fact we have the following example.

K o)
has a right identity element and satisfies the polynomial identity x[x, y]=0 for all

x, y€R. Hence, in the case m=0 and n=>0, Theorem 1 need not be true for right
s-unital rings. As a matter of fact, Example 3 disproves Theorems 1, 3, 4, and 5 for
right s-unital case whenever both r and ¢ are positive.

Example 3. Let K be a field. Then, the non-commutative ring ‘R= (K 0)
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