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On commutativity of left s-unital rings 

HAMZA A. S. ABUJABAL 

1. Introduction. In this paper we study the commutativity of a left .s-unital 
ring R satisfying the polynomial identity 

(1) xt[x",y] = ±/[x,ym]ys for all x,y£R, 
where m, n, r, s and t are fixed non-negative integers. To establish commutativity, 
we need some extra conditions. The results of this paper generalize some of the well-
known commutativity theorems. 

2. Preliminary results. Throughout the present paper, R will represent an as-
sociative ring (not necessarily with unity 1), Z(R) the center of R, C(R) the com-
mutator ideal of R, N(R) the set of all nilpotent elements in R, N'(R) the set of all 
zero-divisors in R, and R+ the additive group of R. As usual, for each x, ydR, 
we write [x,y]=xy—yx. By GF(q) we mean the Galois field (finite field) with q 
elements, and (GF(q))2 the ring of all 2 x 2 matrices over GF(q). Set 

e " = (oo) ' Cl2 = (o o)' e « = (?o)» a n d *» = ( 2 ! ) 
in (GF(p)\, for a prime p. 

D e f i n i t i o n 1. A ring R is called left (resp. right) s-unital if x^Rx (resp. 
x£xR) for each x£R. Further, R is called s-unital if it is both left as well as right 
.s-unital, that is, x(LxRf)Rx for each xdR. 

D e f i n i t i o n 2. If R is an .s-unital (resp. a left or right .s-unital) ring, then for 
any finite subset F of R, there exists an element e£R such that ex=xe=x (resp. 
ex=x or xe=x) for all x£F. Such an element e is called the pseudo (resp. pseudo 
left or pseudo right) identity of F in R. 

Def in i t i on 3. For any positive integer n, the ring R is said to have prop-
erty Q(n) if for all x,y£R, n[x, y]=0 implies [x,}>]=0. 
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The property Q{ri) is an .//-property in the sense of [9]. It is obvious that every 
«-torsion free ring R has the property Q(n), and every ring has the property <2(1). 
Also, it is clear that if a ring R has the property Q(n), then R has the property Q(m) 
for every divisor m of n. 

In the proof of our results, we shall require the following well-known results. 

Lemma 1 ([3, Lemma 2]). Let R be a ring with unity 1, and let x andy be ele-
ments in R. If kx?"[x,y]=0 and £(x+l)m[x, j ] = 0 for some integers m i 1 and 
k£ 1, then necessarily k[x,y]=0. 

Lemma 2 ([14, Lemma 3]). Let x andy be elements in a ring R. If [x, [x, _y]]=0, 
then [x', y]—kxk~1[x,y] for all integers ks 1. 

Lemma 3 ([18, Lemma 3]). Let R be a ring with unity 1, and let x and y be 
elements in R. If (\—yk)x=0, then (1— ykm)x=0 for some integers k>0 and 
m > 0. 

Lemma 4. Let x and y be elements in a ring R. Suppose that there exists rela-
tively prime positive integers m and n such that m[x,y]—0 and n[x, 7] =0. Then 
[x,y]=0. ' 

' Lemma 5 ([4, Theorem 4 (C)]). Let R be a ring with unity 1. Suppose that for 
each x£R there exists a pair n and m of relatively prime positive integers for which 
x"£Z(R) and xm£Z(R). Then R is commutative. 

Following results play an important role in proving.the main results of this 
paper. The first.is due to KEZLAN [10, Theorem] and BELL [3, Theorem 1] (also see 
[9, Proposition 2]), the second and third are due to Herstein. 

Theorem KB. Let f be a polynomial in n non-commuting indeterminates 
x1,...,xa with relatively prime integral coefficients. Then the following are equi-
valent: 

(1) For any ring satisfying the polynomial identity f— 0, C(R) is a nil ideal. 
(2) For every prime p, (GF(p))2 fails to satisfy f= 0. 
(3) Every semi-prime ring satisfying / = 0 is commutative. 

Theorem H ([7, Theorem 18]). Let R be a ring and let « > 1 be an integer. 
Suppose that x"—x£Z(R) for all x£R. Then R is commutative. 

Theorem H' ([8, Theorem]). If for every x and y in a ring R we can find a 
polynomial px,y{t) with integral coefficients which depends on x and y such that 
[x^Px.yix) — x, y]=0, then R is commutative. 

3. Main Results. Now, we present pur results. 
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T h e o r e m 1. Let «>1, m, r, s and t be fixed non-negative integers, and let R 
be a left s-unital ring satisfying the polynomial identity (1). Further, if R possesses 
Q(n), then R is commutative. 

Following lemma shows that the ring considered in Theorem 1 is in fact an 
y-unital ring. According to Proposition 1 of [9] this lemma enables us to reduce the 
proof of Theorem 1 to a ring with unity 1. 

Lemma 6. Let «>0, m, r, s and t be fixed non-negative integers such that 
(>, n, s, m, 0 ^ ( 0 , 1,0,1, 0), and let R be a left s-unital ring Satisfying the polynomial 
identity (1). Then R is s-unital. 

Proof . Let x and y be arbitrary elements in R. Suppose that J? is a left i-unital 
ring. Then there exists an element e£R such that ex=x and ey—y. Replace* 
by e in (1). Then e,+ny-e'yen= ±(yreym+s-yr+meys). Thus y=ye"£yR for all 
y£R. Therefore, R is i-unital. 

Lemma 7. Let «>0, m, r, s and t be fixed non-negative integers, and let R be 
a ring satisfying the polynomial identity (1). Then C(R) is nil. 

Proof . Let x—fin and y—e12 • Then x and y fail to satisfy the polynomial 
identity (1) whenever « > 0 except for r—s=0,m=l. In this later case one can 
choose x=e12 and y=e21. By Theorem KB, 

Combining Lemma 7 with Theorem KB gives the following commutativity theo-
rem for semi-prime rings. 

T h e o r e m 2. Let «>0 , m, r, s and t be fixed non-negative integers. If R is a 
semi-prime ring satisfies the polynomial identity (1), then R is commutative. 

Lemma 8. Let n > l , m,r,s and t be fixed non-negative integers, and let R be a 
ring with unity 1. Suppose that R satisfies the polynomial identity (1). Further, if R 
has Q(n), then N(R)^Z(R). 

Proof . If a£N(R), then there exists a positive integer p such that 

(3) ak£Z(R) for all . k s p, and p minimal. 

Let p=1. Then a£Z(R). Suppose that p> 1 and b—aReplace x by b in 
(1) to get b'[bn,y] = ±yr[b,ym]ys. In view of (3) and the fact that (p-l)ns=p 
for n > 1, 

(2) C(R) i N(R). 

(4) / [ ¿ , y n ] y = 0 for all y£R. 

Now, replace x by 1 +b in (1) to get (1 +b)'[(\ +bf, j ] = ± / [ 1 +b, j ] / . As 1 +b 
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is invertible, using (4), the last identity gives 

(5) [ ( l + V . J ^ O for all y£R. 

Combining (3) and (5) yield 0=[(1 +b)n, y\ = [\+nb, y]=n[b, y]. Now, Q(n) im-
plies that [b,y]=0 for all yZR, that is ap~1ZZ(R). This contradicts the minimality 
of p. So, p—1 and a£Z(R). Therefore, 

(2') N(R) g Z(R). 

Remark 1. Combining (2) and (20, one gets 

(6) C(R) g N(R) g Z(R), 

for any ring R with unity 1 which satisfies the polynomial identity (1) for all fixed 
non-negative integers «>1, m,r, s and t and whenever R has Q(ri). Hence, in view 
of (6), [x, [x,y]]=0 for all x,y£R and thus the conclusion of Lemma 2 holds. In 
the proof of Theorem 1, we shall therefore routinely use Lemma 2 without explicit 
mention. 

Proof of T h e o r e m 1. According to Lemma 6, R is i-unital. Therefore, in 
view of Proposition 1 of [9], it suffices to prove the theorem for R with unity 1. 

It wi=0, then (1) gives x/[xn,y]=0. Thus, nx '+ n _ 1[x,^]=0. Replace x by 
x + 1 and apply Lemma 1 to obtain w[x,j>]=0 which by Q(n), we get [x, j>]=0 for 
all x, y£R. Therefore, R is commutative. 

Suppose that m^l. Let q—(p'+"—p) (for a prime p). Then from (1) 
we have ?x'[x", y]=(p^n-p)x'[xr, y]-pAx", y}=(px)%px)n, y] T 
Tpyr[x, ym]ys=(px)'l(px)n, y] T/[(px), ym]ys=0. Therefore, qnx'+'-^x, y] =0. If 
we set k—qn, then k[x, ,y]=0 and thus So 

(7) x?£Z(R) for all x£R. 
We consider two cases : 

Case (a): If m > 1, then y] = ±m[x, y]yr+s+m~1 and x'[x", ym] = ± 
±/ntx,y"]^m ( r + s + m _ 1 ) . So m^[x?,y]f-1=-m[x,ym]ym(T+,+m-1). By using (1), 
we obtain m/[x, y"1]^""1=m[x, y]ym{'+s+m~1). Using Lemma 3, we get 

(8) W [ x j y n j y + s + m - l ( 1 _ y t ( m - l ) ( r + s + n , - l ) ) = q f o f a , j x y ç R 

Now, by (6), the polynomial identity (1) becomes 

(9) nx'+B-1[x,;y] = ± w / + s + m - 1 [ x , ^ ] = ±w[x ,3>] / + ï + m - 1 for all x,y£R. 

It is well-known that R is isomorphic to a subdirect sum of subdirectly irre-
ducible rings Ri (/£/, the index set). Each Ri satisfies (1), (6), (7), (8) and (9). We 
consider the ring Ri (/€/). Let S be the intersection of all non-zero ideals of Rt. 
Then .SV(O), and Sd=0 for any central zero-divisor d. 
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Let a iN ' (R^ . By (8), m[x, i f ] a r + s + m ~ 1 ( i I f 
m[x, am]cf+s+m-19^0, then o t ( m-1 ) ( r + s + m-1 ) and 1-a k ( m - 1 ) ( r + s + m _ 1 ) are central 
zero-divisors. So (0) = S(l-a* ( m _ 1 ) ( r + s + 'n - 1 ))=S'?s0, which is a contradiction. 
Thus 

(10) m[x, ef]cf+s+m-1 = 0 for all x^Rt. 

From (9) and (10), nx,+"-1[x, cT] = ±m[x, cT](f,f+s+m-1'>=0 and n\x,cT]=0. 
Therefore, nm[x, a]a r a_1=0. Now, 

n a y + » - i [ X j a] = n(n^+"-1[x, a]) = ± « m [ x , a ] a , + , + m - 1 = 0 

and n2[x,a]=0. But [x"\ a] = n2x"'~1[x, a]. Therefore, 

(11) [x"',a] = 0 for all x£Ri. 

If c e Z W , then by (1), ( c ' + " - C)x'[x\ y]=(ex)'[(cx)n, y] - cx'[x", y] = 
(cx)'[(cx)n ,^]q:/[(cx),j ' 'n]/=0 and thus «(c'+ n-c)x'+""1[x,j>]=0. By Lemma 1 
n(c'+n-c)[x,y]=0. So 

(12) (c '+ , ,-c)[x , , ,7] = 0 for all x,y£Ri. 
Using (7), we get 
(13) ( / ( , + B ) - / ) [ * " , >»] = 0 for all x,y£R{. 

Suppose that y£Rt. If [x", >•] =0, then [x"', yJ—y]=0 for all positive integers 
yand x£Ri. If [x"\y]*0, then [x",.y]*0, for [x",j>]=0 implies that [xn \y]=0, 
which is a contradiction. If [x",y]*0, then (13) implies that yki'+n)—yk is a zero-
divisor. Therefore, is also a zero-divisor. By (11), we have 

(14) [x"!, j>*('+n-1)+1—y] = 0 for all x ,yeRi. 

As each R satisfies (14), the original ring R also satisfies (14). But R has Q(n). 
Combining (14) with Lemma 2, we obtain [x, j>*(,+n_1)+1—j>]=0. Therefore, R is 
commutative by Theorem H. 

Case (b): Let m=l. Then x'[x", y] = ±/[x,y]y" and «x'+n-1[x,>>] = ± [ x , y ] / + ' . 
Replace x by x" to get 

nx"(»+»-i)[JC»> j,] = ±[x", y]/+s = ±nx"~1[x, y]yr+° = ±«x , +"-1[x",^]. 

Thus n( l -x ("- 1 ) ( '+ n - 1 ) )x '+"- 1 [xB , which in view of Lemma 3, we get 

(15) n ( l -x* ( n - 1 ) ( ' + n - 1 ) )y + " - 1 [x" ,^ ] = 0 for all 

As in case (a) if a£N'(R ), then by (15), n(l-ctl"-1*'+°-iy)ct+n-1[tf,y]=0. Also, 
we can prove that 
(16) ncf+tt-1[(f,y] = 0 for all y£Rt. 
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Now, we have ±[<f;y\/+s±nd*f+a-V)[(f,y\=Q, and thus [a",y] =0. Therefore, 
[a,y]/+'=d[cf,y]=0. So 

(17) [a, )>] = 0 for all y£Ri. 

If c£Z(R,), then as in case (a), we get (c'+n—c)[x, j>]=0. In particular, by (7), 
(;c*('+',>-x*)[;c,j;]=0.for all x,y^Rh If [x, forall x,y£Rt, then R satisfies 
[x, y]=0 for all x,y£R. Therefore, R is commutative. Now, if for each x,y^Rt, 
[x,y]*0, then xki'+n-1)+i-x£N'(Ri), and hence xki'+n-1)+1-x<=N'(R). But the 
identity (17)'is satisfied by R. So [x M ' + n - r l ) + 1 -x , j>]=0 foreach x, y£R. Therefore, 
R is commutative by Theorem H. 

In Theorem 1, Q(n) is essential. To see this, we consider the following example: 

Example 1. Let 

0 1 0 o o i' 0 0 o' 
A1 = 0 0 0 0 0 0 , and Cx = 0 0 1 

0 0 0 0 0 0, .0 0 0. 

be elements of the ring of all 3 x 3 matrices over Z2, the ring of integers mod 2. 
If R is the ring generated by the matrices Alt Bx and Cx, then using Dorroh con-
struction with Z2 (see [4, Remark]), we obtain a ring i? with unity 1. Then R is non-
commutative and satisfies [x2,y] = [x,y2] fora l l x,y(zR-

The presence of the identity in Theorem 1 is not superfluous. To see this we 
consider the following example. 

Example 2. Let 

0 0 0" / 0 0 0' 0 0 o' 
As = 0 0 0 > B% = 0 0 0 and C2 = 0 0 1 

0 1 0. 1 0 0, P o o, 

be elements of the ring of all 3 x 3 matrices over Z2. If R is the ring generated by 
the matrices A2, B2 and C2,. then for. each integer w s l , the ring R satisfies the 
identity \x", y]=[x, yn] for all x,y£R, but R is not commutative. 

Co ro l l a ry 1 ([4, Theorem 5]). Let R be a ring with unity 1, and n > 1 be a 
fixed integer. If R+ is n-torsion free and R satisfies the identity [xn, >>] = [x, y ] for all 
x, y(i R, then R is commutative. 

Coro l l a ry 2 ([15, Theorem 2]). Let n^m^l be fixed integers such that mn>l, 
and let R be an s-unital ring. Suppose that every commutator in R is m\-torsion free. 
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Further, if R satisfies the polynomial identity 

(18) [xn, y] = [x, ym] for all x,yZR, 

then R is commutative. 

Coro l l a ry 3 ([16, Theorem 1]). Let « > 1 and m be positive integers, and let s 
and t be any non-negative integers. Let R be an associative ring with unity 1. Suppose 

(19) x'[xn,y] = [x,ym]f for all x,y£R. 

Further, if R is n-torsion free, then R is commutative. 
In the following result we show that the conclusion of Theorem 1 is still valid 

if Q(n) is replaced by requiring m and n to be relatively prime positive integers. 

Theo rem 3. Let m > 1, and 1 be relatively prime integers, and let r, s, and 
t be non-negative integers. If R is a left s-unital ring satisfies the polynomial identity 
(I), then R is commutative. 

Proof . According to Lemma 6, R is s-unital. Therefore, in view of Proposi-
tion 1 of [9], it is sufficient to prove the theorem for R with unity 1. 

Without loss of generality, we assume that R is subdirectly irreducible. Let 
a£N(R). Consider p and b as in Lemma 7. Following the proof of Lemma 7, 
we obtain n[b,y]=0 and m[b, >']=0. By Lemma 4, [b, >>j=0. So up'\Z{R), 
which contradicts the minimality of p. Therefore p= 1 and a€_Z(R). Thus 
N(R)QZ(R). By Lemma 6, 

(20) C(R) i N(R) g Z(R). 

The proof of (7) also works in the present situation. So there exists an integer 
k (as in the proof of Theorem 1) such that 

(21) x?£Z(R) for all x£R. 

Let u£N'(R). Using argument similar to one as in the proof of Theorem 1 (see 
(II)), we get [x"\ w]=0 and [xm\ u]=0. By Lemma 4, 

(22) [x, H] = 0 for all x£R. 

If c£Z(R), then, as observed in the proof followed by (11), we can prove that 
n(c '+"-c)[x, j ] = 0 and m(c'+n-c)[x,y]=0. By Lemma4, 

(23) (<?+"-c)[x,y] = 0 for all x,y£R. 

By (21), ( j ; f l ( ' + " ) — } > ] = 0 . Arguing as in the proof of Theorem 1, we finally get 
yk«+n-1)+1-yiN'(R). Hence (22) yields yk«+n-1)+1-yiZ(R) for all y£R. By 
Theorem H, R is commutative. 
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Coro l l a ry 4 ([16, Theorem 2]). Let m and n be relatively prime positive integers, 
and let s and t be any non-negative integers. Suppose that R is an associative ring 
with unity 1 satisfies the polynomial identity (19). Then R is commutative. 

Next result deals with the commutativity of R satisfying (1) for the case n= 1. 

T h e o r e m 4. Let R be a left s-unital ring, and let m, r, s and t be fixed non-
negative integers such that (t,m,r,s)?±(0,1,0,0). If R satisfies the polynomial 
identity 
(24) *[x,y] = ±yr[x,ym]ys for all x,y£R, 

then R is commutative. 

Proof . According to Lemma 6, R is an i-unital ring. In view of proposition 1 
of [9], we prove the result for R with unity 1. 

Case (I): If m=0, then the identity (24) becomes x?[x,y]=0. By Lemma 1, 
[x, y ]=0 for each x,y£R. Therefore, J? is commutative. 

Case (II): Let m > 1, x = e u , and y=e12. Then x and y fail to satisfy the 
identity (24). By Theorem KB, C(R)QN(R). If a£N(R), then there exists a posi-
tive integer p such that 

(25) ak£Z(R) for all k ^ p, and p minimal. 

If p= 1, then a£Z(R). Now, let p> 1, and let b=ap~l. Replace y by b in (24) 
to get x'[x, b] = ±br[x, bm]b\ In view of (25), x'[x,b]=0. By Lemma 1, [x, 6 ]=0 
for all x£R. Therefore, ap~ 1£Z(R) which is a contradiction. Thus p = 1, and 
hence N(R)QZ(R). So C(R)^N(R)QZ(R). The method of proof of Theorem 1 
enables us to establish the commutativity of R. 

Case (III): Let m=l. Then (24) becomes 

(26) X1 [x, y] = ±/[x, y]ys for all x, ydR. 

We consider the following cases, 
(i): Let r=0 . Then (26) becomes 

(27) x'[x,y] = ±[x,y]ys for all x,y£R. 

If then f>0 . Thus, ¿[x, y] = ±[x, y] for all x,y£R. Therefore, R is com-
mutative by [11, Theorem]. Similarly, if / = 0 in (27), then R is commutative by 
[11, Theorem]. Let / > 0 and Y>0. Then x = e n , and y=e12 fail to satisfy the 
identity (27). By Theorem KB, C(R)QN(R). Now, for any positive integer q, we 
can easily see that 

(28) x«[x,y] = ±[x,y]f for all x,y£R. 
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If a£N(R), then for sufficiently large q, we get xq'[x,a] =0 for all x,y£R. By 
Lemma 1, a£Z(R). Therefore C(R)QN(R)QZ(R). 

Let /=(p s + 1—p)>0 for 0 (p is a prime). Then we can prove that 

(29) xl£Z(R) for all x£R. 

By (28) and (29), [x"+1, j ] = ± [x ,y s + 1 ] for all x,y£R. In view of Proposition 3 
(ii) of [9], there exists positive integer j such that [x, j ( i s + 1 ) J]=0 for each x, y£R. 
But (ls+ l)J=lk+l. Then (28) yields [x, y]yfc=0, and so by Lemma 1, we obtain 
[x,y]=0 for all x,y£R. Therefore, R is commutative. 

(ii): If i = 0 , then (26) becomes 

(30) x,y] = ±f[x,y] for all x,y£R, 

and so either i > 0 or r > 0. Without loss of generality, we can suppose that r>0 . 
Clearly, x=eu and y=e12 fail to satisfy (30). By Theorem KB, C(R)QN(R). 
Following the same argument as in (i) we can prove the commutativity of R. 

(iii): If /=0 , then (26) gives 

(31) [x,y] = ±yr[x,y]ys for all x , y £ R . 

Then either /•>0 or j > 0 . Clearly x=eu and y=e 12 fail to satisfy (31). There-
fore, C(R)GN(R). Let p and b as defined in case (II). Then (31) holds and [x, b] = 
= ±br[x,b]b"=0 for all x£R, which is a contradiction. Therefore a£Z(R) and 
N(R)QZ(R). Thus 
(32) C(R) i N(R) g Z(R). 

By (32) and Lemma 2, [x,y] = ±y+s[x,y] for all x, y£R. Therefore, J? is com-
mutative by [11, Theorem]. 

(iv): Let r>0 , s > 0 and />0 . Then x=en and y=e12 fail to satisfy (26). 
Therefore, C(R)QN(R). If p and b are as defined in case (II), then x'[x, b] = ± 
±fc'[x, b]bs=0. So by Lemma 1, [x, ¿>]=0, which contradicts the minimality of p. 
Therefore, N(R)<^Z(R), and thus 

(33) C(K) g N(R) g Z(R). 

By (33), the identity (26) becomes 

(34) x*[x,7] = ± [ x , . v ] / + s for all x,y£R. 

Following the proof of (i), we can establish the commutativity of R. 

C o r o l l a r y 5 ([12, Theorem]). Let t and m be two fixed non-negative integers. 
Suppose that R satisfies the polynomial identity 

(35) **[x, y] = [x,/"] for all x,yeR-
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(i) If R is left s-unital, then R is commutative except when (m, t)=( 1,0). 
(ii) If R is right s-unital, then R is commutative except when (m, i) = (l, 0); 

and 771=0 and />0. 

Remark 2. In Corollary 5, for T?J>1, R is commutative by Theorem 1. How-
ever, for 777=0 (resp. m = l and i>0), it is easy to prove the commutativity of R. 

Coro l l a ry 6. Let « > 0 and m (resp. TM>0, and n) be fixed non-negative 
integers. Suppose that a left (resp. right) s-unital ring R satisfies the polynomial 
identity 

(36) [xy, xn±ym] = 0 for till x,y£R. 

If R has Q(n), then R is commutative. 
Proof . Actually, R satisfies the identity x[xn,y] = ±[x,ym]y for all x,y(iR. 

Therefore, R is commutative. 

Co ro l l a ry 7. Let TTI>1 and 1 be relatively prime integers, and let R be 
a left s-unital ring satisfying the polynomial identity (36). Then R is commutative. 

In [6, Theorem B], Harmanci proved that "If TI>1 is a fixed integer and R 
is a ring with unity 1 which satisfies the identities fx", j ]=[x , yn] and [x"+1, y] = 
=[x, Y + 1 ] for each x, y£R, then R must be commutative." In [5, Theorem 6] BELL 
generalized this result. The following theorem further extends the result of Bell. 

Theorem 5. Let m>\ and TI> 1 be fixed relatively prime integers, and let 
r, s and t be fixed non-negative integers. If R is a left s-unital ring satisfies both the 
identities 

(37) ¿[x",y] = ± f [ x , yn]ys and x'[xm,y] = ±yr[x,ym]ys for all x,y£R, 

then R is commutative. 

Proof . According to Proposition 1 of [9], we prove the theorem for R with 1. 
Let b as in the proof of Lemma 8. Following the proof of Theorem 1 and Theo-
rem 2 of [16], we can prove that n[b, y] =0 and m[b, y]=0. By Lemma 4, [b, y]=0 
for all y£R. The argument in the proof of Lemma 8, gives N(R)QZ(R). Also, 
x=e22 and y = e2l+e22 fail to satisfy the polynomial identities in (37). Hence, by 
Theorem KB, C(R)QN(R), and thus C(R)QN(R)^Z(R). The argument of 
subdirectly irreducible rings can then be carried out for n and m, yielding integers 

1 and k>\ such that [xj-x, / ' ] = 0 and [x^-x, ymt]=0 for all x,y£R. Let 
/ ( x ) = ( x ' - x ) * - ( x J ' - x ) . Then 0=[/(x) , yn*]=rii[f(x), y]y"'~1, and 0=[ / (x) , = 
=m2[/(x), y]ymt~1. By Lemma 4 and Lemma 5, [f(x),y]/=0 for all x,y£R, 
and r=max {ttj2—1, ti2—1}. Therefore, f(x)£Z(R). Since / ( x ) = x 2 g ( x ) - x with 
g(x) having integral coefficients, Theorem H' shows that R is commutative. 
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C o r o l l a r y 8 ([4, Theorem 6]). Lei m > 1 and n > 1 be relatively prime positive 
integers. If R is any ring with Unity 1 Satisfies both thé identities [x™, y] = [x, ym] 
and [x",y] = [x,yn] for all x,y£R, then R is commutative. 

R e m a r k 3. In case m = 0 and 1, Theorem 1 need not be true for right 
.?-unital ring. Also, when m=0 and t—1, Corollary 4 is not valid for j-unital 
ring. In fact we have the following example. 

Example 3. Let K be a field. Then, the non-commutative ring , 

has a right identity element and satisfies the polynomial identity x[x,>']=0 for all 
x, y£R. Hence, in the case m=0 and n>0, Theorem 1 need not be true for right 
s-unital rings. As a matter of fact, Example 3 disproves Theorems 1, 3, 4, and 5 for 
right s-unital case whenever both r and t are positive. 
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