On commutativity of left s-unital rings

HAMZA A. S. ABUJABAL

1. Introduction. In this paper we study the commutativity of a left s-unital ring R satisfying the polynomial identity

$$
\begin{equation*}
x^{t}\left[x^{n}, y\right]= \pm y^{r}\left[x, y^{m}\right] y^{s} \quad \text { for all } \quad x, y \in R, \tag{1}
\end{equation*}
$$

where m, n, r, s and t are fixed non-negative integers. To establish commutativity, we need some extra conditions. The results of this paper generalize some of the wellknown commutativity theorems.
2. Preliminary results. Throughout the present paper, R will represent an associative ring (not necessarily with unity 1), $Z(R)$ the center of $R, C(R)$ the commutator ideal of $R, N(R)$ the set of all nilpotent elements in $R, N^{\prime}(R)$ the set of all zero-divisors in R, and R^{+}the additive group of R. As usual, for each $x, y \in R$, we write $[x, y]=x y-y x$. By $G F(q)$ we mean the Galois field (finite field) with q elements, and $(G F(q))_{2}$ the ring of all 2×2 matrices over $G F(q)$. Set

$$
e_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad e_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad e_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \text { and } \quad e_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

in $(G F(p))_{2}$, for a prime p.
Definition 1. A ring R is called left (resp. right) s-unital if $x \in R x$ (resp. $x \in x R$) for each $x \in R$. Further, R is called s-unital if it is both left as well as right s-unital, that is, $x \in x R \cap R x$ for each $x \in R$.

Definition 2. If R is an s-unital (resp. a left or right s-unital) ring, then for any finite subset F of R, there exists an element $e \in R$ such that $e x=x e=x$ (resp. $e x=x$ or $x e=x$) for all $x \in F$. Such an element e is called the pseudo (resp. pseudo left or pseudo right) identity of F in R.

Definition 3. For any positive integer n, the ring R is said to have property $Q(n)$ if for all $x, y \in R, n[x, y]=0$ implies $[x, y]=0$.

Received June 7, 1990 and in revised form July 16, 1991.

The property $Q(n)$ is an H-property in the sense of [9]. It is obvious that every n-torsion free ring R has the property $Q(n)$, and every ring has the property $Q(1)$. Also, it is clear that if a ring R has the property $Q(n)$, then R has the property $Q(m)$ for every divisor m of n.

In the proof of our results, we shall require the following well-known results.
Lemma 1 ([3, Lemma 2]). Let R be a ring with unity 1 , and let x and y be elements in R. If $k x^{m}[x, y]=0$ and $k(x+1)^{m}[x, y]=0$ for some integers $m \geqq 1$ and $k \geqq 1$, then necessarily $k[x, y]=0$.

Lemma 2 ([14, Lemma 3]). Let x and y be elements in a ring R. If $[x,[x, y]]=0$, then $\left[x^{k}, y\right]=k x^{k-1}[x, y]$ for all integers $k \geqq 1$.

Lemma 3 ([18, Lemma 3]). Let R be a ring with unity 1 , and let x and y be elements in R. If $\left(1-y^{k}\right) x=0$, then $\left(1-y^{k m}\right) x=0$ for some integers $k>0$ and $m>0$.

Lemma 4. Let x and y be elements in a ring R. Suppose that there exists relatively prime positive integers m and n such that $m[x, y]=0$ and $n[x, y]=0$. Then $[x, y]=0$.

Lemma $5([4$, Theorem $4(C)])$. Let R be a ring with unity 1. Suppose that for each $x^{\prime} \in R$ there exists a pair n and m of relatively prime positive integers for which $x^{n} \in Z(R)$ and $x^{m} \in Z(R)$. Then R is commutative.

Following results play an important role in proving the main results of this paper. The first is due to Kezlan [10, Theorem] and Bell [3, Theorem 1] (also see [9, Proposition 2]), the second and third are due to Herstein.

Theorem:KB. Let f be a polynomial in n non-commuting indeterminates x_{1}, \ldots, x_{n}, with relatively prime integral coefficients. Then the following are equivalent:
(1) For any ring satisfying the polynomial identity $f=0, C(R)$ is a nil ideal.
(2) For every prime $p,(G F(p))_{2}$ fails to satisfy $f=0$.
(3) Every semi-prime ring satisfying $f=0$ is commutative.

Theorem H ([7, Theorem 18]). Let R be a ring and let $n>1$: be an integer. Suppose that $x^{n}-x \in Z(R)$ for all $x \in R$. Then R is commutative.

Theorem H^{\prime} ([8, Theorem]). If for every x and y in a ring R we can find a polynomial $\dot{p}_{x, y}(t)$ with integral coefficients which depends on x and y such that $\left[x^{2} p_{x, y}(x)-x, y\right]=0$, then R is commutative.
3. Main Results. Now, we present our results.

Theorem 1. Let $n>1, m, r, s$ and t be fixed non-negative integers, and let R be a left s-unital ring satisfying the polynomial identity (1). Further, if R possesses $Q(n)$, then R is commutative.

Following lemma shows that the ring considered in Theorem 1 is in fact an s-unital ring. According to Proposition 1 of [9] this lemma enables us to reduce the proof of Theorem 1 to a ring with unity 1.

Lemma 6. Let $n>0, m, r, s$ and t be fixed non-negative integers such that $(r, n, s, m, t) \neq(0,1,0,1,0)$, and let R be a left s-unital ring satisfying the polynomial identity (1). Then R is s-unital.

Proof. Let x and y be arbitrary elements in R. Suppose that R is a left s-unital ring. Then there exists an element $e \in R$ such that $e x=x$ and $e y=y$. Replace x by e in (1). Then $e^{t+n} y-e^{t} y e^{n}= \pm\left(y^{r} e y^{m+s}-y^{r+m} e y^{s}\right)$. Thus $y=y e^{n} \in y R$ for all $y \in R$. Therefore, R is s-unital.

Lemma 7. Let $n>0, m, r, s$ and t be fixed non-negative integers, and let R be a ring satisfying the polynomial identity (1). Then $C(R)$ is nil.

Proof. Let $x=e_{11}$ and $y=e_{12}$. Then x and y fail to satisfy the polynomial identity (1) whenever $n>0$ except for $r=s=0, m=1$. In this later case one can choose $x=e_{12}$ and $y=e_{21}$. By Theorem KB,

$$
\begin{equation*}
C(R) \subseteq N(R) \tag{2}
\end{equation*}
$$

Combining Lemma 7 with Theorem KB gives the following commutativity theorem for semi-prime rings.

Theorem 2. Let $n>0, m, r, s$ and t be fixed non-negative integers. If R is a semi-prime ring satisfies the polynomial identity (1), then R is commutative.

Lemma 8. Let $n>1, m, r, s$ and t be fixed non-negative integers, and let R be a ring with unity 1 . Suppose that R satisfies the polynomial identity (1). Further, if R has $Q(n)$, then $N(R) \subseteq Z(R)$.

Proof. If $a \in N(R)$, then there exists a positive integer p such that

$$
\begin{equation*}
a^{k} \in Z(R) \quad \text { for all } . k \geqq p, \quad \text { and } p \text { minimal. } \tag{3}
\end{equation*}
$$

Let $p=1$. Then $a \in Z(R)$. Suppose that $p>1$ and $b=a^{p-1}$. Replace x by b in (1) to get $b^{t}\left[b^{n}, y\right]= \pm y^{r}\left[b, y^{m}\right] y^{s}$. In view of (3) and the fact that ($p-1$) $n \geqq p$ for $n>1$,

$$
\begin{equation*}
y^{r}\left[b, y^{m}\right] y^{s}=0 \quad \text { for all } \quad y \in R . \tag{4}
\end{equation*}
$$

Now, replace x by $1+b$ in (1) to get $(1+b)^{t}\left[(1+b)^{n}, y\right]= \pm y^{r}[1+b, y] y^{s}$. As $1+b$
is invertible, using (4), the last identity gives

$$
\begin{equation*}
\left[(1+b)^{n}, y\right]=0 \quad \text { for all } \quad y \in R \tag{5}
\end{equation*}
$$

Combining (3) and (5) yield $0=\left[(1+b)^{n}, y\right]=[1+n b, y]=n[b, y]$. Now, $Q(n)$ implies that $[b, y]=0$ for all $y \in R$, that is $a^{p-1} \in Z(R)$. This contradicts the minimality of p. So, $p=1$ and $a \in Z(R)$. Therefore,

$$
N(R) \cong Z(R)
$$

Remark 1. Combining (2) and (2'), one gets

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) \tag{6}
\end{equation*}
$$

for any ring R with unity 1 which satisfies the polynomial identity (1) for all fixed non-negative integers $n>1, m, r, s$ and t and whenever R has $Q(n)$. Hence, in view of (6), $[x,[x, y]]=0$ for all $x, y \in R$ and thus the conclusion of Lemma 2 holds. In the proof of Theorem 1, we shall therefore routinely use Lemma 2 without explicit mention.

Proof of Theorem 1. According to Lemma 6, R is s-unital. Therefore, in view of Proposition 1 of [9], it suffices to prove the theorem for R with unity 1.

It $m=0$, then (1) gives $x^{t}\left[x^{n}, y\right]=0$. Thus, $n x^{t+n-1}[x, y]=0$. Replace x by $x+1$ and apply Lemma 1 to obtain $n[x, y]=0$ which by $Q(n)$, we get $[x, y]=0$ for all $x, y \in R$. Therefore, R is commutative.

Suppose that $m \geqq 1$. Let $q=\left(p^{t+n}-p\right.$) (for a prime p). Then from (1) we have $q x^{t}\left[x^{n}, y\right]=\left(p^{t+n}-p\right) x^{t}\left[x^{n}, y\right]=p^{t+n} x^{t}\left[x^{n}, y\right]-p x^{t}\left[x^{n}, y\right]=(p x)^{t}\left[(p x)^{n}, y\right] \mp$ $\mp p y^{r}\left[x, y^{m}\right] y^{s}=(p x)^{t}\left[(p x)^{n}, y\right] \mp y^{r}\left[(p x), y^{m}\right] y^{s}=0$. Therefore, $q n x^{t+n-1}[x, y]=0$. If we set $k=q n$, then $k[x, y]=0$ and thus $\left[x^{k}, y\right]=k x^{k-1}[x, y]=0$. So

$$
\begin{equation*}
x^{k} \in Z(R) \text { for all } x \in R . \tag{7}
\end{equation*}
$$

We consider two cases:
Case (a): If $m>1$, then $x^{t}\left[x^{n}, y\right]= \pm m[x, y] y^{r+s+m-1}$ and $x^{2}\left[x^{n}, y^{m}\right]= \pm$ $\pm m\left[x, y^{m}\right] y^{m(r+s+m-1)}$. So $m x^{t}\left[x^{n}, y\right] y^{m-1}=-m\left[x, y^{m}\right] y^{m(r+t+m-1)}$. By using (1), we obtain $m y^{r}\left[x, y^{m}\right] y^{s+m-1}=m[x, y] y^{m(r+s+m-1)}$. Using Lemma 3, we get

$$
\begin{equation*}
m\left[x, y^{m}\right] y^{r+s+m-1}\left(1-y^{k(m-1)(r+s+m-1)}\right)=0 \quad \text { for all } x, y \in R . \tag{8}
\end{equation*}
$$

Now, by (6), the polynomial identity (1) becomes

$$
\begin{equation*}
n x^{t+n-1}[x, y]= \pm m y^{r+s+m-1}[x, y]= \pm m[x, y] y^{r+s+m-1} \quad \text { for all } \quad x, y \in R \tag{9}
\end{equation*}
$$

It is well-known that R is isomorphic to a subdirect sum of subdirectly irreducible rings R_{i} ($i \in I$, the index set). Each R_{i} satisfies (1), (6), (7), (8) and (9). We consider the ring $R_{i}(i \in I)$. Let S be the intersection of all non-zero ideals of R_{i}. Then $S \neq(0)$, and $S d=0$ for any central zero-divisor d.

Let $a \in N^{\prime}\left(R_{i}\right) . \quad$ By (8$), \quad m\left[x, a^{m}\right] a^{r+s+m-1}\left(1-a^{k(m-1)(r+s+m-1)}\right)=0$. If $m\left[x, a^{m}\right] a^{r+s+m-1} \neq 0$, then $a^{k(m-1)(r+s+m-1)}$ and $1-a^{k(m-1)(r+s+m-1)}$ are central zero-divisors. So $(0)=S\left(1-a^{k(m-1)(r+s+m-1)}\right)=S \neq 0$, which is a contradiction. Thus

$$
\begin{equation*}
m\left[x, a^{m}\right] a^{r+s+m-1}=0 \quad \text { for all } \quad x \in R_{i} \tag{10}
\end{equation*}
$$

From (9) and (10), $n x^{t+n-1}\left[x, a^{m}\right]= \pm m\left[x, a^{m}\right] a^{m(r+s+m-1)}=0$ and $n\left[x, a^{m}\right]=0$. Therefore, $n m[x, a] a^{m-1}=0$. Now,

$$
n^{2} x^{2+n-1}[x, a]=n\left(n x^{2+n-1}[x, a]\right)= \pm n m[x, a] a^{+s+m-1}=0
$$

and $n^{2}[x, a]=0$. But $\left[x^{n^{2}}, a\right]=n^{2} x^{n^{2}-1}[x, a]$. Therefore,

$$
\begin{equation*}
\left[x^{n^{2}}, a\right]=0 \quad \text { for all } \quad x \in R_{t} . \tag{11}
\end{equation*}
$$

If $c \in Z\left(R_{i}\right)$, then by (1), $\quad\left(c^{t+n}-c\right) x^{t}\left[x^{n}, y\right]=(c x)^{t}\left[(c x)^{n}, y\right]-c x^{t}\left[x^{n}, y\right]=$ $(c x)^{t}\left[(c x)^{n}, y\right] \mp y^{r}\left[(c x), y^{m}\right] y^{s}=0$ and thus $n\left(c^{t+n}-c\right) x^{t+n-1}[x, y]=0$. By Lemma 1 $n\left(c^{t+n}-c\right)[x, y]=0$. So

$$
\begin{equation*}
\left(c^{t+n}-c\right)\left[x^{n}, y\right]=0 \quad \text { for all } \quad x, y \in R_{i} . \tag{12}
\end{equation*}
$$

Using (7), we get

$$
\begin{equation*}
\left(y^{k(t+n)}-y^{k}\right)\left[x^{n}, y\right]=0 \quad \text { for all } \quad x, y \in R_{i} . \tag{13}
\end{equation*}
$$

Suppose that $y \in R_{i}$. If $\left[x^{n}, y\right]=0$, then $\left[x^{n^{2}}, y^{j}-y\right]=0$ for all positive integers j and $x \in R_{i}$. If $\left[x^{n^{2}}, y\right] \neq 0$, then $\left[x^{n}, y\right] \neq 0$, for $\left[x^{n}, y\right]=0$ implies that $\left[x^{n^{2}}, y\right]=0$, which is a contradiction. If $\left[x^{n}, y\right] \neq 0$, then (13) implies that $y^{k(t+n)}-y^{k}$ is a zerodivisor. Therefore, $y^{k(t+n-1)+1}-y$ is also a zero-divisor. By (11), we have

$$
\begin{equation*}
\left[x^{n^{2}}, y^{k(t+n-1)+1}-y\right]=0 \quad \text { for all } \quad x, y \in R_{i} \tag{14}
\end{equation*}
$$

As each R satisfies (14), the original ring R also satisfies (14). But R has $Q(n)$. Combining (14) with Lemma 2, we obtain $\left[x, y^{k(t+n-1)+1}-y\right]=0$. Therefore, R is commutative by Theorem H .

Case (b): Let $m=1$. Then $x^{\prime}\left[x^{n}, y\right]= \pm y^{n}[x, y] y^{s}$ and $n x^{r+n-1}[x, y]= \pm[x, y] y^{r+s}$. Replace x by x^{n} to get

$$
n x^{n(t+n-1)}\left[x^{n}, y\right]= \pm\left[x^{n}, y\right] y^{r+s}= \pm n x^{n-1}[x, y] y^{r+s}= \pm n x^{t+n-1}\left[x^{n}, y\right]
$$

Thus $n\left(1-x^{(n-1)(t+n-1)}\right) x^{r+n-1}\left[x^{n}, y\right]=0$, which in view of Lemma 3 , we get

$$
\begin{equation*}
n\left(1-x^{k(n-1)(t+n-1)}\right) x^{t+n-1}\left[x^{n}, y\right]=0 \quad \text { for all } \quad x, y \in R \tag{15}
\end{equation*}
$$

As in case (a) if $a \in N^{\prime}(R)$, then by (15), $n\left(1-a^{k(n-1)(t+n-1)}\right) a^{t+n-1}\left[a^{n}, y\right]=0$. Also, we can prove that

$$
\begin{equation*}
n a^{t+n-1}\left[a^{n}, y\right]=0 \quad \text { for all } \quad y \in R_{i} \tag{16}
\end{equation*}
$$

Now, we have $\pm\left[a^{n}, y \mid y^{r^{+s}}=n a^{n(t+n-1)}\left[a^{n}, y\right]=0\right.$, and thus $\left[a^{n}, y\right]=0$. Therefore, $[a, y] y^{r+s}=a^{t}\left[a^{n}, y\right]=0$. So

$$
\begin{equation*}
[a, y]=0 \text { for all } y \in R_{i} . \tag{17}
\end{equation*}
$$

If $c \in Z\left(R_{i}\right)$, then as in case (a), we get $\left(c^{t+n}-c\right)[x, y]=0$. In particular, by (7), $\left(x^{k(t+n)}-x^{k}\right)[x, y]=0$. for all $x, y \in R_{i}$. If $[x, y]=0$ for all $x, y \in R_{i}$, then R satisfies $[x, y]=0$ for all $x, y \in R$. Therefore, R is commutative. Now; if for each $x, y \in R_{i}$, $[x, y] \neq 0$, then $x^{k(t+n-1)+1}-x \in N^{\prime}\left(R_{i}\right)$, and hence $x^{k(t+n-1)+1}-x \in N^{\prime}(R)$. But the identity (17) is satisfied by R. So $\left[x^{k(t+n-1)+1}-x, y\right]=0$ for each $x, y \in R$. Therefore, R is commutative by Theorem H .

In Theorem 1, $Q(n)$ is essential. To see this, we consider the following example:
Example 1. Let

$$
A_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \text { and } \quad C_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

be elements of the ring of all 3×3 matrices over \mathbf{Z}_{2}, the ring of integers $\bmod 2$. If R is the ring generated by the matrices A_{1}, B_{1} and C_{1}, then using Dorroh construction with \mathbf{Z}_{2} (see [4, Remark]), we obtain a ring R with unity 1 . Then R is noncommutative and satisfies $\left[x^{2}, y\right]=\left[x, y^{2}\right]$ for all $x, y \in R$.

The presence of the identity in Theorem 1 is not superfluous. To see this we consider the following example.

Example 2. Let

$$
A_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad C_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

be elements of the ring of all 3×3 matrices over \mathbf{Z}_{2}. If R is the ring generated by the matrices A_{2}, B_{2} and C_{2}, then for each integer $n \geqq 1$, the ring R satisfies the identity $\left[x^{n}, y\right]=\left[x, y^{n}\right]$ for all $x, y \in R$, but R is not commutative.

Corollary 1 ([4, Theorem 5]). Let R be a ring with unity 1 , and $n>1$ be a fixed integer. If R^{+}is n-torsion free and R satisfies the identity $\left[x^{n}, y\right]=\left[x, y^{n}\right]$ for all $x, y \in R$, then R is commutative.

Corollary 2 ([15, Theorem 2]). Let $n \geqq m \geqq 1$ be fixed integers such that $m n>1$, and let R be an s-unital ring: Suppose that every commutator in R is m !-torsion free.

Further, if R satisfies the polynomial identity

$$
\begin{equation*}
\left[x^{n}, y\right]=\left[x, y^{m}\right] \text { for all } x, y \in R, \tag{18}
\end{equation*}
$$

then R is commutative.
Corollary 3 ([16, Theorem 1]). Let $n>1$ and m be positive integers, and let s and t be any non-negative integers. Let R be an associative ring with unity 1. Suppose

$$
\begin{equation*}
x^{t}\left[x^{n}, y\right]=\left[x, y^{m}\right] y^{s} \quad \text { for all } \quad x, y \in R . \tag{19}
\end{equation*}
$$

Further, if R is n-torsion free, then R is commutative.
In the following result we show that the conclusion of Theorem 1 is still valid if $Q(n)$ is replaced by requiring m and n to be relatively prime positive integers.

Theorem 3. Let $m>1$, and $n>1$ be relatively prime integers, and let r, s, and t be non-negative integers. If R is a left s-unital ring satisfies the polynomial identity (1), then R is commutative.

Proof. According to Lemma 6, R is s-unital. Therefore, in view of Proposition 1 of [9], it is sufficient to prove the theorem for R with unity 1.

Without loss of generality, we assume that R is subdirectly irreducible. Let $a \in N(R)$. Consider p and b as in Lemma 7. Following the proof of Lemma 7, we obtain $n[b, y]=0$ and $m[b, y]=0$. By Lemma 4, $[b, y]=0$. So $a^{p-1} \in Z(R)$, which contradicts the minimality of p. Therefore $p=1$ and $a \in Z(R)$. Thus $N(R) \cong Z(R)$. By Lemma 6,

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) \tag{20}
\end{equation*}
$$

The proof of (7) also works in the present situation. So there exists an integer k (as in the proof of Theorem 1) such that

$$
\begin{equation*}
x^{k} \in Z(R) \text { for all } x \in R . \tag{21}
\end{equation*}
$$

Let $u \in N^{\prime}(R)$. Using argument similar to one as in the proof of Theorem 1 (see (11)), we get $\left[x^{n^{2}}, u\right]=0$ and $\left[x^{m^{2}}, u\right]=0$. By Lemma 4,

$$
\begin{equation*}
[x, u]=0 \quad \text { for all } \quad x \in R \tag{22}
\end{equation*}
$$

If $c \in Z(R)$, then, as observed in the proof followed by (11), we can prove that $n\left(c^{t+n}-c\right)[x, y]=0$ and $m\left(c^{t+n}-c\right)[x, y]=0$. By Lemma 4,

$$
\begin{equation*}
\left(c^{t+n}-c\right)[x, y]=0 \quad \text { for all } \quad x, y \in R . \tag{23}
\end{equation*}
$$

By (21), $\left(y^{k(t+n)}-y^{k}\right)[x, y]=0$. Arguing as in the proof of Theorem 1, we finally get $y^{k(t+n-1)+1}-y \in N^{\prime}(R)$. Hence (22) yields $y^{k(t+n-1)+1}-y \in Z(R)$ for all $y \in R$. By Theorem H, R is commutative.

Corollary 4 ([16, Theorem 2]). Let m and n be relatively prime positive integers, and let s and t be any non-negative integers. Suppose that R is an associative ring with unity 1 satisfies the polynomial identity (19). Then R is commutative.

Next result deals with the commutativity of R satisfying (1) for the case $n=1$.
Theorem 4. Let R be a left s-unital ring, and let m, r, s and t be fixed nonnegative integers such that $(t, m, r, s) \neq(0,1,0,0)$. If R satisfies the polynomial identity

$$
\begin{equation*}
x^{t}[x, y]= \pm y^{\prime}\left[x, y^{m}\right] y^{s} \quad \text { for all } \quad x, y \in R \tag{24}
\end{equation*}
$$

then R is commutative.
Proof. According to Lemma $6, R$ is an s-unital ring. In view of proposition 1 of [9], we prove the result for R with unity 1 .

Case (I): If $m=0$, then the identity (24) becomes $x^{t}[x, y]=0$. By Lemma 1 , $[x, y]=0$ for each $x, y \in R$. Therefore, R is commutative.

Case (II): Let $m>1, x=e_{11}$, and $y=e_{12}$. Then x and y fail to satisfy the identity (24). By Theorem KB, $C(R) \subseteq N(R)$. If $a \in N(R)$, then there exists a positive integer p such that

$$
\begin{equation*}
a^{k} \in Z(R) \quad \text { for all } k \geqq p, \text { and } p \text { minimal. } \tag{25}
\end{equation*}
$$

If $p=1$, then $a \in Z(R)$. Now, let $p>1$, and let $b=a^{p-1}$. Replace y by b in (24) to get $x^{t}[x, b]= \pm b^{r}\left[x, b^{m}\right] b^{s}$. In view of (25), $x^{t}[x, b]=0$. By Lemma $1,[x, b]=0$ for all $x \in R$. Therefore, $a^{p-1} \in Z(R)$ which is a contradiction. Thus $p=1$, and hence $N(R) \subseteq Z(R)$. So $C(R) \subseteq N(R) \subseteq Z(R)$. The method of proof of Theorem 1 enables us to establish the commutativity of R.

Case (III): Let $m=1$. Then (24) becomes

$$
\begin{equation*}
x^{t}[x, y]= \pm y^{r}[x, y] y^{s} \quad \text { for all } \quad x, y \in R . \tag{26}
\end{equation*}
$$

We consider the following cases.
(i): Let $r=0$. Then (26) becomes

$$
\begin{equation*}
x^{x}[x, y]= \pm[x, y] y^{s} \quad \text { for all } \quad x, y \in R \tag{27}
\end{equation*}
$$

If $s=0$, then $t>0$. Thus, $x^{t}[x, y]= \pm[x, y]$ for all $x, y \in R$. Therefore, R is commutative by [11, Theorem]. Similarly, if $t=0$ in (27), then R is commutative by [11, Theorem]. Let $t>0$ and $s>0$. Then $x=e_{11}$, and $y=e_{12}$ fail to satisfy the identity (27). By Theorem KB, $C(R) \subseteq N(R)$. Now, for any positive integer q, we can easily see that

$$
\begin{equation*}
x^{\boxed{4}}[x, y]= \pm[x, y] y^{q t} \quad \text { for all } \quad x, y \in R \tag{28}
\end{equation*}
$$

If $a \in N(R)$, then for sufficiently large q, we get $x^{q t}[x, a]=0$ for all $x, y \in R$. By Lemma 1, $a \in Z(R)$. Therefore $C(R) \subseteq N(R) \subseteq Z(R)$.

Let $l=\left(p^{s+1}-p\right)>0$ for $s>0$ (p is a prime). Then we can prove that

$$
\begin{equation*}
x^{l} \in Z(R) \text { for all } x \in R \tag{29}
\end{equation*}
$$

By (28) and (29), $\left[x^{l t+1}, y\right]= \pm\left[x, y^{l s+1}\right]$ for all $x, y \in R$. In view of Proposition 3 (ii) of [9], there exists positive integer j such that $\left[x, y^{\left(s_{s+1}\right)^{\prime}}\right]=0$ for each $x, y \in R$. But $(l s+1)^{j}=l k+1$. Then (28) yields $[x, y] y^{l k}=0$, and so by Lemma 1, we obtain $[x, y]=0$ for all $x, y \in R$. Therefore, R is commutative.
(ii): If $s=0$, then (26) becomes

$$
\begin{equation*}
x^{x}[x, y]= \pm y^{r}[x, y] \quad \text { for all } \quad x, y \in R \tag{30}
\end{equation*}
$$

and so either $t>0$ or $r>0$. Without loss of generality, we can suppose that $r>0$. Clearly, $x=e_{11}$ and $y=e_{12}$ fail to satisfy (30). By Theorem KB, $C(R) \subseteq N(R)$. Following the same argument as in (i) we can prove the commutativity of R.
(iii): If $t=0$, then (26) gives

$$
\begin{equation*}
[x, y]= \pm y^{r}[x, y] y^{s} \quad \text { for all } \quad x, y \in R \tag{31}
\end{equation*}
$$

Then either $r>0$ or $s>0$. Clearly $x=e_{11}$ and $y=e_{12}$ fail to satisfy (31). Therefore, $C(R) \subseteq N(R)$. Let p and b as defined in case (II). Then (31) holds and $[x, b]=$ $= \pm b^{r}[x, b] b^{s}=0$ for all $x \in R$, which is a contradiction. Therefore $a \in Z(R)$ and $N(R) \subseteq Z(R)$. Thus

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) \tag{32}
\end{equation*}
$$

By (32) and Lemma 2, $[x, y]= \pm y^{r+s}[x, y]$ for all $x, y \in R$. Therefore, R is commutative by [11, Theorem].
(iv): Let $r>0, s>0$ and $t>0$. Then $x=e_{11}$ and $y=e_{12}$ fail to satisfy (26). Therefore, $C(R) \subseteq N(R)$. If p and b are as defined in case (II), then $x^{t}[x, b]= \pm$ $\pm b^{r}[x, b] b^{s}=0$. So by Lemma $1,[x, b]=0$, which contradicts the minimality of p. Therefore, $N(R) \cong Z(R)$, and thus

$$
\begin{equation*}
C(R) \subseteq N(R) \subseteq Z(R) \tag{33}
\end{equation*}
$$

By (33), the identity (26) becomes

$$
\begin{equation*}
x^{t}[x, y]= \pm[x, y] y^{\prime+s} \quad \text { for all } x, y \in R \tag{34}
\end{equation*}
$$

Following the proof of (i), we can establish the commutativity of R.
Corollary 5 ([12, Theorem]). Let t and m be two fixed non-negative integers. Suppose that R satisfies the polynomial identity

$$
\begin{equation*}
x^{t}[x, y]=\left[x, y^{m}\right] \text { for all } x, y \in R \tag{35}
\end{equation*}
$$

(i) If R is left s-unital, then R is commutative except when ($m, t)=(1,0)$.
(ii) If R is right s-unital, then R is commutative except when ($m, t)=(1,0)$; and $m=0$ and $t>0$.

Remark 2. In Corollary 5 , for $m>1, R$ is commutative by Theorem 1. However, for $m=0$ (resp. $m=1$ and $t>0$), it is easy to prove the commutativity of R.

Corollary 6. Let $n>0$ and m (resp. $m>0$, and n) be fixed non-negative integers. Suppose that a left (resp. right) s-unital ring R satisfies the polynomial identity

$$
\begin{equation*}
\left[x y, x^{n} \pm y^{m}\right]=0 \quad \text { for all } \quad \dot{x}, y \in R . \tag{36}
\end{equation*}
$$

If R has $Q(n)$, then R is commutative.
Proof. Actually, R satisfies the identity $x\left[x^{n}, y\right]= \pm\left[x, y^{m}\right] y$ for all $x, y \in R$. Therefore, R is commutative.

Corollary 7. Let $m>1$ and $n>1$ be relatively prime integers, and let R be a left s-unital ring satisfying the polynomial identity (36). Then R is commutative.

In [6, Theorem B], Harmanci proved that "If $n>1$ is a fixed integer and R is a ring with unity 1 which satisfies the identities $\left[x^{n}, y\right]=\left[x, y^{n}\right]$ and $\left[x^{n+1}, y\right]=$ $=\left[x, y^{n+1}\right]$ for each $x, y \in R$, then R must be commutative." In [5, Theorem 6] Bell generalized this result. The following theorem further extends the result of Bell.

Theorem 5. Let $m>1$ and $n>1$ be fixed relatively prime integers, and let r, s and t be fixed non-negative integers. If R is a left s-unital ring satisfies both the identities
(37) $x^{t}\left[x^{n}, y\right]= \pm y^{r}\left[x, y^{n}\right] y^{s}$ and $x^{t}\left[x^{m}, y\right]= \pm y^{r}\left[x, y^{m}\right] y^{s}$ for all $x, y \in R$, then R is commutative.

Proof. According to Proposition 1 of [9], we prove the theorem for R with 1. Let b as in the proof of Lemma 8. Following the proof of Theorem 1 and Theorem 2 of [16], we can prove that $n[b, y]=0$ and $m[b, y]=0$. By Lemma $4,[b, y]=0$ for all $y \in R$. The argument in the proof of Lemma 8, gives $N(R) \cong Z(R)$. Also, $x=e_{22}$ and $y=e_{21}+e_{22}$ fail to satisfy the polynomial ïdentities in (37). Hence, by Theorem KB, $C(R) \cong N(R)$, and thus $C(R) \cong N(R) \subseteq Z(R)$. The argument of subdirectly irreducible rings can then be carried out for n and m, yielding integers $j>1$ and $k>1$ such that $\left[x^{j}-x, y^{n^{2}}\right]=0$ and $\left[x^{k}-x, y^{m^{2}}\right]=0$ for all $x, y \in R$. Let $f(x)=\left(x^{j}-x\right)^{k}-\left(x^{j}-x\right)$. Then $0=\left[f(x), y^{n^{2}}\right]=n^{2}[f(x), y] y^{n^{2}-1}$, and $0=\left[f(x), y^{m^{m}}\right]=$ $=m^{2}[f(x), y] y^{m^{2}-1}$. By Lemma 4 and Lemma $5,[f(x), y] y^{r}=0$ for all $x, y \in R$, and $r=\max \left\{m^{2}-1, n^{2}-1\right\}$. Therefore, $f(x) \in Z(R)$. Since $f(x)=x^{2} g(x)-x$ with $g(x)$ having integral coefficients, Theorem H^{\prime} shows that R is commutative.

Corollary $8([4$, Theorem 6]). Let $m>1$ and $n>1$ be relatively prime positive integers. If R is any ring with unity 1 satisfies both the identities $\left[x^{m}, y\right]=\left[x, y^{m}\right]$ and $\left[x^{n}, y\right]=\left[x, y^{n}\right]$ for all $x, y \in R$, then R is commutative.

Remark 3. In case $m=0$ and $n \geqq 1$, Theorem 1 need not be true for right s-unital ring. Also, when $m=0$ and $t=1$, Corollary 4 is not valid for s-unital ring. In fact we have the following example.

Example 3. Let K be a field. Then, the non-commutative ring $R=\left(\begin{array}{ll}K & 0 \\ K & 0\end{array}\right)$, has a right identity element and satisfies the polynomial identity $x[x, y]=0$ for all $x, y \in R$. Hence, in the case $m=0$ and $n>0$, Theorem 1 need not be true for right s-unital rings. As a matter of fact, Example 3 disproves Theorems 1, 3, 4, and 5 for right s-unital case whenever both r and t are positive.

References

[1] H. Abu-Khuzam, H. Tominaga and A. Yaqub, Commutativity theorems for s-unital rings satisfying polynomial identities, Math. J. Okayama Univ., 22 (1980), 111-114.
[2] H. Abu-Khuzam and A. YaQub, Rings and groups with commuting powers, Internat. J. Math. and Math. Sci., 4 (1981), 101-107.
[3] H. E. Bell, On some commutativity theorems of Herstein, Arch. Math., 24 (1973), 34-38.
[4] H. E. Bell, On the power map and ring commutativity, Canad. Math. Bull., 21 (1978), 399404.
[5] H. E. Bell, On rings with commuting powers, Math. Japon., 24 (1979), 473-478.
[6] A. Harmanci, Two elementary commutativity theorems for rings, Acta Math. Acad. Sci. Hungar., 29 (1977), 23-29.
[7] I. N. Herstein, A generalization of a theorem of Jacobson, Amer. J. Math., 73 (1951), 756762.
[8] I. N. Herstein, The structure of a certain class of rings, Amer. J. Math., 75 (1953), 864-871.
[9] Y. Hirano, Y. Kobayashi and H. Tominaga, Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ., 24 (1982), 7-13.
[10] T. P. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japon., 27 (1982), 267-268.
[11] T. P. Kezlan, On identities which are equivalent with commutativity, Math. Japon., 29 (1984), 135-139.
[12] H. Komatsu, A commutativity theorem for rings, Math. J. Okayama Univ., 26 (1984), 109111.
[13] W. K. Nicholson and A. Yaqub, A commutativity theorem for rings and groups, Canad. Math. Bull., 22 (1979), 419-423.
[14] W. K. Nicholson and A. Yaqub, A commutativity theorem, Algebra Universalis, 10 (1980), 260-263.
[15] E. Psomopoulos, H. Tominaga and A. Yaqub, Some commutivity theorems for \boldsymbol{n}-torsion free rings, Math. J. Okayama Univ., 23 (1981), 37-39.
[16] E. Psomofoulos, Commutativity theorems for rings and groups with constraints on commutators, Internat. J. Math. and Math. Sci., 7 (1984), 513-517.
[17] M. A. Quadri and M. A. Khan, A commutativity theorem for left s-unital rings, Bull. Inst. Math. Acad. Sinica, 15 (1987), 323-327.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KING ABDUL AZIZ UNIVERSITY
P.O. BOX 31464

JEDDAH 21497
SAUDI ARABIA

