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Additive functions satisfying congruences 

I. KÁTAI1) and M. van ROSSUM-WIJSMULLER 

Dedicated to János Galambos on his fiftieth birthday 

1. Let A (A*) denote the class of additive (completely additive) functions 
having real values, AG (Aq) be the set of additive (completely additive) functions 
defined on the set of nonzero Gaussian integers and taking on complex values. 

It seems to us very probable that a condition 

(1.1) 2Fj(n+j) = O(modl) (V«6N) 
J = o 

for FjdA* (j=0, ...,k) implies that the Fj may take on only integer values, and 
similarly if G0, GX, ..., GK£AS and if 

(1-2) 2GJ(«+J)ZG 
¿=o 

holds for all a£G with the exception of a=0 , —1, ..., —k, then Gj(a)gG for 
every a£G\{0} and j—0, ..., k. In [1] the rational case was considered for k=3, 
while in [2] the Gaussian case for k=3, and the results support the above con-
jectures. 

We should like to mention that our conjecture is not true in general for the 
wider class of additive functions. We say that an additive function F is of a finite 
support mod 1, if F(p")= 0 (mod 1) holds for all but finitely many primes p and 
every a £ l . Similarly, we say that a function G£AC is of a finite support mod G if 
F(FIa)£G holds for all prime powers II" with the exception of at most finitely many 
primes IKiG. We guess that the conditions (1.1), (1.2) for additive functions imply 
that the Fj are of finite support mod 1, and G} are of finite support modG. It is 
quite easy to determine the additive functions F or G having finite support under 
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the conditions (1.1), (1.2), respectively. A recent result due to Robert Styer sup-
ports this conjecture (case k=2, (1.1) is assumed, F0, FX, F2£ A). 

If k— 1 then much more is known. Several years ago it was proved by E. Wirsing 
that F£A, ||F(h + 1)—F(«)||—0 (ti—•») implies that F (n )= t log n+H(n), where 
T is a suitable real number and H(n) is an integer valued additive function. Here 
[1*11 denotes the distance of x to the nearest integer. This was a conjecture of the first 
named author. By his method one can get that ||i^(w) + fi(/i-l-1)|| — 0 (n — 
F0,F^A implies that F0(tj)=t log n+H0(n), F1(n) = -x log n+H^n) and H0(n) = 
= 0 (mod 1) identically. 

It is quite plausible to believe that F0, Fx, ..., Fk£A, 

| | i ^ ( « + y ) | | - 0 as « - o o 
j=o 

implies that 

Fj(n) = TJ log h + Hj(n) 0 = 0 , . . . , k), 

¿ T j = 0, and ¿ f l > ( n + y ) = 0 ( m o d l ) . 
7=0 J=0 

Our purpose in this paper is to determine all those functions G„, ..., G5£A% for 
which (1.2) (k=5) holds true. This is formulated in Theorem 3 which is an easy 
consequence of Theorem 1 and 2. 

T h e o r e m 1. Let Hj£A* ( j = 0 , 1,2), 

(1.3) V(n) := H0(n) + Hx(n + 1) + #2(K + 2 ) - H 2 ( n + 4) - H^n + 5 )-H0(n + 6). 

Assume that V(n)= 0 (modi) for every n£ N. Then Hj(n)=0 (modi) holds for 
every j—0,1,2 and N. 

T h e o r e m 2. Let (7=0, 1, 2), and assume that 

(1.4) V(u):=H0(a) + H^a + 1) + H2(a + 2 ) - H 2 ( a + 4 ) - + 5 ) - H 0 ( a + 6) 

is a Gaussian integer for all a€<7\{0, - 1 , - 2 , - 4 , - 5 , —6}. Then Hj(a)£G for 
all a£G\{0} and j=0,1,2. 

2. Proof of Theorem 1. 

Lemma 1. If V(n)=0 (mod 1) holds for every n£N, then H}(ri) = 0 (mod 1) 
holds for « s 17 and j=0,1,2. 

Proof . The following ten expressions are integers and they are linear com-
binations of Hj(2), Hj(3) and H}{5) for j=0, 1, 2. 

1, ' ¿(4) 
2, F( 10) — V(3) + V(6) + V(2) 



Additive functions satisfying congruences 65 

3, F(20) + 3F( 1) + 5V(2) - 2F(3) + 2F(6) - F(7) - 2F(8) - 2V(9) -

-2F(12) -2F(50) 

4, F(28) + F(l) - V(2) - 2F(3) - F(5) - V(6) - F(1 1) + V(24) 

5, V(34) + 3F(1) + 2V(2) - 2F(3) + F( 5) + F(6) - F(7) - 2F(8) - F(9) + F(11) -

- 2F(12) - F(13) - F(15) - F(19) - F(21) - 2F(50) 

6, F(86) + 8F(1) + 4F(2) - 3F(3) + 3F(6) - F(7) - 4F(8) - 3F(9) - 4F(12) -

- F(13) - F(14) - F(15) - F(17) - F(18) - F(19) - F(21) + F(24) - F(43) -

- F(45) — 4F(50) 

7, F(90) - 7F(1) - 3F(2) - F(3) - F( 5) - 3F(6) + 4F(8) + F(9) - F(11) + 2F(12) + 

+ F(18) - F(21) + F(45) + 2F(50) 

8, F(110) + 2F(1) + 5F(2) + F(3) + 3F(6) - F(7) - F(8) - 2F(9) - F(11) - F(12) -

- F(13) - F(14) -2F(15) - F(17) - F(18) - F(23) + F(32) - F(50) 

9, F(184) + 4F(1) + 2F(2) + 3F(3) - F(5) - 2F(6) + F(7) + F(9) - F(11) + 3F(12) + 

+ F(13) + F(14) + F(18) + 3F(19) + 3F(21) - F(23) - F(29) + F(32) + 

+ F(45) + 2F(50) 

10, F(203) + 6F( 1 ) - F(2) - 2F(3) - F(5) + 2F(6) + 2F(7) - 3F(8) + 3F(9) + F( 11) + 

+ F(12) + 2F(13) + 2F(14) + 2F(15) + 2F(17) + F(18) + 3F(19)+4F(21) + 

+ 2F(23) + F( 25) + F(27) + F(29) + F(31) + F(37) + F(43) + F(45) + F(50) 

These conditions can be written in matrix form as RHT=0 (mod 1), where HT 

is the transpose of the vector 

H = [H0(2), H0(3), H0(5), H1(2), H,(3), H¿5), 2), H2{3), H2(5)] 

and R is the matrix with integer entries given by 

1 0 - 1 0 - 2 1 - 2 1 0 
- 6 1 1 1 0 - 1 4 0 - 2 

- 1 3 2 - 1 1 - 2 - 2 13 3 - 9 
6 2 - 2 4 - 5 3 - 8 6 0 

- 9 5 - 2 - 2 - 2 1 11 4 - 8 
- 1 1 4 - 5 3 - 1 3 4 19 15 - 2 0 

9 5 4 3 12 - 3 - 1 5 - 1 1 17 
- 8 - 3 0 - 5 0 - 1 12 2 - 8 
- 4 - 9 - 4 - 4 - 1 1 2 1 6 - 8 

- 1 1 0 -6 1 - 1 6 4 11 9 - 1 4 

5 
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Using Gaussian elimination over the integers, it follows that the third row is linearly 
dependent upon the others (but needed to perform the Gaussian elimination) and 
that Hj(2), Hj(3) and Hj(5) are integer valued for j=0, 1, 2. 

To show that the same is true for the other primes less than or equal to 17 we 
consider the following expressions, which are linear combinations of Hj(2), Hj(3) 
and Hj(5) alone and are therefore integer valued. Since V(ri) =0 (mod 1) it follows 
that Hj(p)=0 (mod 1) for j=0, 1, 2, p=7, 11, 13, 17. 

i, F(l) + tf0(7) 

ii, V(2) + Hx(l) 

iii, V(3) + H2(l) 

iv, V(5)-H2(7) + H0(U) 

v, V(6)-H1(7) + H1(U) 

vi, F(8) + #0(7) + #i(13) 

vii, F (12 ) - / / 2 (7 ) -^ 1 (13 ) + W1(17) 

viii, V(50) + H0(7) + H1(U)-H1(n)-H2(l3) 

ix, V(ll) — H0(ll) — H2(l3) + H0(n) 

x, F(18) + F(22) -(- V(14) — H0(l\) + H2(\3) + H2(l 1) 

xi, F ( 2 0 ) - i i 1 ( 7 ) - / f 2 ( l l ) + //0(13) 

xii, F(26) + F(30) -H Q (13 ) + HX(J) - H2(l) + //2(17). 

This proves Lemma 1. 
The proof of Theorem 1 is completed by verifying the inductive step which is 

done in the following 

Lemma 2. If V(n)=0 (1) for all ndN and Hj(n)=0 (1) for all nS 17 and 
0,1,2, then Hj(n)s= 0 (1) for all n£N and j=0,1,2. 

Proof . We prove the lemma indirectly. Assume that there is some n which is 
smallest possible for which Hj(n)^ 0(1) for j=0 or j— 1 or j=2. Then «=/?, 
p is a prime. Since V(p-6)^0 (1), and V(p-5)=0 (1), it follows that H2(p)^0 (1). 
From V(p—4)s0 (1) it follows that p and p+2 must be prime, and therefore 
p=2 (mod3). From F(p)=0 (1) it follows that p+6 is a prime as well. Since 
(/7+10) is divisible by 3, V(p+4)=0 implies that (/>+8) must be a prime and 
therefore p = 1 (mod 5). We now consider F(4p+6), which is equal to 

H0(4p + 6) + H, (4 p + 7) + H2(4p + 9) - H2(4p + 10) - Hx (4p + 11) - H0(4p + 12). 

But (4p+6)=0 (mod 5) and (4^ + l l ) = 0 (mod 5), while (4p + l0)=2(2p+5) and 
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(2/>+5)=0 (mod 3). Also (4p + 12)=4(/>+3) with (/>+3) composite and (4p+8)= 
=4(/>+2). Therefore F(4/>+6)=0 (1) means that H1(4p+7)+H2(p+2)=0 (1). 
If ^ 1 ( 4 p + 7 ) = 0 (1) the lemma is proved, since Hi(p)-Hi(p+2)=0 (1), which 
follows from V(p-2)=0 (1). Since p=2 (mod3), it follows that (4p+T)=3n. 
If n is composite, / / 1 (4^+7)=0 . 

If n is prime, then («+9)<2p since />>17. Therefore (n+k) is composite 
and less than 2p for k= — 1, 1, 3, 5, 7, 9, from which it follows that Hj(n+k)^0 (1) 
for these values of k and j=0, 1,2. Since V(n-1)=0 (1) and F ( n + 3 ) s 0 (1) 
one concludes that H^n)^0(1) means that n, « + 4 and n+8 must all be prime 
which is impossible. Hence H^ri)^0 (1) and therefore H2(p)~0 (1), which con-
cludes the proof of Lemma 2 and therefore the proof of Theorem 1. 

3. Proof of Theorem 2. To prove Theorem 2, clearly we may assume that H j are 
real valued functions. Let us observe furthermore that H(ea)=H(u) for each H£Aq 
and £= — 1,/, — /. We introduce the notations 

F + 1 ( a ) : = H0( a) + Hl(a+ 1) + H2(a + 2 ) - / / 2 ( a + 4 ) - a + 5 ) - ^ 0 ( a + 6), 

F + 1 (a ) := H 0 ( a ) + H t ( a + i ) a + 2i) - / / 2 ( a + 4/) - ^ ( a + 5/) - # 0 ( a + 6/) 

The norm of a is defined by N(a)=aa. The proof of Theorem 2 is also done 
by induction, this time using the norm of a. Because of Theorem 1, we need to 
prove Theorem 2 only for elements of G which are not real nor purely imaginary. 
The following lemma lists some properties of such elements. 

Two Gaussian integers fi=u+iv and y—c+di are congruent mod 5 in 
the arithmetic of G if u=c (mod 5) and v=d (mod 5) hold simultaneously. This 
is denoted by (u, v)=(c, d) (mod 5). 

L e m m a 3. Let a be a Gaussian integer such that: 
(i) a is a prime number, 

(ii) a = a + b i with a> fc>0 ; 
(iii) N(a) >13; 
(iv) (a, 6 )^(4 ,1) (mod 5). 

Then 
(A) N{a.-n)^N(a) for n= 1, 2, 3, 4, 5, 6 

and 
(B) both of a + 1 and a + i are composite numbers, and their norms are strictly 

less than 2N(a). 
In addition at least one of the assertions C, D, E holds true: 
(C) a + 2 is composite and N(a+2)<2N(a); 
(D) a+21 is composite and JV(a+2i)<2iV(a), furthermore iV(a—4i')sJV(a) 

and N(<x—ni)<N(<x) is true for n=2 and « = 3 ; 

5* 
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(E) N(<x—w+2/)<Af(a) for rt=2,3,4,5 and 6, while a—1+2/ is composite 
and N(a — 1 + 2i)<2N(cn). Moreover N(a—4i)^N(ai) while N(a-ki)<N(a) for 
k=2 and 3. 

Proof . Since jV(a)> 13 and (ii) holds, therefore a ^ 4 . Hence (A) follows 
easily. Also (B) is obviously true. Since a is a prime, a is not an associate of 1 +/ , 
therefore l + i is a divisor of a + 1 and of oc + i, and so they are composite num-
bers. N(a +1)=a2+b2+2a + 1, N(a+/)=a2 + b2+2b +1, therefore the second asser-
tion in (B) holds as well. 

We shall classify a according to its residue (mod 5). Let 

M(C) = {(0, 1), (0,4), (1, 1), (1, 4), (2, 2). (2, 3), (3, 0)}; 

M(D) = {(0,3), (1,0), (3,2), (4,0)}; 

M(E) = {(0, 2), (2, 0), (3, 3), (4, 4). 

Since a is a prime, therefore (a, b) (mod 5) belongs to exactly one of the sets M(C), 
M(D), M(E), (4, 1) (mod 5) is excluded by the condition (iv). We shall prove 
that the assertions (C), (D) and (E) are true if (a, b) (mod 5) belongs to M(C), 
M(D), M(E), respectively. 

Case M(C). If ( a , b ) £ M ( C ) (mod 5), then 5|iV(a+2), which can be seen 
easily. This implies that 2 + / | a + 2 , and so a + 2 is composite. Since 0, there-
fore a & 4. But a=4 cannot occur, therefore a > 4 and N(<x+2)=a2+b2+4(a+l)< 
< 2N(a) obviously holds. 

Case M(D). If (a,b)£M(D) (mod 5), then 5|iV(a+2/) which implies that 
a + 2 is composite. Since 6*1 , therefore N(a—ni)=N(a)+n(n—2b), and so 
n—2b is negative for n—2 and 3, nonpositive if n=4. This completes the proof 
of Case M(D). 

Case M(E). If (a, b)^M(E) (mod 5), then 5, and a^b (mod 2), since 
a is a prime. The case (a—b) = 1 cannot occur, furthermore 6*1 , whence we 
have that b^2 and a—b>2. By using these inequalities, we can prove (E) easily. 

Since the functions H j under the condition (1.4) satisfy the conditions of Theo-
rem 1, therefore we have that Hj (aa)=Hj (a)+H } (a)=0 (modi). This implies 
that it is enough to prove Theorem 2 either for a or for a. 

Lemma 4. If V(<x)=0 (mod 1) for all oc€G\{0, - 1 , - 2 , - 4 , - 5 , - 6 } then 
Hj(<x)t=Hj(oi.) (modi) for all oc€G\{0} and j=0,1,2. 

Proof . Let hj(a):=Hj(<x) — Hj(di). Then hj(ci) = — hj(oi). To prove the lemma, 
we prove that hj(a)=0 (mod 1) for j=0,1,2. We observe that, for j=0,1,2, 
hj(l± ) = 0 and hj(ri)—0 for all rational integers. 
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The complete additivity of the function Hs and the fact that Hj(eoi)=Hj{pi) 
for e= — 1, , — allows us to obtain the following 9 congruences modulo 1, which 
prove the assertion for those Gaussian primes with norm less than 20. The 9 con-
gruences are: 

i, h2(2 + i) s F + i (2 — 2i) + F + i (2 — 4/) + F + i (3 — 3i) — F+1(— 3 +1) = 0 (modi) 

ii, h0(2 - 3i) = V+i(2 - 3/) = 0 (mod 1) 

iii, h (3 - 20 = F+11 (3 - 3/) = 0 (mod 1) 

vi, hi(4-0 s V+1(— 1 + 0 - V + 1 ( - l - i ) = 0 (mod 1) 

v, (2 + 0 s V+i(4—4i) + V+i(4 — 2i) — F + i ( l — 3/) = 0 (mod 1) 

vi, h0(2 — i) = V+i(4—4i) + V+i(4 — 20 = 0 (mod 1) 

vii, / i 2 (4- i ) = V+'(4 — 3i) = 0 (mod 1) 

viii, h2(3 - 20 = V+i(3 -40 + V+i(3 - 2i) = 0 (mod 1) 

ix, h0(4 — i) = V+l(3 — 5i) + V+i(3 — i) = 0 (modi). 

We finish the proof by using induction. Let us assume that our Lemma 4 is 
not true. Let a be such an integer for which h j (a)^0 (mod 1) for at least 
one of the /'€ {0, 1,2}. Let us choose that a for which TV (a) is the smallest one. 
Then N(u)^20, and a is a Gaussian prime. We may assume furthermore that 
condition (ii) of Lemma 3 true also. 

It is clear that 

0 = V+1 (a — 6) — F + 1 (a — 6) = h0(<x-6) + h1(a-5) + 

+ / i 2 (a -4) —2) — hl(a — 1) — h0(a) (mod 1), 

0 = V+1(oc — 5) — F + 1 ( A — 5) = / J 0 ( A - 5 ) + / I 1 ( A - 4 ) + 

+ /i2(a — 3) — /i2(a — i) — h1(a) + h0(a+ 1) (mod 1). 

Since a + 1 is a composite number, and N(a—k)<N(oc) for l^k^6, we con-
clude that h0(rx)=0 (modi), and / i i(a)s0 (modi). 

To prove that h2(a)=0 (mod 1), we assume first that (iv) in Lemma 3 holds, 
i.e. that (a, b) ̂  (4, 1) (mod 5). We observe that 

0 = F + 1 (a —4) — F + 1 (a —4) = -A2(a) (modi) 
in Case M ( Q , 
(3.2) 0 = F+, '(a - 40 + F + , (a - 20 = 

= h0(a-4i)-h0(oi + 2i)-ha(a) + h2(oc-2i) + h1(a-3i)-h1(a + i) (mod 1). 

which implies that h2(oc)=0 (mod 1) in CaseD. In Case E we start from the re-
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lation 
-h0(<x + 2i) = F + 1 ( a - 6 + 20 - F+1(ct - 6 + 2i) = 0 (mod 1) 

whence, by (3.2) we deduce that h2(a)—0 (mod 1). 
Finally, we consider the case (a, ¿ )^(4 , 1) (mod 5). Since JV(a)s20, 

a 7*4+/. Since 5 is a divisor of N(a+2i), in the case ¿7* 1, a+2i is a com-
posite number and N(a+2i)c2N(ci), N(<x-ki)<N(a) (k= 1, 2, 3, 4) are sat-
isfied. Hence, by (3.2) we obtain that Ji2(a)s0 (modi) . If b = 1, then as 14. 
In this case N(a—k+4i)~zN(a) holds for every integer k in and from 
0=K+1(oc—6+4/)—F+1(a —6 + 4i)=0(mod 1) we deduce that / i 0(a+4/)=0(mod 1). 
Since a+3 / and a+2 i are composite numbers, and N(a+3i)<2N(a), jV(a+2/)< 
<2N(a), substituting first a by a, in (3.2), we get that /i2(a)=0 (mod 1). 

By this the proof of Lemma 4 is completed. 

Lemma 5. IfV( a )=0 (mod 1) holds for every a£G\{0 , - 1 , - 2 , - 4 , - 5 , - 6 } 
then Hj(pi)=0 (mod 1) for every a6<7\{0}, with iV(a)s 13, j=0, 1, 2. Further-
more, # 2 ( 4 + 0 = 0 (mod 1). 

P roof . The Gaussian primes n with N(it)< 17 are ( l ± / ) , ( 2 ± / ) and (3±2 ). 
By Lemma 4 it suffices to consider either n or n. Also by Lemma 4, 

Hj(a)-Hj(a) = Hj(a) + Hj(a) = 2Hj(a) = 0 (mod 1). 

This allows us to replace Hj(a) by ±Hj(a), it means also that 2Hj(a)s 
= 0 (mod 1) holds for every a. 

The additivity of the functions Hj , together with the factorization of Gaussian 
integers, allows us to obtain the following ten congruences, in the given order, which, 
as can be seen easily, prove the lemma: 

i, ^ ( 2 + 0 = F + i (3 — /) + V+1(—2 + i) = 0 (mod 1). 

ii, H2(2 + 0 = F+ 1 (4 + 6/) + F+'(5 + 0 + F+ 1(2/) + F+ 1 ( / ) + 

+ F+1(—2 + /) = 0 (modi) 

iii, H2(3-20 = ^ + 1 (6 + 2i) + F + 1 ( 0 + F + 1 (— 2 + i) + F + 1 (2 + 20 = 0 (mod 1) 

iv, H0( 3 + 2i) = F+ i(9 + /) + F + 1 (3 + 20 + F + i (5 - 2i) + 

+ F+1(—2 + /) + F+1(— 1 + 2/) + F+1(—1 + /) = 0 (mod 1) 

v, ^ ( 2 + 30 s F+ 1 (4 + 20 + F + 1 (20 + F + 1 ( l + 30 + 

+ F+1(— 1 + 2 0 + F + 1 (—1+0 = 0 (mod 1) 

vi, H0(2—i) = F+ i(6) + F + 1 ( l + 0 + V+t(5 + 0 + F + 1 (20 + F + 1 (0 = 0 (mod 1) 

vii, J70(l + 0 = F+'(4 - 20 + V+1(-1 + 0 = 0 (mod 1) 
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viii, ^ ( 1 + / ) = F + 1 (3 + i) + F + 1 ( - l + z) + r + 1 ( - l + 2 0 + r + ' ( 4 - / ) + 
+ F + 1 ( l + 3 / ) + F + 1 ( - 2 + i) = 0 (modi) 

ix, H2( 1 + 0 = F + i (5 - i) + F + 1 ( l + 3/) + F+ i(4) + F+1(— 1 + 0 + 

+ F+1(— 1 + 2i) = 0 (modi) 

x, H2{4 + i) = F+ i(4) + F + 1 ( - 1 + i) + V+i(5 - /) = 0 (mod 1). 

The final step of the proof of Theorem 2 is contained in the next 

Lemma 6. If F (a )=0 (mod 1) holds for all a€G\{0, - 1 , - 2 , - 4 , - 5 , - 6 } , 
and Hj(y)=0 (mod 1) for all nonzero a with N(a) < 17 and y'=0,1,2, then 
Hj(a)=0 (mod 1) (y=0,1 , 2) holds for all nonzero Gaussian integer. 

Proof . Assume that the assertion is not true. Let a be such a Gaussian 
integer with smallest norm for which Hj(a)^0 (modi) for at least one j. 
By Lemma 4, we may assume that a—a+bi, a>b>0. It is clear that a is a 
Gaussian prime. 

Since iV(a)> 13, taking into account the relations, F+1(a— 6)=0, F+1(a—5) = 
=0 (mod 1), by Lemma 3 we deduce that H 2 (a )^0 (mod 1). 

Let us consider first the case (a, fc)=(4,1) (mod 5) which was excluded in 
Lemma 3. If (a, fe)=(4,1) (mod 5), then a+2i is composite and N(ot+2i)< 
<2iV(a). If b* 1, then b^6 and F + i ( a - 4 ; ) = 0 (mod 1) implies that H2{a) = 
=0 (mod 1). The case a = 4 + / was treated in Lemma 5, so we may assume that 
a * 4 + i . Thus we may assume that 6 = 1 and AS 14. Then N(cc—k+4i)<N(a) 
for Jk=1,2, 3,4, 5,6, and F + 1 ( a - 6 + 4 f ) = 0 (mod 1) implies that H0(<x+4i)sO 
(mod 1). Since a+2i and a+3i are composite numbers with norm less than 2N(a), 
F+ i(a—2/)=0 (mod 1) implies that H2(a)=0 (mod 1). 

In all remaining cases Lemma 3 enables us to apply the induction hypothesis. 
In CaseC we consider F + 1 (a—4)=0 (modi), while in CaseD we take 

F + , (a—4i)s0 (modi), and hence deduce immediately that / / 2(a)=0 (modi) . 
If CaseE is satisfied, then we start from F + 1 ( a — 6 + 2 i ) s 0 (modi), which im-
plies that i / 0 ( a+2 / )=0 (modi), and consider F+ i(a—4/)=0, whence we have 
that H2(a)=0 (mod 1). 

By this the proof of Lemma 6 and therefore of Theorem 2 is completed. 

4. The next theorem is an easy consequence of our Theorem 2. 

Theorem 3. Let F0, ..., F^Aq which satisfy the relations 

(4.1) F0(a) + F 1 ( a+ l ) + F2(a + 2) + F3(a + 3) + F4(a + 4) + F8(a + 5) = 0 (modG) 

for all a€G\{0, - 1 , - 2 , - 3 , - 4 , - 5} . Then Fj(a)=0 (modG) holds for all 
a€G\{0} and j=0,..., 5. 
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Proof . It is enough to prove our theorem for functions F} which take on 
real values. 

Let us write (4.1) in the form 

U(«) := F0(a) + F 1 ( a+ l ) + F2(a + 2) + F,(a + 3) + F4(a+4) + Fs(a + 5) + F6(a + 6), 

where Fe$A£ is identically zero. Then 

£T0(oc) := F„(a) - F6(a), Fx(a) := F^a) - F6(a), tf2(a) = F2(a) - F4( a). 

Since J7(a)— £/(—a—6)=0 (modi), therefore 

(4.2) 

# 0 (a ) + i/1(a + l ) + # 2 ( a + 2 ) - # 2 ( a + 4 ) - / / 1 ( a + 5)-J7 0 (a + 6) = 0 (modi ) 

is satisfied for all Gaussian integers a for which the sequence a, a+1 , a + 2 , a + 4 , 
a+5 , a + 6 does not contain the zero. Thus the conditions of Theorem 2 are sat-
isfied, consequently F0(a)—F6(a) = 0, F1(a)=Fs(ce), F2(a)=F4(a) (modi) holds for 
all nonzero Gaussian integers a. Especially F0(a)=0 (mod 1). If we write now 

with F_1^Aq, F_1(a)=0 (mod 1) identically, then we get similarly, that F_x(a) = 
=Fs(a), F0(a)=F4(a), F1(a) = F3(a) (mod 1) which implies that F5(a)=F4(a)=F1(a) = 
s f 2 ( a ) = 0 (mod 1), and the recursion (4.1) finally implies that F3(a)=0 (mod 1) 
true as well. 

By this our theorem is proved. 

[1] I . KATAI, On additive functions satisfying a congruence, Acta Sci. Math., 47 (1984) , 8 5 — 9 2 . 
[2] M. VAN ROSSUM-WUSMULLER, Additive functions on the Gaussian integers, Publicationes Math. 

Debrecen (in print). 

0 = U (—6 —a) = Fe(a) + F5(a+ 1) + F4(<x + 2)+F3(a + 3) + 

+ F2(a + 4) + F1(a + 5) + F0(a + 6) (modi). 
Let 

V(oc ):= F-1(oc)+F0(oc)+ . . .+FB( a + 5) 
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