## On equivalence of two variational problems in $k$-Lagrange spaces

MAGDALEN SZ. KIRKOVITS

1. Introduction. In [3] we have considered generalization of the equivalence of two variational problems for single integrals treated by A. Moór ([7]) in Lagrange spaces $\mathbf{L}^{* n}=\left(M, \mathscr{L}^{*}\right)$ and $\mathbf{L}^{n}=(M, \mathscr{L})([6])$. This problem has the following form

$$
\begin{gather*}
\mathbf{E}_{i}\left(\mathscr{L}^{*}(x, y)\right)=\lambda(x, y) \mathbf{E}_{i}(\mathscr{L}(x, y)), \quad\left(\mathbf{E}_{i}:=\frac{d}{d t} \dot{\partial}_{i}-\partial_{i}, \partial_{i}:=\partial / \partial y^{i}, \partial_{i}:=\partial / \partial x^{i}\right),  \tag{1.1}\\
\lambda(x, y) \neq 0,
\end{gather*}
$$

where $y$ stands for $\dot{x}, \mathscr{L}$ and $\mathscr{L}^{*}$ are the two Lagrangians, and $\lambda$ depends not only on $x$ but on $y$ too. We have given the transformation of the Lagrangians as a necessary and sufficient condition for this equivalence. Moreover, we have shown geometrical consequences of the equivalence relation (1.1).

In 1975 A. Moór ([8]) gave a definition of equivalence of two variational problems for multiple integrals with the following relation

$$
\begin{equation*}
\mathbf{E}_{i}\left(\mathscr{L}^{*}\left(x^{s}, y_{a}^{s}\right)\right)=\lambda_{i}^{j}\left(x^{s}\right) \mathbf{E}_{i}\left(\mathscr{L}^{( }\left(x^{s}, y_{a}^{s}\right)\right), \quad \operatorname{rank}\left\|\lambda_{i}^{j}(x)\right\|=n \tag{1.2}
\end{equation*}
$$

$\left(y_{a}^{s}:=\partial x^{s} / \partial t^{\alpha}, \mathbf{E}_{i}:=\frac{\partial}{\partial t^{\alpha}} \partial_{i}^{x}-\partial_{i}(\right.$ summation over $\left.\alpha) ; i, j, s=\overline{1, n} ; \alpha=\overline{1, k}, k<n\right)$.
He investigated the properties of this relation but not in geometrical manner.
In [4] and [5] we have constructed a geometrical model for multiple integrals in the calculus of variations. Now we study a generalization of the Moór equivalence in geometrical manner using the theory of $k$-Lagrange geometry.
2. The Moór equivalence of multiple integral variational problems in $k$-Lagrange spaces. Consider the total space $E=\stackrel{k}{\oplus} T M=\stackrel{1}{T M} \oplus \stackrel{2}{T M} \oplus \ldots \oplus T \stackrel{k}{M}$ of the vector

[^0]bundle $\eta=(\underset{1}{\oplus} T M, \pi, M)$ with canonical coordinates $\left(x^{i}, y_{a}^{i}\right)$ where $i$ runs from 1 to $n$ and $\alpha$ runs from 1 to $k$. By the theory of $k$-Lagrange spaces $L_{k}^{n}$ ([4], [5]) we have a regular Lagrangian $\mathscr{L}: \oplus_{1}^{k} T M \rightarrow \mathbf{R}$ with the metric tensor field
\[

$$
\begin{equation*}
g_{i j}^{\alpha \beta}(x, y)=\partial_{i}^{\alpha} \partial_{j}^{\beta} \mathscr{L}(x, y) ; \text { rank }\left\|g_{i j}^{\alpha \beta}\right\|=n k \quad\left(\partial_{i}^{\alpha}:=\partial / \partial y_{\alpha}^{i}\right) . \tag{2.1}
\end{equation*}
$$

\]

Now let $\mathscr{L}$ be defined on class $C^{2}$ of the admissible submanifold $C_{k}, \bar{C}_{k}, \ldots$ on $M$, where

$$
\begin{equation*}
C_{k}: x^{i}=x^{i}\left(t^{2}\right), \quad \bar{C}_{k}: \bar{x}^{j}=\bar{x}^{j}\left(t^{2}\right), \ldots \tag{2.2}
\end{equation*}
$$

and they coincide with each other on the boundary $\partial G_{t}$ of the parameter domain $G_{t}([9],[10])$.

Then we can construct the $k$-fold integral

$$
\begin{equation*}
I\left(C_{k}\right)=\int_{G_{t}} \mathscr{L}\left(x^{i}\left(t^{\beta}\right), y_{\alpha}^{i}\left(t^{\beta}\right)\right) d(t) ; d(t):=d t^{1} \ldots d t^{k} ; y_{\alpha}^{i}\left(t^{\beta}\right):=\partial x^{i} / \partial t^{\alpha}, \quad(\beta=\overline{1, k}) . \tag{2.3}
\end{equation*}
$$

This integral depends on the submanifold $C_{k}$ by means of which it is defined. It is known from the classical calculus of variations of multiple integrals ([9]) that if a submanifold $C_{k}$ is to afford an extreme value to $I$ relative to other admissible submanifold it is necessary that the first variation $\delta I$ of (2.3) should vanish. This implies that $C_{k}$ must satisfy the system of $n$ second order partial differential equations:

$$
\begin{equation*}
\mathbf{E}_{i}(\mathscr{L}):=\frac{\partial}{\partial t^{\alpha}}\left(\partial_{i}^{\alpha} \mathscr{L}\right)-\partial_{i} \mathscr{L}=0 \quad\left(\partial_{i}:=\partial / \partial x^{i}\right) \tag{2.4}
\end{equation*}
$$

where $\mathbf{E}_{i}$ are the components of the Euler-Lagrange covariant vector ([10]).
Let us consider a pair $\mathbf{L}_{k}^{n}=(M, \mathscr{L})$ and $\mathbf{L}_{k}^{* n}=\left(M, \mathscr{L}^{*}\right)$ of $k$-Lagrange spaces with the same base manifold $M$.

Definition 2.1. Two variational problems in $\mathbf{L}_{k}^{n}=(M, \mathscr{L})$ and $\mathbf{L}_{k}^{* n}=\left(M, \mathscr{L}^{*}\right)$ are called equivalent in the sense of Moor if

$$
\begin{equation*}
\mathbf{E}_{i}\left(\mathscr{L}^{*}\left(x^{j}, y_{a}^{j}\right)\right)=\lambda_{i}^{s}\left(x^{j}, y_{a}^{j}\right) \mathbf{E}_{s}\left(\mathscr{L}\left(x^{j}, y_{a}^{j}\right)\right) ; \operatorname{det}\left\|\lambda_{i}^{s}(x, y)\right\| \neq 0 \tag{2.5}
\end{equation*}
$$

hold identically.
Remark. In (2.5) the tensor field $\lambda$ depends on $y$ too.
3. Some geometrical characters of the equivalence. Relation (2.5) has the following explicit form:

$$
\begin{gather*}
\left(\partial_{i}^{\alpha} \partial_{s}^{\beta} \mathscr{L}^{*}-\lambda_{i}^{j} \partial_{j}^{\alpha} \partial_{s}^{\beta} \mathscr{L}\right) y_{a \beta}^{s}+\left(\partial_{i}^{\alpha} \partial_{s} \mathscr{L}^{*}-\lambda_{i}^{j} \partial_{j}^{\alpha} \partial_{s} \mathscr{L}\right) y_{a}^{s}-\left(\partial_{i} \mathscr{L}^{*}-\lambda_{i}^{j} \partial_{j} \mathscr{L}\right)=0  \tag{3.1}\\
y_{a \beta}^{s}:=\frac{\partial^{2} x^{s}}{\partial t^{z} \partial t^{\beta}}
\end{gather*}
$$

Using condition (2.1) for $\mathscr{L}$ and $\mathscr{L}^{*}$ we get from (3.1)

$$
\begin{equation*}
\left(\mathcal{g}_{i s}^{* \beta}-\lambda_{i}^{j} g_{j s}^{\alpha \beta}\right) y_{\alpha \beta}^{s}+\left(\partial_{i}^{\alpha} \partial_{s} \mathscr{L}^{*}-\lambda_{i}^{j} \partial_{j}^{\alpha} \partial_{s} \mathscr{L}\right) y_{\alpha}^{s}-\left(\partial_{i} \mathscr{L}^{*}-\lambda_{i}^{j} \partial_{j} \mathscr{L}\right)=0 \tag{3.2}
\end{equation*}
$$

Since (3.2) is an identity in $(x, y)$ it is necessary that the coefficients of $y_{\alpha \beta}^{s}$ should vanish. Hence we obtain from (3.2):

Theorem 3.1. A necessary geometrical condition for equivalence of two variational problems of multiple integrals is that the $k$-Lagrange spaces ( $M, \mathscr{L}^{*}$ ) and ( $M, \mathscr{L}$ ) be in ,,k-conformal" correspondence:

$$
\begin{equation*}
\stackrel{*}{g}_{i s}^{\alpha \beta}(x, y)=\lambda_{i}^{j}(x, y) g_{j s}^{\alpha \beta}(x, y) \tag{3.3}
\end{equation*}
$$

From this Theorem it directly follows that the metrical $d$-connections (cf. [4])

$$
L D^{*}=\left(\stackrel{*}{L}_{j m}^{i}, \stackrel{*}{L}_{i j m}^{\alpha j}, \stackrel{*}{C}_{j m}^{i \alpha}, \stackrel{\rightharpoonup}{C}_{m \alpha j}^{i j \beta}\right) \quad \text { and } \quad L D=\left(L_{j m}^{i}, L_{i \beta m}^{\alpha j}, C_{j m}^{i \alpha}, C_{m \alpha j}^{\gamma i \beta}\right)
$$

respectively, are related by the geometrical condition (3.3).
Proposition 3.1. The d-tensor fields ${\stackrel{\rightharpoonup}{C_{i j m}^{\alpha \beta \gamma}}}_{{ }_{i j}^{\alpha \beta}}^{\tilde{C}_{i j m}^{\alpha \beta \gamma}}$ are in the following relation

$$
\begin{equation*}
2 \stackrel{C}{C}_{i j m}^{\alpha \beta \gamma}=\left(\partial_{m}^{\gamma} \lambda_{i}^{l}\right) g_{l j}^{\alpha \beta}+2 \lambda_{i}^{l} \tilde{C}_{l j m}^{\alpha \beta \gamma} . \tag{3.4}
\end{equation*}
$$

Proof. We have
(a)

$$
C_{m \alpha j}^{\gamma i \beta}=\frac{1}{2} g_{\alpha \varepsilon}^{i s} \partial_{j}^{\beta} \partial_{m}^{\eta} \partial_{s}^{\varepsilon} \mathscr{L}=\frac{1}{2} g_{\alpha \varepsilon}^{i s} \partial_{s}^{\varepsilon} g_{j m}^{\beta \gamma}
$$

(b)

$$
\begin{equation*}
\tilde{C}_{m s j}^{\gamma \varepsilon \beta}=g_{s i}^{\varepsilon \alpha} C_{m \alpha j}^{\gamma i \beta}=\frac{1}{2} \partial_{m}^{\gamma} g_{i j}^{\alpha \beta}, \tag{3.5}
\end{equation*}
$$

(cf. [4]). Hence a direct calculus leads to (3.4).
Using the result of the above Proposition we shall prove that our equivalenceproblem can be reduced to the Moór one ([8]), i.e. his equivalence is a special case of relation (2.5).

Theorem 3.2. If two variational problems of multiple integrals are equivalent in the sense of Moor then the $k$-conformal factor $\lambda_{i}^{j}(x, y)$ is necessarily independent of $y_{\alpha}^{i}$.

Proof. Differentiating (3.3) with respect to $y_{y}^{l}$ we obtain

$$
\begin{equation*}
\partial \gamma \stackrel{*}{g}_{i s}^{\alpha \beta}=\left(\partial \gamma \lambda_{i}^{j}\right) g_{j s}^{\alpha \beta}+\lambda_{i}^{j}\left(\partial \gamma g_{j s}^{\alpha \beta}\right) \tag{3.7}
\end{equation*}
$$

and by virtue of (3.4) we have

$$
\begin{equation*}
2 \stackrel{*}{\mathcal{C}}_{i s l}^{\alpha \beta \gamma}=\left(\partial_{i}^{\gamma} \lambda_{i}^{j}\right) g_{j s}^{\alpha \beta}+2 \lambda_{i}^{j} \mathcal{C}_{j s l}^{\alpha \beta \gamma} . \tag{3.8}
\end{equation*}
$$

Since the $d$-tensor fields $\stackrel{*}{C}$ and $\mathcal{C}$ are totally symmetric ([4]), after the cyclic permutation of the indices we get

$$
\begin{equation*}
\left(\partial_{l}^{\gamma} \lambda_{i}^{j}\right) g_{j s}^{\alpha \beta}=\left(\partial_{j}^{\alpha} \lambda_{i}^{j}\right) g_{s l}^{\beta \gamma}=\left(\partial_{s}^{\beta} \lambda_{i}^{j}\right) g_{l j}^{\gamma \alpha} \tag{3.9}
\end{equation*}
$$

By using the symmetric property of the metric tensor $g_{i s}^{\alpha \beta}$ from (3.9) it follows that

$$
\begin{equation*}
\left(\partial_{i}^{\gamma} \lambda_{i}^{j}\right) g_{s j}^{\beta \alpha}-\left(\partial_{s}^{\beta} \lambda_{i}^{j}\right) g_{i j}^{\gamma \alpha}=0 \tag{3.10}
\end{equation*}
$$

Contracting by $g_{\alpha \beta}^{j s}$ the last relation we get
(a)
(b)

$$
\begin{gather*}
\left(\partial_{i}^{\gamma} \lambda_{i}^{j}\right) n k-\left(\partial_{s}^{\beta} \lambda_{i}^{j}\right) \delta_{l \beta}^{\gamma s}=0,  \tag{3.11}\\
\left(\partial_{i}^{\gamma} \lambda_{i}^{j}\right) n k-\partial_{l}^{\gamma} \lambda_{i}^{j}=0,
\end{gather*}
$$

respectively. This means that

$$
\begin{equation*}
\left(\partial_{i}^{j} \lambda_{i}^{j}\right)(n k-1)=0 \tag{3.12}
\end{equation*}
$$

Because of $(n k-1) \neq 0$ the relation (3.12) holds iff

$$
\begin{equation*}
\partial_{i}^{y} \lambda_{i}^{j}(x, y)=0 \tag{3.13}
\end{equation*}
$$

Thus $\lambda$ is independent of $y_{y}^{l}$.
Corollary. A geometrical character of the equivalence in (2.5) with the $k$-conformal factor $\lambda_{i}^{j}(x)$ is that the torsion tensor field $C_{j e m}^{\beta s \gamma}$ of the metrical d-connection $L D$ is invariant.

Proof. Suppose that (2.5) holds with $\lambda_{i}^{j}(x)$. Using the relation $C_{j e m}^{\beta s \gamma}=g_{\varepsilon \alpha}^{s i} C_{j i m}^{\beta a \gamma}$, from Proposition 3.1 we directly get

$$
\begin{equation*}
\stackrel{*}{C}_{j \varepsilon m}^{\beta s y}=\stackrel{*}{g}_{\varepsilon \varepsilon \alpha}^{\tilde{C}_{j i m}^{\beta \alpha \gamma}}=\tilde{\lambda}_{i}^{i} g_{\varepsilon \varepsilon}^{s t} \lambda_{i}^{l} \tilde{C}_{j l m}^{\beta_{\alpha \gamma}}=\delta_{t}^{l} \dot{g}_{\varepsilon \alpha}^{s t} \tilde{C}_{j l m}^{\beta \alpha \gamma}=g_{\varepsilon \alpha}^{s l} \widetilde{C}_{j l m}^{\beta \alpha \gamma}=C_{j e m}^{\beta s \gamma}, \tag{3.14}
\end{equation*}
$$

where $\tilde{\lambda}_{t}^{i} \lambda_{i}^{l}=\delta_{t}^{l}$.
4. Transformation of the Lagrangians. We can easily check if the Lagrangians differ by a total derivative, i.e. $\mathscr{L}^{*}(x, y)=\mathscr{L}(x, y)+\partial_{s}^{\beta} A(x) y_{\beta}^{s}$, then $\mathbf{E}_{i}\left(\mathscr{L}^{*}\right) \equiv$ $\equiv \mathbf{E}_{i}(\mathscr{L})$. This means that two variational problems of multiple integrals are equivalent in the sense of Moor with tensor field $\delta_{i}^{j}$.

Now we examine the transformation of the Lagrangians under the equivalence relation in (2.5). First we prove

Proposition 4.1. If the relation (2.5) holds and the $k$-conformal factor $\lambda$ is independent of $y$ then it is necessary that $\lambda_{i}^{j}(x)=\delta_{i}^{j} \lambda(x)$.

Proof. Let us consider relation (3.3). Since the metric tensor fields $g^{*}$ and $g$ are symmetric in the indices $\binom{\alpha}{i}$ and $\binom{\beta}{s}$ we get

$$
\begin{equation*}
\lambda_{i}^{j} g_{j s}^{\alpha \beta}-\lambda_{s}^{j} g_{j i}^{\beta a}=0 \tag{4.1}
\end{equation*}
$$

which can be written in the following form

$$
\begin{equation*}
g_{j h}^{e \gamma}\left(\lambda_{i}^{j} \delta_{\gamma}^{\beta} \delta_{s}^{h} \delta_{\varepsilon}^{\alpha}-\lambda_{s}^{j} \delta_{i}^{h} \delta_{\varepsilon}^{\beta} \delta_{\gamma}^{\alpha}\right)=0 \quad(\beta, \gamma, \varepsilon=\overline{1, k} ; i, j, s, h=\overline{1, n}) . \tag{4.2}
\end{equation*}
$$

We infer from the symmetry of the $d$-tensor field $g$ that the coefficients of $g_{j h}^{\varepsilon \gamma}$ in (4.2) must be skewsymmetric in $\binom{\varepsilon}{j}$ and $\binom{\gamma}{h}$. This gives for the symmetric part:

$$
\begin{equation*}
\lambda_{i}^{j} \delta_{\gamma}^{\beta} \delta_{s}^{h} \delta_{\varepsilon}^{\alpha}-\lambda_{s}^{j} \delta_{i}^{h} \delta_{\varepsilon}^{\beta} \delta_{\gamma}^{\alpha}+\lambda_{i}^{h} \delta_{\varepsilon}^{\beta} \delta_{s}^{j} \delta_{\gamma}^{\alpha}-\lambda_{s}^{h} \delta_{i}^{j} \delta_{\gamma}^{\beta} \delta_{e}^{\alpha}=0 \tag{4.3}
\end{equation*}
$$

Let $h=s, \beta=\gamma, \alpha=\varepsilon$, then we obtain

$$
\begin{equation*}
\lambda_{i}^{j} k^{2} n-\lambda_{i}^{j} k+\lambda_{i}^{j} k-\lambda_{h}^{h} \delta_{i}^{j} k^{2}=0 \tag{4.4}
\end{equation*}
$$

Now putting

$$
\begin{equation*}
\lambda(x)=\frac{1}{n} \lambda_{h}^{h}(x) \tag{4.5}
\end{equation*}
$$

we get from (4.4)

$$
\begin{equation*}
k^{2} n \lambda_{i}^{j}(x)-k^{2} n \delta_{i}^{j} \lambda(x)=0 \tag{4.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lambda_{i}^{j}(x)=\delta_{i}^{j} \lambda(x) . \tag{4.7}
\end{equation*}
$$

Proposition 4.2. If relation (2.5) holds with $\lambda_{i}^{j}(x)=\delta_{i}^{j} \lambda(x)$ then the transformation beetwen the Lagrangians $\mathscr{L}^{*}(x, y)$ and $\mathscr{L}(x, y)$ is as follows:

$$
\begin{equation*}
\mathscr{L}^{*}(x, y)=\lambda(x) \mathscr{L}(x, y)+A_{s}^{\beta}(x) y_{\beta}^{s}+U(x) . \tag{4.8}
\end{equation*}
$$

Proof. By Theorem 3.1 we obtain $\stackrel{*}{g}_{i s}^{\alpha \beta}=\delta_{i}^{j} \lambda(x)_{j s}^{\alpha \beta}$. In view of property of Lagrangians we get

$$
\begin{equation*}
\partial_{i}^{\alpha} \partial_{s}^{\beta}\left(\mathscr{L}^{*}-\lambda(x) \mathscr{L}\right)=0 . \tag{4.9}
\end{equation*}
$$

Hence the function $\mathscr{L}^{*}-\lambda(x) \mathscr{L}$ is necessarily linear in $\boldsymbol{y}_{\beta}^{s}$.
5. Some remarks about the normal form of the Euler-Lagrange equations in $\mathbf{L}_{k}^{n}$. It is known that in the equations of geodesics of Lagrange space the second derivatives $\ddot{x}^{i}$ appear explicitly and the functions $G^{i}(x, y)$ can be derived directly from the Lagrangians (cf. [6]). This suggests us to write the $\mathbf{E}_{i}(\mathscr{L}(x, y))$ in such form which is a generalization of that of geodesics. Hence we get

$$
\begin{equation*}
\mathbf{E}_{i}\left(\mathscr{L}\left(x^{j}, y_{\gamma}^{j}\right)\right)=g_{i s}^{\beta \beta} y_{\alpha \beta}^{s}+G_{i}\left(x^{j}, y_{\gamma}^{j}\right) \quad\left(y_{\alpha \beta}^{s}:=\frac{\partial^{2} x^{s}}{\partial t^{\alpha} \partial t^{\beta}}\right) \tag{5.1}
\end{equation*}
$$

where the generalized $G_{i}\left(x^{j}, y_{y}^{j}\right)$ are defined by

$$
G_{i}:=\left(\partial_{i}^{v} \partial_{s} \mathscr{L}\right) y_{y}^{s}-\partial_{i} \mathscr{L} .
$$

By means of $g_{i h}^{\alpha \beta} g_{\beta \gamma}^{h l}=\delta_{i \gamma}^{\alpha l}$ equation (5.1) can be written in the following form

$$
\begin{equation*}
\mathbf{E}_{i}(\mathscr{L}(x, y))=g_{i s}^{\alpha \beta}\left(y_{a \beta}^{s}+G_{a \beta}^{s}(x, y)\right), \tag{5.2}
\end{equation*}
$$

where the generalized $G_{\alpha \beta}^{s}$ are defined by

$$
G_{a \beta}^{s}:=g_{\alpha \beta}^{i s} G_{i} \quad\left(G_{i}:=G_{\alpha \beta}^{s} g_{i s}^{\alpha \beta}\right) .
$$

Finally we directly obtain
Proposition 5.1. If two variational problems in $\mathrm{L}_{k}^{* n}$ and $\mathrm{L}_{k}^{n}$ are equivalent in the sense of Moór then

$$
\begin{equation*}
\stackrel{*}{\boldsymbol{G}_{\alpha \beta}^{s}}=G_{\alpha \beta}^{s} . \tag{5.3}
\end{equation*}
$$

Indeed, from the equivalence relation (2.5) using Theorem 3.1 and relation (5.2) we obtain (5.3).

Remark. Relation (5.3) corresponds to that result which was obtained for equivalent single-integral variational problems in Lagrange spaces (cf. [3]).

Acknowledgement. The author wishes to express her gratitude to Professor Radu Miron and Mihai Anastasiei for their kind comments and suggestions.

## References

[1] C. CarathĖodory, Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Teubner (Leipzig und Berlin, 1935).
[2] M. Hashiguchi, On conformal transformations of Finsler metrics, J. of Math. of Kyoto Univ., 16 No. 1. 1976.
[3] M. Sz. Kirkovits, On equivalence of variational problems and its geometrical background in Lagrange spaces, Anal. Sti. ale Univ. ,,Al. I. Cuza" din Iasi, Sect. Mat., 35 (1989), 267-272.
[4] M. Sz. Kirkovits, On $k$-Lagrange geometry, Publicationes Math. Debrecen, 39(1991), 263-282.
[5] R. Miron, M. Sz. Kirkovits, M. Anastasiel, A geometrical model for variational problems of multiple integrals, in Proc. Int. Conf. on Diff. Geometry and Applications (Dubrovnik, 1988), pp. 209--217.
[6] R. Miron, M. Anastasiei, Fibrate vectoriale. Spafii Lagrange. Aplicafii in teoria relativitatii. Editura Academiei, R. S. Romania (Bucureşti, 1987) (in Romanian).
[7] A. Moór, Über äquivalente Variationsprobleme erster und zweiter Ordnung, Journal für die reine und angewandte Mathematik, 223 (1966), 131-137.
[8] A. Moór, Untersuchungen über äquivalente Variationsprobleme von mehreren Veranderlichen, Acta Sci. Math., 37 (1975), 323-330.
[9] H. Rund, The Hamilton-Jacobi theory in the calculus of variations (London-New York, 1966).
[10] H. Rund, D. Lovelock, Tensor, Differential forms and Variational principles, Wiley-Interscience Publ., 1975.


[^0]:    Received May 2, 1989 and in revised form April 22, 1991.

