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On equivalence of two variational problems in k-Lagrange spaces

MAGDALEN SZ. KIRKOVITS

1. Introduction. In [3] we have considered generalization of the equivalence
of two variational problems for single integrals treated by A. MooR ([7]) in Lagrange
spaces L*'=(M, #*) and L"=(M, &) ([6]). This problem has the following form

(L)
E((2* (1) = A6 NE(L (), (Biim 0= 0y, 0,:= D10y, 0,:= 00,

Alx,y) #0,

where y stands for %, ¥ and #* are the two Lagrangians, and 1 depends not only
on x but on y too. We have given the transformation of the Lagrangians as a nec-
essary and sufficient condition for this equivalence. Moreover, we have shown
geometrical consequences of the equivalence relation (1.1).

In 1975 A. MOOGR ([8]) gave a definition of equivalence of two variational
problems for multiple integrals with the following relation

(1.2) E((£*(x, y3)) = M) E (L (x5, y3)), Tank [ ()] = n

(y: = 0x%108%, E; = — 0 ——07—0, (summation over «); ,/,5 = l,n; a = 1,k, k<n].

aaz

He investigated the properties of this relation but not in geometrical manner.

In [4] and [S] we have constructed a geometrical model for multiple integrals
in the calculus of variations. Now we study a generalization of the Modr equiv-
alence in geometrical manner using the theory of k-Lagrange geometry.

2. The Modr equivalence of multlple integral varlatlonal problems in k-Lagrange
spaces. Consider the total space E= EBTM TM G}TM bD.. QBTM of the vector
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k PO
bundle n=(@ TM, n, M) with canonical coordinates (x',y,) where i runs from
1
1 to n and « runs from 1 to k. By the theory of k-Lagrange spaces L} ([4], [5]) we
k
have a regular Lagrangian %: @ TM—~R with the metric tensor field
1

(2.1 gif (x,y) = 0105 L(x, y); rank ||g&f|| = nk (3% :=0/0y}).

Now let # be defined on class C2 of the admissible submanifold C,, C,, ... on
M, where

.2 Cp:xt = %), Cux =3, ..
and they coincide with each other on the boundary 3G, of the parameter domain
G, ([9], [10]).
Then we can construct the k-fold integral
(2.3)

I(C,) = f.i”(x"(t"), Yt d(t); d(t):=di*...dt5; yi(tf) = dx'9r, (B =1, k).
Gt

This integral depends on the submanifold C, by means of which it is defined. It is
known from the classical calculus of variations of multiple integrals ([9]) that if a
submanifold C, is to afford an extreme value to I relative to other admissible sub-
manifold it is necessary that the first variation 47 of (2.3) should vanish. This implies
that C, must satisfy the system of » second order partial differential equations:

(2.4) E(%):= %(agz)_ai,?: 0 (3 :=9ox),

where E; are the components of the Euler—Lagrange covariant vector ([10]).

Let us consider a pair Li=(M, &) and L;"=(M, £*) of k-Lagrange spaces
with the same base manifold M.

Definition 2.1. Two variational problems in L;=(M, %) and L;"=(M, £*)
are called equivalent in the sense of Modr if
(2:5) E(L*(, yd)) = MO YD E(L(, y)); det|[Ai(x, p)] = O
hold identically.

.Remark. In (2.5) the tensor field 1 depends on y too.

3. Some geometrical characters of the equivalence. Relation (2.5) has the fol-
lowing explicit form:
(3.1) (9708 L% — 10508 L) ysp+ (970, L% — 2070, %) yi— (0, L* — 40, Z) = 0,

o x*
Yo = g
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Using condition (2.1) for & and #* we get from (3.1)
(B2 @¥ M) yip+ @10, L 2050, 2)yi- 0 L* - 20, %) = 0.

Since (3.2) is an identity in (x, y) it is necessary that the coefficients of y;; should
vanish. Hence we obtain from (3.2):

Theorem 3.1. A4 necessary geometrical condition for equivalence of two varia-
tional problems of multiple integrals is that the k-Lagrange spaces (M, ¥*) and
(M, &) be in ,k-conformal” correspondence:

(3.3) g8 (x, y) = MH(x,y)g% (x, ).

From this Theorem it directly follows that the metrical d-connections (cf. [4])
LD* = (Lims Lim> Cl> CZ,ffj) and LD = (Li,, L¥}m, Cin, C,’,,'fj),
respectively, are related by the geometrical condition (3.3).

*
Proposition 3.1. The d-tensor fields C5%: and Ci5} are in the following relation

ijm
*
(3.4) 20y = (0%, ) gt + 221 C3fr.
Proof. We have
. 1, 1,
(@) Crty = 7&223}’ i = 5 8u:0:8lm,
(3:5) .
(b) Crfy = 8Chly = 5 Ongif,

(cf. [4]). Hence a direct calculus leads to (3.4).

Using the result of the above Proposition we shall prove that our equivalence-
problem can be reduced to the Mo6R one ([8]), i.e. his equivalence is a special case
of relation (2.5).

Theorem 3.2. If two variational problems of rhultiple integrals are equivalent
in the sense of Modr then the k-conformal factor X(x,y) is necessarily independent

of yi-

Proof. Differentiating (3.3) with respect to y; we obtain
3.7 1gs = O14) g3t + M 01g50)
and by virtue of (3.4) we have

*
(3.8) 2CH = Q1A g% + 24 Cesr.
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&
Since the d-tensor fields C and C are totally symmetric ({4]), after the cyclic permuta-
tion of the indices we get

(39 O1)egst = @) gl = (M) gl
By using the symmetric property of the metric tensor g,” from (3.9) it follows that
(3.10) 912 g% — 03 W) gly =
Contracting by g s the last relation we get
01 M) nk — (08 24) 675 =
a1 " ikt
respectively. This means that
3.12) @1 A (nk—1) = 0.
Because of (nk—1)#0 the relation (3.12) holds iff
(3.13) M (x,y) = 0.

Thus 4 is independent of y}.

Corollary. A geometrical character of the equivalence in (2.5) with the k-con-
formal factor #{(x) is that the torsion tensor field C’3), of the metrical d-connection
LD is invariant.

Proof. Suppose that (2.5) holds with A/(x). Using the relation C%=g5C%2,
from Proposition 3.1 we directly get
(3.14) Cf.?;:’. =gl = Jiga O = olen Ol = g2t iy = CO3,
where 1{1}=6!.

4. Transformation of the Lagrangians. We can easily check if the Lagrangians
differ by a total derivative, i.e. £*(x,»)=2L(x,»)+0 A(x)y;, then E(L*)=
=E;(%). This means that two variational problems of multiple integrals are equiv-
alent in the sense of Mo6r with tensor field &/.

Now we examine the transformation of the Lagrangians under the equivalence
relation in (2.5). First we prove

Proposition 4.1. If the relation (2.5) holds and the k-conformal factor ). is
independent of y then it is necessary that (x)=8!1(x).

Proof. Let us consider relation (3.3). Since the metric tensor fields g* and g

are symmetric in the indices ( 1) and (ﬁ } we get

@.1) Mgt - gl =0,
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which can be written in the following form

4.2) SR o85hr—215h8853) =0 (B,y,e = 1,k; ij,5,h=1,n).

We infer from the symmetry of the d-tensor field g that the coefficients of g in
(4.2) must be skewsymmetric in (;’] and (z) This gives for the symmetric part:

4.3) 3685852 — 11516063+ Ah 6P 8] 65— 20 6] 586% = 0.
Let h=s, =y, a=¢, then we obtain

44 MkPn— 2k + M k—46lk? = 0.

Now putting

@3) 2 = = 20,

we get from (4.4)

4.6) k*nAi(x)—kndiA(x) = 0.

Thus

4.7 M(x) = 61 A(x).

Proposition 4.2. If relation (2.5) holds with 2{(x)=6{A(x) then the trans-
formation beetwen the Lagrangians ¥£*(x,y) and ¥(x,y) is as follows:

(4.8) LX(x,3) = A(x) L(x, p)+ AL (x)y; + U (x).
Proof. By Theorem 3.1 we obtain £¥=5/A(x)*). In view of property of
Lagrangians we get
4.9) 08 (L*—A(x) &) = 0.
Hence the function #*—A(x)& is necessarily linear in yj.

5. Some remarks about the normal form of the Euler—Lagrange equations in L.
It is known that in the equations of geodesics of Lagrange space the second deriva-
tives X appear explicitly and the functions G'(x,y) can be derived directly from
the Lagrangians (cf. [6]). This suggests us to write the E,(¥(x,y)) in such form
which is a generalization of that of geodesics. Hence we get

PR L. 32 s
1) E (L0, 1) = sty + G0 ) (vi= gy

where the generalized G;(x’, yJ) are defined by
Gii= (019, %)y3—0, 2.
By means of gifgh =63 equation (5.1) can be written in the following form

(52) E((Z(x, y)) = g (vip + Gip(x, ¥)),
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where the generalized G, are defined by
Gip=845G: (Gi:= Giﬁg?f)-
Finally we directly obtain

Proposition 5.1. If two variational problems in L;" and L} are equivalent in
the sense of Modr then

(5.3) 5:,; = Ggp.

Indeed, from the equivalence relation (2.5) using Theorem 3.1 and relation (5.2)
we obtain (5.3).

Remark. Relation (5.3) corresponds to that result which was obtained for
equivalent single-integral variational problems in Lagrange spaces (cf. [3]).
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