On ån integral inequality for concave functions

HORST ALZER

In 1987 A. Bezdek and K. Bezdek [2] proved the following interesting proposition:

Theorem A. Let S be a convex solid of revolution in \mathbf{R}^{3} with axis of revolution $A B$. Further, let C be the centroid of S and let C^{\prime} be the centroid of the 2-dimensional domain obtained by intersecting S with a plane through $A B$. Then

$$
\begin{equation*}
\frac{1}{2}<\frac{|A C|}{\left|A C^{\prime}\right|}<\frac{3}{2} \tag{1}
\end{equation*}
$$

As it was shown by the authors double-inequality (1) is a consequence of the following sharp integral inequalities.

Theorem B. If f is a non-negative concave function defined on $[0,1]$ with $\sup _{0 \leq x \leq 1} f(x)=1$, then
(2)

$$
\frac{2}{3} \leqq \frac{\int_{0}^{1} f^{2}(t) d t}{\int_{0}^{1} f(t) d t} \leqq 1
$$

and

$$
\begin{equation*}
\frac{1}{2} \leqq \frac{\int_{0}^{1} t f^{2}(t) d t}{\int_{0}^{1} t f(t) d t} \leqq 1 \tag{3}
\end{equation*}
$$

Received June 1, 1990.

The aim of this paper is to present a short and simple proof for an integral inequality for concave functions which includes the left-hand sides of (2) and (3) as special cases.

Theorem. Let f be a non-negative, continuous, concave function on $[a, b]$ and let g be a non-negative differentiable function such that the derivative g^{\prime} is integrable on $[a, b]$. If α and β are real numbers with $\alpha \geqq 0$ and $0<\beta \leqq 1$, then we have for all $x \in[a, b]$:

$$
\begin{align*}
\frac{\alpha+\beta}{\alpha+2 \beta} f^{\beta}(x) \int_{a}^{b} g(t) f^{\alpha}(t) d t+\frac{\beta}{\alpha+2 \beta} \int_{a}^{b}(x-t) g^{\prime}(t) f^{\alpha+\beta}(t) d t & \leqq \tag{4}\\
& \leqq \int_{a}^{b} g(t) f^{\alpha+\beta}(t) d t
\end{align*}
$$

Proof. First we note that the function f^{β} is concave on $[a, b]$ (see [6, p. 20]). Further, since every continuous concave function defined on a compact interval can be approximated uniformly by differentiable concave functions (see [6, p. 269]), we may assume that f and f^{β} are differentiable on $[a, b]$. Then we conclude from the mean-value theorem:

$$
f^{\beta}(x) \leqq f^{\beta}(t)+\beta(x-t) f^{\beta-1}(t) f^{\prime}(t) \quad \text { for all } x, t \in[a, b]
$$

Multiplication by $g(t) f^{\alpha}(t)$ and integration with respect to t yields:

$$
\begin{equation*}
f^{\beta}(x) \int_{a}^{b} g(t) f^{\alpha}(t) d t \leqq \int_{a}^{b} g(t) f^{x+\beta}(t) d t+\frac{\beta}{\alpha+\beta} \int_{a}^{b}(x-t) g(t)\left(f^{\alpha+\beta}(t)\right)^{\prime} d t \tag{5}
\end{equation*}
$$

Integration by parts leads to

$$
\begin{gather*}
\int_{a}^{b}(x-t) g(t)\left(f^{\alpha+\beta}(t)\right)^{\prime} d t=(x-b) g(b) f^{\alpha+\beta}(b)- \tag{6}\\
-(x-a) g(a) f^{\alpha+\beta}(a)+\int_{a}^{b} g(t) f^{\alpha+\beta}(t) d t-\int_{a}^{b}(x-t) g^{\prime}(t) f^{\alpha+\beta}(t) d t \leqq \\
\leqq \int_{a}^{b} g(t) f^{\alpha+\beta}(t) d t-\int_{a}^{b}(x-t) g^{\prime}(t) f^{\alpha+\beta}(t) d t
\end{gather*}
$$

and from (5) and (6) we conclude

$$
f^{\beta}(x) \int_{a}^{b} g(t) f^{\alpha}(t) d t \leqq \frac{\alpha+2 \beta}{\alpha+\beta} \int_{a}^{b} g(t) f^{\alpha+\beta}(t) d t-\frac{\beta}{\alpha+\beta} \int_{a}^{b}(x-t) g^{\prime}(t) f^{\alpha+\beta}(t) d t
$$

which is equivalent to inequality (4).
Remark. Inequality (4) is an extension of a result given in [3].

If we set $g(t) \equiv 1$ and $\alpha=\beta=1$, then we get the following (slightly modified) version of the left-hand side of (2):

$$
\begin{equation*}
\frac{2}{3} \max _{0 \leqq x \leqq 1} f(x) \leqq \frac{\int_{0}^{1} f^{2}(t) d t}{\int_{0}^{1} f(t) d t} \tag{7}
\end{equation*}
$$

Since the sign of equality holds for $f(x)=x$ we conclude that the constant $2 / 3$ cannot be replaced by a greater number. Furthermore, setting $g(t)=t$ and $\alpha=\beta=1$ in (4) we obtain:

Corollary. If $f(\not \equiv 0)$ is a non-negative, continuous, concave function on $[0,1]$, then we have for all $x \in[0,1]$:

$$
\begin{equation*}
\frac{f(x)}{2}+\frac{x}{4} \frac{\int_{0}^{1} f^{2}(t) d t}{\int_{0}^{1} t f(t) d t} \leqq \frac{\int_{0}^{1} t f^{2}(t) d t}{\int_{0}^{1} t f(t) d t} . \tag{8}
\end{equation*}
$$

Remarks. 1) As an immediate consequence of (8) we get the following form of the left-hand inequality of (3):

$$
\begin{equation*}
\frac{1}{2} \max _{0 \leq x \leq 1} f(x) \leqq \frac{\int_{0}^{1} t f^{2}(t) d t}{\int_{0}^{1} t f(t) d t} \tag{9}
\end{equation*}
$$

Putting $f(x)=1-x$ equality holds in (9); hence the constant $1 / 2$ is best possible.
We note that (7) and (9) are striking companions of Favard's inequality

$$
\frac{1}{2} \max _{0 \leqq x \leqq 1} f(x) \leqq \int_{0}^{1} f(t) d t
$$

which is true for all functions f which are non-negative, continuous and concave on [0,1]; see [1, p. 44] and [4].
2) If f is monotonic, then the two integral ratios given in (2) and (3) can be compared:

Let $f(\not \equiv 0)$ be a non-negative and decreasing function on $[0,1]$, then

$$
\frac{\int_{0}^{1} t f^{2}(t) d t}{\int_{0}^{1} t f(t) d t} \leqq \frac{\int_{0}^{1} f^{2}(t) d t}{\int_{0}^{1} f(t) d t}
$$

If f is increasing, then the reversed inequality holds; see [5, pp. 302-303].

References

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer (Berlin, 1983).
[2] A. Bezdek and K. Bezdek, On the centroids of convex solids of revolution, Ann. Univ. Sci. Budapest, Rol. Eötvös Nom., 30 (1987), 115-119.
[3] J. L. Brenner and H. Alzer, Integral inequalities for concave functions with applications to special functions, Proc. Roy. Soc. Edinburgh, 118A (1991), 173-192.
[4] J. Favard, Sur les valeurs moyennes, Bull. Sci. Math., (2) 57 (1933), 54-64.
[5] D. S. Mitrinovic, Analytic Inequalities, Springer (New York, 1970).
[6] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press (New York, 1973)

[^0]
[^0]: MORSBACHER STR. 10
 5220 WALDBRÖL
 GERMANY

