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An additional note on strong approximation by orthogonal series 

L. LEINDLER and A. MEIR 

< 1. Let {(p„(x)} be an orthogonal system on a finite interval (a, b). In this note 
we consider real orthogonal series 

(1.1) 2cncpn(x) with 
n=0 n=0 

It is well known that the partial sums s„ (x) of any such series converge in the L2 

norm to a function f(x)£L2(a, b). 
A very general theorem we proved in [5] concerning strong approximation by 

orthogonal series included, as special cases, many of the results obtained previously 
by several authors. In addition, our theorem in [5] yielded some new results per-
taining to strong approximation by certain Hausdorff and [7,/]-means. We refer 
the reader to Theorems A, B, C, D and E cited in our paper as previously known 
and to Theorems 2, 3, 2* and 3* as the new results obtained by means of our main 
theorem. 

In order to recall the main theorem and to state the purpose of the present 
note, we need the following definitions and notations: 

Let a :={xk (cw)}, k=0,1, ... denote a sequence of non-negative functions defined 
for O s c x o o , satisfying 

(1-2) ! < * » ( a > ) = l . 
*=o 

We assume that the linear transformation of real sequences x :={**} given by 

CO 
A w ( x ) : = 2 a k(o>)xk, c o - o o , 

k = 0 

is regular [1, p. 49]. Let y :=y(t) denote a non-decreasing positive function defined 
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for O S ° ° and (i:={/zm} m=0, 1, ... an increasing sequence of integers with 
JI„=0 satisfying the following conditions: 

There exist positive integers N and h so that 

(1.3) pm+1 S Npm, y(nm+1) S Ny(n„), y(nm+k) a 2y(nJ 

hold for all m. 
For r > l , cd>0 and m=0, 1, ... we define 

f 1 Pm + i - i l 1 / ' 
(1.4) Qm(co,r):=\- 2 K M ' • 

yPm + l k=nm J 

In terms of the quantities introduced above we can recall our result in [5]: 

Theorem I. Let />>0 and g(t) a non-decreasing positive function on [0, 
Suppose that there exist 1 and a constant K(r, n, y) such that for every co>0 

(1.5) 2 №»<?«(<». r)y(nm)-e s K{r, p, y)(g(œ)ly(œ)y. 
m=0 

If 

(1.6) ¿ c n
2 y ( « ) 2 < - , 

11 = 0 

then 

(1.7) Aa(f,p, v; x):= { 2 J x ) - / M l ' } 1 / ' = Ox(g(œ)/y(œ)) 
k=0 

almost everywhere (a.e.) in (a,b) for any increasing sequence v:= {vk} of positive 
integers. 

I f , in addition, for every fixed m, 

(1.8) Qm((o, r) = o((g(co)ly(œ)y), as co 

then the Ox in (1.7) can be replaced by ox. 
We mention that the most important special case of Theorem I is when both 

(1.5) and (1.8) are satisfied with g(co) = l. In this case we get that 
(1.9) AmifP,v\ *) = ox{y(a>)-*) 
holds a.e. in (a, b). 

Next we recall the definition of the generalized ordinary and very strong de la 
Vallée Poussin summability methods (see [2]) and a theorem proved in [4]. 

Let X:={A„} be a non-decreasing sequence of natural numbers for which 
1 and A„+ 1s/„+1. Series (1.1) is (F, A)-summable if 

V„iX-,x):=-L 2 skix)-*f(x) a.e.; 
fc=n-;.„+i 
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and very strongly (V, A)-summable if for any increasing sequence v={v t} of positive 
integers 

f 1 » 11 /2 

F „ | ^ v ; x [ : = — 2 M * ) - / ( * ) l 2 - 0 a.e. 

We also note that if A„=w then the V„(k; x)-means reduce to the (C, l)-means, 

if A„ = l then to the partial sums s„(x), and if A „ = j (ns2), where [/}] denotes 

the integral part of /?, then we get the classical de la Vallée Poussin means. 
In [4] the first author proved, among others, the following result: 

Theorem II. If a monotone non-decreasing sequence 1:={/„} satisfies the con-
ditions 

m 
(1.10) /„m+1 s with 1 and 2 ¡1 = J, 

4 = 0 

m-1 
where fi0=0 and jum:= 2 ! {hen k-0 k 

(1.11) 2<?Jl 
n = 0 

implies that 

(1.12) V„\%,\; = OxQ'1) 

holds a.e. in (a, b) for any {<p„(x)} and v={v„}. 
In spite of the wide applicability of Theorem I, unfortunately, in the most 

important special case g(co) = 1, it cannot be used to estimate the approximation-
rate of the partial sums s„(x) of series (1.1) because then (1.5) does not hold for 
any p. Consequently Theorem I does not include the result of Theorem II in the 
simplest special case when A„=l. 

The aim of the present note is to fill this gap in Theorem I for 0 < p ë 2 . The 
corresponding problem for />>2 remains open at this time. 

In formulating our new result we shall use the notation as above and assume 
hence forth that the following conditions hold: 

(1.13) y(fim+1 )^NV(fim), g(/u,n+1) =s Ng(pm) 
and 

(1.14) 2 v(MJ2e(m) S Nyoo2 

m = 0 

hold for all m and n, where Q(t) denotes a non-increasing positive function defined 
On [0, oo). 

Our theorem reads as follows. 
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Theorem III. Suppose that there exists a natural number q such that for all k 
and m 

i 
(1.15) ak(n) =2 N 2 <*k(Vm+i) with nm<n<n,n+! 

i=-q 
and 

(i-i6) 2 S 2 s NQ(m)y^mf 

i=o g(Mi) j=nm 

hold. Then condition (1.6) implies that 

(1.17) A„(f p, v; x) = ox(*(n)/y(n)) 

a.e. in (a,b) for every p, 0<ps2 and for every sequence v. 2. In order to prove our Theorem we need the following lemma. 

Lemma [3]. Let <5>0 and {¿„} be an arbitrary sequence of non-negative num-
bers. Suppose that for any orthonormal System the condition 

n=l k=n 

implies that the sequence {i„(x)} possesses a property P, then any subsequence {^(x)} 
also possesses property P. 

3. Proof of Theorem III. By assumptions (1.13) we have for any 
1 (m=0,1, ...) that 

nn gQU g(0 „ Ng(nm+1) 
( } Ny(jim) ~ y(l) ~ y(/Wi) ' 

so, on account of (1.15), it is sufficient to prove (1.17) only for the values p„. 
First we prove (1.17) in the special case p=2 and vk=k; and as we have 

said above, only for the indices /;„, i.e. we verify that 

(3.2) Alin(x) := A,n(f 2, {A:}; x) = ^( i f f /O/y OO) 

holds a.e. in (a, b). 
Then 

¡Al(x)dx= 2 ""2 '«kifn) f\sk(x)-f(x)\2dx^ 2 "m2 2 cl 
a m=0 k="m a j m=0 k=fm • = i»m + 1 

Putting 

R* • - y c? 
¡ = /'„ + 1 
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we get, by (1.16), that 

~ V(U I2 ~ V(tl I2 °° ''m + l - 1 

(3.3) f A^{x)dx - 2 2 = 

n = 0 g(l*n) a n=0 g(H„) m= 0 k=/im 

m °° v(ll I2 ''rn + l-1 ~ = 2 2 ^ N 2 RLQ(m)y(^)2:= 2i-
m=0 n = 0 g(Pn) k=fim m=0 

To estimate 2 i w e u s e assumptions (1.6), (1.13) and (1.14), and so we have 

(3.4) 1 IN2i s 2 ( i "'2 1 4 ) Q ( m ) y ( n J 2 = 
/71 = 0 I = JJ! = 

= 1 ('214) 2 eMy(Hn,f ^N 2 ( ' 2 1 cDyint)2 s iv 2 cly(nf <«,. 1=0 k = fij m—0 1 = 0 (i = /»i n = 0 

By (3.3) and (3.4), applying Beppo Levi's theorem, we get that 

2 v(v„)2g(p„)-2AL(x) = 
B = 0 

= 2 y(f j2g(v»)-2 2 «M \h(x) -/Ml2 < -
n = 0 k = 0 

a.e. in (a, Hence (3.2) obviously follows. 
For 0 < p < 2 

(3.5) /(,,„(/, P, {*}; X) = o ^ O O / H A O ) 

follows from (3.2) using Holder's inequality and (1.2). 
Now, on account of (3.1), relation (3.5) implies 

(3.6) An{f, P, {A:}; x) = ox(g{n)ly («)) 
a.e. in (a, b). 

Finally, if we apply the Lemma with property P characterized by (3.6), then 
(1.7) follows for all p, 0 < p ^ 2 and all sequences v. 

4. Application. We show that Theorem II can be derived from Theorem III. 
Since in the special case A„ = l, Theorem II represents a statement concerning the 
partial sums of (1.1), it follows that under the proper conditions Theorem III yields 
certain results for the rate of approximation achieved by the partial sums, as well. 

Now we show that Theorem III in the special case when Q(m)=.g(rri) = 1, 
y («)=/„ and 

(4.1) «,(»):= K ' ky ' 10 otherwise, 
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can be applied, with nm defined in Theorem II, that is, then (1.6), (1.13), (1.14), 
(1.15) and (1.16) are fulfilled. 

Condition (1.6) holds trivially, (1.13) and (1.14) follow from (1.10). 
In order to prove (1.15) we put q — 1 and N=2, i.e. we want to verify that 

for any k and 1 

(4.2) ak(n) s 2[afc(^m_1) + at(//m) + a(//m+1)] 

always holds. Since ¿ „ + 1 — 1 for all n, therefore ¡.im—X^ s«—X„, whence, 
by (4.1), 
(4.3) ak(n) s cck(nm) 
holds for any (n—X„^)kSfim. 

On the other hand, taking into account that nm+1—nm=2Xllm and 
Hm + 1-A ( l m + i=^m+A J i m-; i ; ( m + iS/im , we get 

(4-4) ak{ri) S 2cck(nm+1) 

for any fim-<k(Sn). Thus (4.3) and (4.4) verify (4.2), and herewith (1.15) is also 
proved for the entries ak(n) given in (4.1). 

To show (1.16) in the case given above we have to verify that 

(4-5) 21, *2 «jQi,) s MJm ¡ = 0 j = Mm+l 
holds for every m. 

By (4.1) it is clear that if j > f i t then aJ (¿/,)=0, therefore 

(4.6) 2* = 2 1, "T «yOO = 
i = m+l j'=/Jm + l 

= 2 ¿fT,10m+1 - max (nm, (fit - XM)))+ =: 2s, i=m+1 

where /?+ denotes the positive part of /?. 
On account of the definition of nm we have that 

(4.7) 2 a ^ 2 + = 
i=m +1 

= 2 i - . i l = 2 I I 0 - A - 2 

Setting 

* = m+l 
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and taking into account that A s always holds, we have for any 
i>tw + 1 that 

/tp"> g 2 K k y = ( i - ( 2 A i „ _ 1 ) - 1 2 ¿ J + -
* = m + l k=m+1 ' 

Hence, by (1.10), (4.6) and (4.7), we obtain that 
00 (1 y—»> 00 t K 2 Y ~ m 

2^PMm+1+2 2 d y l 2 /¡L« M =0(P,J, 
i=m + 2 V ^ / i = m + 2 V Z / 

that is, that (4.5) holds. This proves that (1.16) is satisfied, as stated. 
It follows that all of the assumptions of Theorem III are fulfilled if the para-

meters are chosen according to the requirements of Theorem II; therefore we have 
proved that Theorem III implies Theorem II. 
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