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On an imbedding theorem 

NGUYEN XUAN KY 

Introduction. In 1968, P. L ULJANOV [13] gave a sufficient and necessary con-
dition for the imbedding of Holder class Hp into the space Lq (1 =»). The 
result of Uljanov was generalized later by L.LEINDLER [5], [6]. In this paper we con-
sider an analogous problem for the case of the new modulus CUVjW(/, S)p introduced 
by Z. DITZIAN and V. TOTIK [1], namely we give a necessary and sufficient condition 
for the imbedding of Holder type class of functions determined by a S ) p 

with w ( x ) = ( l - x ) a ( l + x / , <p(x) = Yl-x2 (a, P=0, x£(—1,1)) into another class of 
functions. 

An imbedding theorem. Let Let u(x) be a nonnegative, integrable 
function on the finite interval (a, b). Denote by (a, b) the Banach space of all 
measurable functions on (a, b) with the norm 

11/11 W ) = { / \ f { x r u ( x ) f p . 

In the case « = 1 we use the notations Lp(a,b), ||/||z.*(a,i)> respectively. 
The modulus of a function f£Lp(a, b) is defined by the formula 

b-h 
coif, 6)L.(a,b) = sup { / I f ( x + h)-fix) I" dx\'p, (0 sS^b-a). 

Let (we shall use these notations throughout this paper) 

= *«.*(*) = 0 - * ) a ( l +*)", ( a , i s O , * € ( - 1 , 1)); 

<pix) = \'\-x* (*€(-!,!)). 
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The weighted modulus of a funct ion/for which wfdL"(— 1, 1) was introduced by 
Z. Ditzian and V. Totik as follows: 

w(/. <5)P := sup \ \wA v W h f (x) l L ,^ l t l ) 0-=/l Si 
where 

elsewhere. 
for x: x + (p(x)h£(0, 1), 

Let o) (<5) be a modulus of continuity, i.e. to (<5) is an onnegative, increasing continu-
ous function on [0, 1], ct)(0)=0 and o)(51+52)^o)(51)+tu(52) + 1). 
Define the Holder type class 

:= {/: wf£L»(- 1, 1), co^M', = Of{m(5)} (d - 0)}. 

We shall prove 

Theo rem 1. Let Let a>(8) be an arbitrary modulus of continuity. 
Then 
(3) H«W i P c I*./.,«./,>-.(-1, 1) 
i f f 

(4) j ^ m - ^ i l ) 
n = l v « / 

For the proof of Theorem 1 we need some lemmas. 
For any function/(x) defined on ( - 1 , 1), let /*(©):=/(cos 0 ) (06(0, n)). 

Let Pn(<x, ft, x) be the w-th orthonormal polynomials with respect to the parameters 
a, p. Then the system 

0 = { / „ ( a , P, 6)} := {P„*(a, P, 0 ) [ < , ( 0 ) < p * ( 0 ) ] , / 2 } 

is orthonormal on (0, it). Denote by <£„ the set of all ^-polynomials of degree at 
n 

most n, i.e. the set of all functions of the form Z a> 0) (¿k a r e r e a ' numbers, 
k = 0,...,n). *=° 

Lemma 1. For any (pn£<Pn («=1,2,...) and 1 //¡e inequalities 

( 5 ) M ^ o , * ) =5 c / J l l i p J i P ^ n ) 

a«*/ 
(6) IIpJl»№,> cn1'"-1'- | |9»JiP№.) 
/ioW. 

Proof . Combining [3, T. 4] with [8, T. 14] we get (5) and (6). 
For wf£Lp(- 1,1) let 

( 7 ) En{w,f)p = i n f | | » c ( / - / 7 n ) | | L p ( _ 1 , 1 ) , p„£iz„. 
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where n„ denotes the set of all algebraic polynomials of degree at most rt 
(» = 0 , 1 , ...)• 

We define also the best approximation of a function g£Lp(0,n) by $-poly-
nomials: 
(8) E*(g)p = inf ||g - (P„\]LP(O, *), <pn£ • 
It is clear that 
(9) EJw,f)p = E*(gf)p, 
where 
(10) gf (9) :=f*(9) w* (9) sin1'" 0. 

Lemma 2 ([11], T. 3). Let We have for every wf£Lp(-1,1) 

(11) En(w,f)p s c a v w ( / , i ) ^ (n = 1, 2, . . .). 

Lemma 3. Let l s / x » » . For every g£Lp(0,n) the inequality 

(12) i ) s ^ i m V n J 1^(0, it) t=0 
holds. 

Proof . Using inequality (5) we can prove this Lemma by the same way as 
that of the inverse theorem for the best trigonometric approximation (see e.g. [7]). 

By a result of DITZIAN and TOTIK (see [1], T. 2.1.1.) we have that <yp,w(/, 5)p is 
equivalent to the AT-functional 

:= inf {\Mf-d\\W<ph'\\LPi_hi)} 

where Dp
 w denotes the class of all functions g, which are locally absolutely con-

tinuous on (—1,1) and for which wg, w(pg'£L"(—\, 1). 
On the other hand, the other ^-functional defined on L"(0, n): 

K*(g, d)P : = inf {||w*(^>*)1/p(/i — g)||jy>(o, n) + 5 IK* ((p*)1,ph.' 1 ! « > } »fc Op 

where Dp denotes the class of all locally absolutely continuous functions h on (0, n) 
for which (<p*)llPw*h£Lp(0,71), is equivalent to the following modulus of con-
tinuity 

B 
(13) QA.B<g,>5),:= sup { / \g(9 + h)-g(eW(W*(9)y<p*(6)d0YlP + 

o^hsiV > 

+osup{ / \g(0 -h)- g(dr(w* (6)Y <p* (0) dd}llP, 

(0 < A B < n; 0 < S < min (A , n-Bj). 
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This fact was proved essentially in [11], special cases of which were proved in [9] 
and [10]. 

Summing the mentioned statements we have 

Lemma 4. Let Let wfdLp(—\, 1) and 

gf(6) := f*(6)w*(0) s i n 0 . 
Then 

(14) a>„ .„ ( / , S)P~QA,B(S> <5)P (* - 0). 

After these, let us turn to the 

Proof of T h e o r e m 1. a) (4)=>(3). Let w/€L p ( -1 ,1) . From (4) it follows 
by (11), that 

0 = 1 

and so, we have for the function gf defined by (10) 

n=l 

Hence, by Hardy inequality and (12) we get 

2oi"{gf,-\ „<<">-*co 
„=1 V. n / i f ( o,„) 

which implies by T. 1 of [13] that gf£Lq(0, n), therefore ' ( _ 1 » 1 ) -
b) (3)=>(4). Suppose, that (4) does not hold. Using the method applied in 

[13], p. 673 one can contract a function <p0€Lp f—, —1 satisfying the following 
conditions 
(15) <p0(x) = 0, x€[3/4, 5/4]; 

1/4+A 
(16) / \Mx)\pdx caSQi)-, 

V4 

(17) ®(<fo,i)i.»(i/4,6/4) ^ cm(8); 

(18) <Po<tL<[U4,5/4]. 
Let now 

„ m /9>o(0)"'*(0)[«?>*(0)]1/p for [1/4, 5/4], 
g o K P ) • 10 for 0£[O,7t]\[l/4, 5/4]. 

We estimate the modulus (13) with >4=3/2, 5 = 2 of the function g0. By (15), (16) 
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and (17) one can see that 

i23/2,2feo,<5)P = 0{û>(<5)} ( ¿ - 0 ) . 

Therefore by (14) we have for the function 

/ o W := g0(aTccosx)w-1(x)(p-1"'(x) 

®»lW(/"o,<5)P = 0{co(ô)} ( ¿ - 0 ) , 

which means that / 0 € # £ w , p . 
On the other hand by (18) it follows that 

foîLwitpi'p-ii— 1, 1). 

Thus, the necessity of (4) is proved. 

Remark 1. The part (3)=>(4) indeed can be obtained immediately from in-
equality (6) and T. 1 of [12]. Besides, we have appeared the other proof, because 
by this method we can prove a generalization of Theorem 1, which will be stated 
in the following. 

For a nonnegative monotonie sequence of numbers {(pk), the function 

* ( * ) = Z k ( - " » - * c p k (y , />i= 1) 

was introduced by LEINDLER [6]. We denote by the class of measurable func-
t ions /on (—1,1), for which 

0 

where gf is defined by (10). Then the following theorem is true. 

Theorem 2. Let Let {<pt} be a nonnegative monotonie sequence 
of numbers satisfying <pkl^ccpk and in the case y>-p, moreover let 

(Pk^<Pk+i ( k = 1 , 2 , . . . ) . 

Then 
(19) c Mi-,% 

iff 
(20) Z n ^ - 2 < p „ < a r Î - ) c o o . 

n=l 

Using Lemmas 1—4 we can prove this theorem by the same method as we used 
to prove Theorem I, with the modification that the results of Uljanov applied in 
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the proof of Theorem 1 will be replaced by the generalized results of Leindler (see 
Theorem 3 and its proof in [6]), while the inequality of Hardy used in the proof 
will be replaced by a generalized inequality (see [4], inequality (1'))-
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