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On an imbedding theorem

NGUYEN XUAN KY

Introduction. In 1968, P. L UriaNov [13] gave a sufficient and necessary con-
dition for the imbedding of Hélder class H,’ into the space L! (1=p<g<<o). The
result of Uljanov was generalized later by L. LEINDLER [5], [6]). In this paper we con-
sider an analogous problem for the case of the new modulus w,, ,,(f, 8), introduced
by Z. DitziaN and V. Totik [1], namely we give a necessary and sufficient condition
for the imbedding of Holder type class of functions determined by w,,,(f; ),
with w(x)=(1-x)*(1+x)%, o(x)=V1—x% (¢, B=0, xé(—1, 1)) into another class of

_functions.

An imbedding theorem. Let 1=p<-<. Let u(x) be a nonnegative, integrable
function on the finite interval (a, b). Denote by LZ(a, b) the Banach space of all
measurable functions on (g, b) with the norm

b
I lezs = { f 1/ PG},

In the case u=1 we use the notations L?(a, b), || fllr(,5), respectively.
The modulus of a function f€L”?(a, b) is defined by the formula

b—h
o(f, Juran = sup { [ 1/ e+ W=f@P x|, ©=6=b-a)

Let (we shall use these notations throughout this paper)
W(x) = Wep(x) = (I-x)(1+x), (0 B=0, xe(-1, 1)

o) =VT—= (xe(-1, D).
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The weighted modulus of a function f for which wfe LP(—1, 1) was introduced by
Z. Ditzian and V. Totik as follows:

@y (f; 0)p = osuhg.s IwAa pexyn f e (-1,1y
where

_[f&H+exh)—f(x) for x: x+e(x)he(,1),
Ageonf (%)= {0 elsewhere.

Let w () bea modulus of continuity, i.e. w(8) is an onnegative, increasing continu-
ous function on {0, 1], w(0)=0 and w(5;+d,)=w(s)+w(dy) (0=05,<6;+5,=1).
Define the Holder type class

HE\ o= {f: weLP(—1, 1), @, (f; 8), = O ()} (6 ~ 0)}.

We shall prove

Theorem 1. Let 1=p<qg-<oe. Let w(d) be an arbitrary modulus of continuity.
Then

(3) H;’w p C L?vl/qq,(q/p)—l(—l, 1)

iff

4 2”' nap -2y (.l_) < oo,
n=1 n

For the proof of Theorem 1 we need some lemmas.

For any function f(x) defined on (—1, 1), let f*(©):=f(cos ®) (O€(0, m)).
Let P,(x, B, x) be the n-th orthonormal polynomials with respect to the parameters
o, B. Then the system

= {/u(@, B, 0)} := {E*(a, B, O)[wz, 5 (0) 0™ (0)]'/%}
is orthonormal on (0, ). Denote by &, the set of all ¢-polynomials of degree at

most n, i.e. the set of all functions of the form 2’ M Ji(a, B, 8) (A, are real numbers,
k=0, ...,n).

Lemma 1. For any (p,,éd5,, (n=1,2,..) and 1=p<q<oo, the inequalities

5) loali oo, m = €nll@allLe, m
and .

(6) l@allrco,my = €nP~ Y|\ @y| Lo co, )
hold.

Proof. Combining [3, T. 4] with [8, T. 14] we get (5) and (6).
For wfel?P(—1,1) let

@) ' E (0, [)p = Il [w(f=Plle-11),  Pu€Ts
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where 7, denotes the set of all algebraic polynomials of degree at most n
(n=0,1, ...).

We define also the best approximation of a function g€L?(0, n) by P-poly-
nomials:

(8) E:(g)p = lnf"g— (Pn”LP(O, ) (Pne ¢n .
It is clear that
(9) En(w’f)p = E:(gf)p,
where
10) gr(0) := f*(0)w*(6) sin'/? 6.

Lemma 2 ([11], T. 3). Let 1=p<c. We have for every wfeLP(—1,1)
an E,(w,f), = cwq,,w(f, —’l'—-] n=12..).

14

Lemma 3. Let 1=p<oco. For every geL*(0, ) the inequality

(12 ofer] st ZE@,
nJpeo,n k=0

holds.

Proof. Using inequality (5) we can prove this Lemma by the same way as
that of the inverse theorem for the best trigonometric approximation (see e.g. [7]).

By a result of DitziAN and Torik (see [1], T. 2.1.1.) we have that w,,,.(f, 9), is
equivalent to the K-functional

Ko w(f; 8),:= héigf {Iw(f— Ml Lec=1, 1+ 5"“"Ph'||LP(—1,1)}

where D? , denotes the class of all functions g, which are locally absolutely con-
tinuous on (—1,1) and for which wg, weg'e L*(—1, 1).
On the other hand, the other K-functional defined on L?(0, n):

K*(g, 0),:= ,,ig,ﬁ {lw*(@*)"'?(h— @)l Le (o, ny + S IW* (@* )P | Lo (o, ny)

where D, denotes the class of all locally absolutely continuous functions 4 on (0, 7)
for which (¢™)YPw*heLP(0, n), is equivalent to the following modulus of con-
tinuity

B .
(13) Q458 )= sup { [ |g(O+h)—g@F(w* Oy 9O} +
0<h=d Yy

+ sup { [ 1g(0—h)—g@IP(w (O 0*(©9) do}"”,

0<h=d " [

(0<4<B<n; 0<6<min(4, n—B)).
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This fact was proved essentially in [11], special cases of which were proved in [9]
and [10].
Summing the mentioned statements we have

Lemma 4. Let 1<p<o, 0<A<B<m. Let wf€LP(—1,1) and
g7(0) := f*(B)w*(0)sin V7 .
Then
(14) g, (f; 0)p~24,8(8, 6), (5~ 0).

After these, let us turn to the

Proof of Theorem 1. a) (4)=(3). Let wfeL?(—1,1). From (4) it follows
by (11), that

3, D2 ES(w, f), <o

o=1
and so, we have for the function g, defined by (10)
Z nlarm— 2E*"(gf) << oo,
n=1

Hence, by Hardy inequality and (12) we get

2 ( n(q/p)—z -
n=1

]U’(O n)

which implies by T. 1 of [13] that g,€L%Q0, r), therefore f€Ll, ap-:(—1,1).
b) (3)=(4). Suppose, that (4) does not hold. Using the method applied in

5
[13], p. 673 one can contruct a function (pOEL" [—-, Z] satisfying the following
conditions

(15) @o(x) =0, x€[3/4,5/4];
Va+h '

(16) S 19o@)Pdx = cwr(h);
1/4

a7 @(Po,8)rasa, 508y = cw(0);

(18) @04 L[1/4, 5/4].

Let now

©):= {fpo(e)w*(@)[(l’*(e)]l"’ for 0¢[1/4, 5/4],
851 =10 for  6¢fo, 1]\{1/4, 5/4).

We estimate the modulus (13) with 4=3/2, B=2 of the function g,. By (15), (16)
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and (17) one can see that
Q372,2(805 0), = O{w(8)} (6 —~ 0).
Therefore by (14) we have for the function
Jo(x) := go(arc cos x)w™(x)p~1P(x)
@, w(fo, 8), = H{w(8)} (6 ~0),
which means that fo€ H®

@,w,p*

On the other hand by (18) it follows that

f;)Qszq(pq/p—l(— 1, 1).
Thus, the necessity of (4) is proved.

Remark 1. The part (3)=>(4) indeed can be obtained immediately from in-
equality (6) and T. 1 of [12]. Besides, we have appeared the other proof, because
by this method we can prove a generalization of Theorem 1, which will be stated
in the following.

For a nonnegative monotonic sequence of numbers {¢,}, the function

o(x) = S kVM-2g, (,pz=1)
k=1
was introduced by LEINDLER [6). We denote by M7;? the class of measurable func-
tions fon (—1,1), for which
[ g#+1- @D (0) &(|g(0)) df <o
0

where g is defined by (10). Then the following theorem is true.

Theorem 2. Let 1=p=y<os. Let {¢,} be a nonnegative monotonic sequence
of numbers satisfying ¢=ce, and in the case y>p, moreover let

O = Qi1 (k=1,2,..).

Then

(19) HSop © M3g

i

(20) gn(’”’)‘ztp,w7 (%] <oo,

Using Lemmas 1—4 we can prove this theorem by the same method as we used
to prove Theorem 1, with the modification that the results of Uljanov applied in
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the proof of Theorem 1 will be replaced by the generalized results of Leindler (see
Theorem 3 and its proof in [6]), while the inequality of Hardy used in the proof
will be replaced by a generalized inequality (see [4], inequality (1°)).
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