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Relating the normal extension and the regular unitary 
dilation of a subnormal tuple of contractions 

AMEER ATHAVALE 

In this paper we deal with only bounded linear operators on complex infinite 
dimensional separable Hilbert spaces. If S=(Si, ..., S„) is a tuple of operators 
on a Hilbert space X , then for any «-tuple k=(k1, ..., k„) of integers ki; Sk denotes 
S'¡lSfy...S'¡l•', where Sk' is to be interpreted as S*<i~k') if kt is negative. If a 
Hilbert space j f is contained in some Hilbert space J f , then P($f, J f ) will denote 
the projection of JT onto J f . If for a tuple S=(S1, ..., S„) of « commuting oper-
ators on there exist a Hilbert space X containing and a tuple M=(Mx, ..., M„) 
of « commuting operators on Jf such that Skx=P(Jf, 3^)Mkx for any x in j f 
and any «-tuple k of non-negative integers, then S on is said to dilate to M on 
if moreover is invariant for each Mi, then S on is said to extend to M on J f . 
If S on Jif dilates to M on JT and each M ; is unitary, then M on ft is said to be a 
unitary dilation of S on ffl. If S on JP extends to M on Jf and each M ; is normal, 
then M on JT is said to be a normal extension of S on , and S is said to be sub-
normal. Among all the normal extensions of a subnormal tuple S, there is a minimal 
one which is unique up to unitary equivalence (see [4]). In particular, if N on Jf 
is the minimal normal extension of S on J f , then X = \J (Nk3f: k is a tuple of 
non-positive integers), where V denotes the closed linear span in the norm || • 
of J f . 

For our purposes, a special type of unitary dilation, known in the literature as 
regular unitary dilation (or Sz.-Nagy—Brehmer dilation) (see [3], [7]) is important. 
For any «-tuple k=(k1, ..., k„) of integers, define k+ =(max (kx, 0)), ..., max (k„, 0)) 
and k— =(min (kx, 0),.. . , min (kn, 0)). If for a tuple S of « commuting operators 
on f f , there exist a Hilbert space X containing and a tuple U of n commuting 
unitaries on X such that Sk~ Sk+x—P(X, ffi) Uk~ Uk+x for any x in tf and 
any «-tuple k of integers, then U on JT is said to be a regular unitary dilation of S 
on U is minimal if Jf = V {UkJf: k is an «-tuple of integers}. 
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In what follows, we will use the symbols DT" and m„ to denote the closed 
unit polydisk in C", the unit polycircle in C" and the normalized product arc-length 
measure on T" respectively. The spectral measure of a normal or unitary tuple M 
will be denoted by p(M). In case « = 1, it is well known (see [2], [5]) that if N 
on Jf is the minimal normal extension of a contraction S on .Jf, then p(A ,)|T1 

is absolutely continuous with respect to m1, provided S is pure; that is, there does 
not exist a non-trivial closed reducing subspace of J ? such that S i s normal. 
(An examination of the proof in [5] and Theorem 6.4 in Chapter II of [7] actually 
reveals that "S\3%" is normal" can be replaced by is unitary".) A con-
tract ion S on a Hilbert space Jf is said to be C0. (see [7]) if H^/iH^-^O as « — °° 
for any h in tf. It is obvious from Theorem 3.2 in Chapter I of [7] that a C0. con-
traction does not have a non-trivial unitary part. At this stage, the reader may 
refer to the statement of Theorem 1 below and the question raised at the end of 
the paper. 

Lemma 1. If S is a subnormal tuple of contractions on , then S has a regular 
unitary dilation. 

Proof . This follows from Theorem 4.1 of [1] and from the observation made 
in the proof of Corollary to Theorem 3.1 of [1]. 

Lemma 2. If U on № is a minimal regular unitary dilation of S on J? and 
each Si is a C0. contraction, then ||/i(t/)( • )x||^- is absolutely continuous with respect 
to m„ for any x in 

Proof . Let U on X be a minimal regular unitary dilation of S on J f . Define 
operators Dt ( /=0, 1, ...,n) from / t o / a s follows: D0=I (Ix=x for any x 
in J?), Di+1=Di—Uf+1DTi+1, (i=0, ...,«—1). Let A be the closed linear span 
of Dn in J f . It follows from Theorem 1 of [3] that UkA and UlA are orthogonal to 
each other with respect to the inner product ( . , . ) of Jf for any two distinct in-
teger n-tuples k and i, and 

Let £=(£! , . . . ,£ , ) denote a generic point of T". For any a m A and any «-tuple 
k of integers, we have 

J f = M{Um A: m is an «-tuple of integers}. 

/ M*...Ml//(£/)(£>!& = (Uka,a) = 

MIjt- if ki = 0, for each i, 
.0, otherwise. 

Since the trigonometric polynomials are dense in C(r"), the space of continuous 
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functions with the supremum norm, it follows that 

MU)(-M* = N l ^ ( - ) . 
From our observations above and utilizing the fact that p(U) commutes with 

all Um, it is easy to deduce that |]/i(i/)(.)x||^ is absolutely continuous with respect 
to m„ for any x in J f . 

Theorem 1. Let S be a subnormal tuple of C0. contractions on . If N on 
Jf is the minimal normal extension of S, then ¡i(N)jTn is absolutely continuous 
with respect to m„. 

Proof. Let S on # be a subnormal tuple of C0, contractions and N on Jf 
be its minimal normal extension. By Lemma 1, S has a regular unitary dilation 
U on some Hilbert space X' . Define 

i f = V{t/*JT: k is an «-tuple of integers}, 

V denoting the closed linear span in the norm of J f ' , and let Wt= UJg ( i= 1, ..., n). 
Then W on i? is a minimal regular unitary dilation of S on JF. 

Now for any h in and any «-variable complex polynomial q, we have 

|| q(N)h\\% = f\q(y)\2d\\fi(N)(y)h\& 
D" 

and 
IIq(W)h\\%= f \q(0\2d\\KW)(m%-

JN 

Since 
= MS)hf„ = \\P(<?,Jf)q(W)h\\% ||q(W)h\\%, 

it follows in particular that 

(1) f\q(0\2dMNXt)h\\x^ f\q(0\2dMWXm\%-
j-n yn 

It is known that the unit polydisk algebra, as restricted to T", is an approximating 
in modulus algebra (see [6]); that is, any positive continuous function on Tn can 
be approximated uniformaly on T" by the modulii of polynomials. It follows from 
(1) that if / is any positive continuous function on T", then 

(2) f f t f ) d M N № h f m ff<Z)dMW)(m%-
•pn fn 

It is clear from (2) that | | ( / i ( i V ) | i s absolutely continuous with respect to 
||fi(W)(.)h\\% for any h in X . Next appeal to Lemma 2 to deduce that 
||(/i(iV)|r")(.)/i||^ is absolutely continuous with respect to m„ for any h in JC. The 
desired conclusion now follows by using the minimality of N. 
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Question. If S is a subnormal tuple of contractions on Jf and if there is 
no non-trivial closed subspace № of which is reducing for each 5, and on which 
each St is unitary, is it true that n(N)\T" is absolutely continuous with respect to 
m„, where N is the minimal normal extension of 5? 
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