Relating the normal extension and the regular unitary dilation of a subnormal tuple of contractions

AMEER ATHAVALE

In this paper we deal with only bounded linear operators on complex infinite dimensional separable Hilbert spaces. If $S = (S_1, ..., S_n)$ is a tuple of operators on a Hilbert space \mathcal{H} , then for any *n*-tuple $k = (k_1, ..., k_n)$ of integers k_i , S^k denotes $S_1^{k_1}S_2^{k_2}...S_n^{k_n}$, where $S_i^{k_i}$ is to be interpreted as $S_i^{*(-k_i)}$ if k_i is negative. If a Hilbert space \mathscr{H} is contained in some Hilbert space \mathscr{H} , then $P(\mathscr{H}, \mathscr{H})$ will denote the projection of \mathcal{H} onto \mathcal{H} . If for a tuple $S = (S_1, ..., S_n)$ of *n* commuting operators on \mathcal{H} , there exist a Hilbert space \mathcal{H} containing \mathcal{H} and a tuple $M = (M_1, ..., M_n)$ of *n* commuting operators on \mathscr{K} such that $S^k x = P(\mathscr{K}, \mathscr{H}) M^k x$ for any x in \mathscr{H} and any *n*-tuple k of non-negative integers, then S on \mathcal{H} is said to *dilate to M on* \mathcal{H} ; if moreover \mathcal{H} is invariant for each M_i , then S on \mathcal{H} is said to extend to M on \mathcal{H} . If S on \mathcal{H} dilates to M on \mathcal{H} and each M_i is unitary, then M on \mathcal{H} is said to be a unitary dilation of S on \mathcal{H} . If S on \mathcal{H} extends to M on \mathcal{H} and each M_i is normal, then M on \mathcal{K} is said to be a normal extension of S on \mathcal{H} , and S is said to be subnormal. Among all the normal extensions of a subnormal tuple S, there is a minimal one which is unique up to unitary equivalence (see [4]). In particular, if N on \mathcal{K} is the minimal normal extension of S on \mathcal{H} , then $\mathcal{H} = \bigvee (N^k \mathcal{H}: k \text{ is a tuple of }$ non-positive integers), where \lor denotes the closed linear span in the norm $\|\cdot\|_{\mathscr{K}}$ of K.

For our purposes, a special type of unitary dilation, known in the literature as regular unitary dilation (or Sz.-Nagy—Brehmer dilation) (see [3], [7]) is important. For any *n*-tuple $k = (k_1, ..., k_n)$ of integers, define $k + = (\max(k_1, 0)), ..., \max(k_n, 0))$ and $k - = (\min(k_1, 0), ..., \min(k_n, 0))$. If for a tuple S of n commuting operators on \mathcal{H} , there exist a Hilbert space \mathcal{H} containing \mathcal{H} and a tuple U of n commuting unitaries on \mathcal{H} such that $S^{k-}S^{k+}x=P(\mathcal{H}, \mathcal{H})U^{k-}U^{k+}x$ for any x in \mathcal{H} and any n-tuple k of integers, then U on \mathcal{H} is said to be a regular unitary dilation of S on \mathcal{H} ; U is minimal if $\mathcal{H} = \bigvee \{U^k \mathcal{H} : k \text{ is an n-tuple of integers}\}.$

Received February 12, 1990 and in revised form March 5, 1991.

In what follows, we will use the symbols \overline{D}^n , T^n and m_n to denote the closed unit polydisk in \mathbb{C}^n , the unit polycircle in \mathbb{C}^n and the normalized product arc-length measure on T^n respectively. The spectral measure of a normal or unitary tuple Mwill be denoted by $\mu(M)$. In case n=1, it is well known (see [2], [5]) that if Non \mathcal{K} is the minimal normal extension of a contraction S on \mathcal{H} , then $\mu(N)|T^1$ is absolutely continuous with respect to m_1 , provided S is pure; that is, there does not exist a non-trivial closed reducing subspace \mathcal{H}' of \mathcal{H} such that $S|\mathcal{H}'$ is normal. (An examination of the proof in [5] and Theorem 6.4 in Chapter II of [7] actually reveals that " $S|\mathcal{H}'$ is normal" can be replaced by " $S|\mathcal{H}'$ is unitary".) A contranction S on a Hilbert space \mathcal{H} is said to be C_0 . (see [7]) if $||S^nh||_{\mathcal{H}} \to 0$ as $n \to \infty$ for any h in \mathcal{H} . It is obvious from Theorem 3.2 in Chapter I of [7] that a C_0 , contraction does not have a non-trivial unitary part. At this stage, the reader may refer to the statement of Theorem 1 below and the question raised at the end of the paper.

Lemma 1. If S is a subnormal tuple of contractions on \mathcal{H} , then S has a regular unitary dilation.

Proof. This follows from Theorem 4.1 of [1] and from the observation made in the proof of Corollary to Theorem 3.1 of [1].

Lemma 2. If U on \mathscr{K} is a minimal regular unitary dilation of S on \mathscr{H} and each S_i is a C_0 contraction, then $\|\mu(U)(\cdot)x\|_{\mathscr{K}}^2$ is absolutely continuous with respect to m_n for any x in \mathscr{H} .

Proof. Let U on \mathscr{K} be a minimal regular unitary dilation of S on \mathscr{H} . Define operators D_i (i=0, 1, ..., n) from \mathscr{H} to \mathscr{K} as follows: $D_0=I$ $(I_X=x \text{ for any } x$ in \mathscr{H}), $D_{i+1}=D_i-U_{i+1}^*DT_{i+1}$, (i=0, ..., n-1). Let A be the closed linear span of $D_n \mathscr{H}$ in \mathscr{H} . It follows from Theorem 1 of [3] that U^kA and U^lA are orthogonal to each other with respect to the inner product $\langle ..., \rangle$ of \mathscr{K} for any two distinct integer *n*-tuples k and i, and

 $\mathscr{K} = \bigvee \{ U^m A: m \text{ is an } n \text{-tuple of integers} \}.$

Let $\xi = (\xi_1, ..., \xi_n)$ denote a generic point of T^n . For any *a* in *A* and any *n*-tuple *k* of integers, we have

$$\int_{T^n} \xi_1^{k_1} \xi_2^{k_2} \dots \xi_n^{k_n} d \| \mu(U)(\xi) a \|_{\mathscr{K}}^2 = \langle U^k a, a \rangle =$$
$$= \begin{cases} \|a\|_{\mathscr{K}}^2 & \text{if } k_i = 0, \text{ for each } i, \\ 0, \text{ otherwise.} \end{cases}$$

Since the trigonometric polynomials are dense in $C(T^n)$, the space of continuous

functions with the supremum norm, it follows that

$$\|\mu(U)(.)a\|_{\mathscr{X}}^2 = \|a\|_{\mathscr{X}}^2 m_n(.).$$

From our observations above and utilizing the fact that $\mu(U)$ commutes with all U^m , it is easy to deduce that $\|\mu(U)(.)x\|_{\mathscr{X}}^2$ is absolutely continuous with respect to m_n for any x in \mathscr{X} .

Theorem 1. Let S be a subnormal tuple of C_0 , contractions on \mathcal{H} . If N on \mathcal{H} is the minimal normal extension of S, then $\mu(N)/T^n$ is absolutely continuous with respect to m_n .

Proof. Let S on \mathscr{H} be a subnormal tuple of C_0 , contractions and N on \mathscr{K} be its minimal normal extension. By Lemma 1, S has a regular unitary dilation U on some Hilbert space \mathscr{K}' . Define

 $\mathscr{L} = \bigvee \{ U^k \mathscr{H}: k \text{ is an } n\text{-tuple of integers} \},$

 \vee denoting the closed linear span in the norm of \mathscr{K}' , and let $W_i = U_i/\mathscr{L}$ (i=1, ..., n). Then W on \mathscr{L} is a minimal regular unitary dilation of S on \mathscr{H} .

Now for any h in \mathcal{H} and any n-variable complex polynomial q, we have

$$\|q(N)h\|_{\mathscr{X}}^2 = \int_{D^n} |q(y)|^2 d\|\mu(N)(y)h\|_{\mathscr{X}}^2$$

and

$$||q(W)h||_{\mathscr{L}}^{2} = \int_{T^{n}} |q(\xi)|^{2} d||\mu(W)(\xi)h||_{\mathscr{L}}^{2}.$$

Since

$$\left\|q(N)h\right\|_{\mathscr{H}}^{2} = \left\|q(S)h\right\|_{\mathscr{H}}^{2} = \left\|P(\mathscr{L},\mathscr{H})q(W)h\right\|_{\mathscr{H}}^{2} \leq \left\|q(W)h\right\|_{\mathscr{L}}^{2},$$

it follows in particular that

(1)
$$\int_{T^n} |q(\xi)|^2 d \|\mu(N)(\xi)h\|_{\mathscr{X}}^2 \leq \int_{T^n} |q(\xi)|^2 d \|\mu(W)(\xi)h\|_{\mathscr{X}}^2.$$

It is known that the unit polydisk algebra, as restricted to T^n , is an approximating in modulus algebra (see [6]); that is, any positive continuous function on T^n can be approximated uniformaly on T^n by the modulii of polynomials. It follows from (1) that if f is any positive continuous function on T^n , then

(2)
$$\int_{T^n} f(\xi) \, d \|\mu(N)(\xi)h\|_{\mathscr{X}}^2 \leq \int_{T^n} f(\xi) \, d \|\mu(W)(\xi)h\|_{\mathscr{X}}^2.$$

It is clear from (2) that $\|(\mu(N)|T^n)(.)h\|_{\mathscr{X}}^2$ is absolutely continuous with respect to $\|\mu(W)(.)h\|_{\mathscr{X}}^2$ for any h in \mathscr{H} . Next appeal to Lemma 2 to deduce that $\|(\mu(N)|T^n)(.)h\|_{\mathscr{X}}^2$ is absolutely continuous with respect to m_n for any h in \mathscr{H} . The desired conclusion now follows by using the minimality of N.

Ameer Athavale: Normal extension and regular unitary dilation

j

Question. If S is a subnormal tuple of contractions on \mathscr{H} and if there is no non-trivial closed subspace \mathscr{H}' of \mathscr{H} which is reducing for each S_i and on which each S_i is unitary, is it true that $\mu(N)|T^n$ is absolutely continuous with respect to m_n , where N is the minimal normal extension of S?

References

- A. ATHAVALE, Holomorphic kernels and commuting operators, Trans. Amer. Math. Soc., 304 (1987), 101-110.
- [2] J. B. CONWAY and R. F. OLIN, A functional calculus for subnormal operators. II, Mem. Amer. Math. Soc., 10, No. 184 (1977).
- [3] I. HALPERIN, Unitary dilations which are orthogonal bilateral shift operators, Duke Math. J., 29 (1962), 573-580.
- [4] T. Iro, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ., 14 (1958), 1-15.
- [5] C. R. PUTNAM, A connection between the unitary dilation and the normal extension of a subnormal contraction, Acta Sci. Math., 50 (1986), 421-425.
- [6] E. L. STOUT, The theory of uniform algebras, Bogden and Quigley (Tarrytown-New York, 1971).
- [7] B. Sz. NAGY and C. FOIAS, Harmonic analysis of operators on Hilbert space, North-Holland (Amsterdam, 1970).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF POONA PUNE 411 007 INDIA