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Linear operators with a normal factorization through Hilbert space 

BRUCE A. BARNES 

Introduction. Let (£2, ft) be a c-finite measure space, and suppose that K(x, t) 
is a kernel on QxQ which is selfadjoint, that is, K(x, t)=K(t, x) a.e. on QXQ-
Let X be some Banach space of functions on Q, and assume that the integral operator 

£(/)(*)= ¡K(x,t)f(t)dp(t) (/<cX) 
Si 

is a bounded linear operator on X. When X=L2(Q) and the kernel \K\ determines a 
bounded linear operator on X, then S is a selfadjoint operator on X. However, in 
general, the operator S may not have properties analogous to those of a selfadjoint 
operator. The purpose of this paper is to study a large class of operators which in 
many respects do behave like selfadjoint (or normal) operators. One motivation here 
is to find conditions under which selfadjoint kernels determine operators which 
have many of the properties of selfadjoint operators. This question is addressed 
implicitly in the context of the examples considered in Section 3. 

There is a long history of interest in operators on a Banach space that have 
some properties in common with selfadjoint operators. Examples include sym-
metrizable operators [10], [11], the quasi-hermitian operators studied by 
J. DIENDONNE [7], and hermitian operators on Banach spaces [5], [6, Part 3]. The 
class of operators we study has some overlap with these classes. We consider linear 
operators that have a selfadjoint (or normal) factorization through a Hilbert space 
in the following sense. 

Def in i t ion 0.1. An operator S£33(X) has a selfadjoint (normal) factoriza-
tion through a Hilbert space H, if there exist bounded linear maps A and T, 

T: X ^ H , A: H X, 

with S—AT and TA selfadjoint (normal) on H. 
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When S=AT is a factorization of S with TA normal, then many properties 
of S and TA are closely linked. In particular, the spectral theory of the two oper-
ators is very much the same. For example, using the operational calculus of the 
normal operator TA, a rich operational calculus may be defined for S. This is done 
in Section 2. There is a large collection of examples in Section 3 which makes it 
clear that the theory has broad application. 

Now we establish some notation. Throughout A' is a Banach space and H is 
a Hilbert space. The algebra of all bounded linear operators on X is denoted (X). 
For let a(S) be the spectrum of S. If T is a linear map, then let 9l(r) 
be the null space of T, and let 0t(T) be the range of T. 

1. Some preliminaries. In this section we derive some preliminary results con-
cerning factorizations. We assume throughout that S€&(X) has a factorization 
S=AT where T: X-+H, A : H^X and TA is normal on H. 

Def in i t ion 1.1. Let E0 be the selfadjoint projection in £fi(H) with range 
3HTA). Set N=AE0T. Then N is called the nilpotent part of S. Note that NA = 
= AE0TA=Q, and SN=NS=0. 

Proposit ion 1.2. Let E0 and N be as above and set S=S—N. Then S has 
a normal factorization S=AT through a Hilbert space H with the property that 
9 l ( f J ) = { 0}. 

Proof. Set H=(I-E0)H, and define T: X-+H by f(x)=(I-Ea)Tx and 
1: H-*X by A(y) = Ay. For x£X, AT(x) = A(/-E0)Tx=ATx-AE0Tx=Sx-
-Nx=S(x). For y£H, TAy=(/—E0)TAy=TAy. Since TA restricted to ( I - E 0 ) H 
is normal, we have TA is normal on H. 

Next we verify that 91(f l )={0} . Assume y£H and fly=0. From the 
previous computation, we have TAy= TAy =0. Then by definition, E0y=y, so 
y=(I-E0)y=0. 

Let S=S—N as in Proposition 1.2. Then the spectral theory of S is essentially 
the same as that of S. Now by Proposition 1.2 S has a normal factorization with 
the property that 9l(Z4) = {0}. This means that from the point of view of spectral 
theory, we may make the following assumption without loss of generality. 

(Al) 9l(TA) = {0}. 

An operator R£3&(X) is similar to a normal operator W£3$(H) if 3 U:X—H 
such that U is a bicontinuous linear isomorphism of X onto H with R=U~1WU. 
In this situation X is a Hilbert space in an equivalent renorming, and the spectral 
theory of R is completely determined by that of the normal operator W. 
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Proposit ion 1.3. If TA is invertible and 91(5) = {0} then S is invertible. 
When (Al) holds and S is invertible, then TA is invertible. Furthermore, in this case S 
is similar to the normal operator TA. 

Proof. Assume (Al) holds and S is invertible. The M(A)=X and 91 (7) = {0}. 
Also, since 9i(r^)={0}, 5R(^) = {0}. We verify that M(T)=H. For suppose y£H. 
We have A(&(T))=X, so 3z£X with ATz = Ay. Then A(Tz-y)=0, so Tz=y. 
This proves that both A and T are one-to-one and onto maps. Thus, TA is invertible 
with (TAy^A^T-1. Also, in this case, setting U=T, S = AT=U~1(TA)U. 

The proof that when TA is invertible and 91(5 ) = {0}, then S is invertible, is 
similar to the proof above. 

Suppose S—AT with TA invertible, but 91(5)^ {0}. We show that in this 
case S is the direct sum of the zero operator and an operator which is similar to a 
normal operator. Let R=(TA)~1, and let P=ART. Elementary computations 
show that P2=P and SP=PS = S. It follows that £ ( / - . ? ) (J*0 = {0}. Also, if 
Sx=ATx=0, then since 9}(,4)={0}, Tx=0, and thus Px=0. This implies that 
9l(S)=(I-P)X. Therefore Z=P(I)®91(S) , and S = SP@0. Define U: P(X)^H 
by UPx=TPx = Tx. Since T(X) = H, U is onto, and when Pxe^l(U), then 
TPx—0, so SPx=0, and finally, Px—0. Therefore U has a bounded inverse. 
An easy computation shows SP—U^TAU on P(X). Therefore S is the direct 
sum of an operator similar to a normal operator (SP on P(X) and 0 on (I—P)(X)). 
In this case the spectral theory of S is easily derived from that of TA. Thus, in 
studying the spectral theory of S, we can make the following assumption with-
out loss : 
(A2) TA is not invertible. 

Note that when (Al) and (A2) hold then Proposition 1.3 implies that S is not 
invertible. 

2. Spectral theory. Throughout this section it is assumed that S has a normal 
factorization, S=AT with TA normal. Most of the properties of normal operators 
used in this paper can be found in M . SCHECHTER'S book [13] . 

Theorem 2.1. 
(1) <j(S)U{0} = o(TA)U{0}. When (Al) and (A2) hold, then 0ea(S) = a(TA). 
(2) If A^0 with Ha{TA), then 

(1-S)-1 = X-I + X-IAIX-TA^T. 

Proof. Assume X$<r(TA), X^0. The formula in (2) is verified by direct 
computation: 

(X-A^iX-' + X-'ACX-TA)-^} = 
= I+A(X — TA)~XT- X~XAT- X~*ATA (X - TA)-1 T. 
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Now the last term 

- X^ATA (X - TA)~XT = A-1 A (A — TA)(X - TA)~*T— A (X - TA)~^T, 

and substituting the expression on the right for this term yields the result. This 
proves (2). 

To prove (1) note that the same computation that establishes (2) shows that 
when X 5̂ 0 is in the resolvent of S, then 

(X-TA)-1 = X'1 + X~1T(X - S)-XA. 

Now (1) follows from (2) and the remark following the statement of (A2). 

Corollary 2.2. Assume S^3S(X) has a normal factorization through Hilbert 
space. Then 3 M > 0 such that when X$o(S), A^O, 

— S M|A|-1(1 +d(A) -1) 

where </(A)=inf {|A-/z|: 
Assume A is a compact subset of C. Let BM (A) be the algebra of all bounded 

Borel measurable functions on A. Define 501 (A) to be the set of all /€BM (A) such 
that 3g£BM (A) with /(A)=Ag(A) for all X£A. Now assume that (Al) and 
(A2) hold. Set A=a(S)=a(TA). Using the fact that the normal operator TA 
has an operational calculus g^g(TA) for all g€BM (A), we construct an opera-
tional calculus / — f ( S ) for functions f^Hl(A). 

Def ini t ion 2.3. For /€®l(J) with f(X)=Xg(X) for all X£A, and where 
g€BM(4), define 

f(S) = Ag(TA)T. 

By assumption (A2), 0£/d. This means that g(0) is not uniquely determined by 
the requirement f(J)—Xg(X) on A. Nevertheless, f(S) is well-defined. To check 
this it suffices to show that when e(A)=0, Af J \ {0} , and <?(0)= I, then e(TA)=0. 
Since Ae(A)=0 for all X<=A, we have TAe(TA)=0. Then by (Al), e(TA)=0. 

Theorem 2.4. Assume (Al) and (A2) hold. Let A=o(S) = o(TA). 
(1) The operational calculus f—f(S) is an algebra homomorphism of 9Ji(.d) 

into 31 (X). 
(2) [The Spectral Mapping Theorem.] For /€®i(J) 

o(f(S)) = o{f(TA)). 

In particular, if /£5Di(zl) and f is continuous on A, then 

A{F(S)) = {/(A): X£A}. 
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(3) Assume {/„} is a sequence in 9Jl(zl) with f„(X)=Xg„(X), {g„}gBM(,d) and 
gn-*g uniformly on A. Then fn(S)^f(S) in ®(X). 

(4) Assume either 9I(S) = {0} or @(S) is dense in X. If P£@(X) with PS= 
=SP, then for every fe^A), Pf(S)=f(S)P. 

Proof. Part (1) follows from the fact that g-*g(TA) is an algebra homo-
morphism of BM (A) into 33(H). We check the property that when fx and f2 are 
in 9Jt(J), then f1fi{S)=f1(S)MS). Write fk(l)=Xgk(X) on A for k=1,2. Then 

on A where g(X)=gl(X)Xg2(X). Therefore f1f2(S)=Ag(TA)T= 
=Agl(TA) TAg2(TA) T=A(S)f2(S). 

To prove (2), note that f ( S ) factors through H where the factors are T: X-+H 
and Ag(TA): H^X. We have f(S)={Ag(TA))T and T{Ag(TA))=f(TA). There-
fore Theorem 2.1 implies that the nonzero spectrum of f ( S ) and f(TA) is the same. 
But also, by (A2) TA is not invertible, so f(TA) = TAg(TA) is not invertible. By 
Proposition 1.3 it follows that f ( S ) is not invertible. This proves 0£a(f(TA)) and 
o e « 7 ( / ( s ) ) . 

The proof of (3) is elementary. Assuming the hypothesis in (3), it follows 
8n(TA)—g(TA) in ®(H). Therefore fn(S)=Agn(TA)T-*Ag(TA)T=f(S) in <%(X). 

Now assume P£!%(X) and P(AT) = (AT)P. Then (TP A) (TA) = (TA) (TP A). 
Assume /<E®t(4) with f(X)=Xg(X) on A. Then 

(1) (TPA)g(TA) = g(TA)(TPA). 

Applying the operator T on the right to the equality in (1), we have 

TPAg(TA)T = g(TA)TPAT = g(TA)TATP = TAg(TA)TP. 

When 91(5") = {0}, then M(T) = {0}. Thus, 

P(Ag(TA)T) = (Ag(TA)T)P 

which proves (4) in this case. When &(S) is dense, apply A on the left in equality 
(1), make a computation analogous to the one above, and use the fact that ¿%(A) 
must be dense to arrive at the conclusion. 

Corollary 2.5 Assume that Sd&(X) has a self adjoint factorization through 
Hilbert space and (Al) and (A2) hold. Then 3 M > 0 such that for all t£ R 

l|e"s|| ^ M\t\. 

Therefore, if f ( t ) and tf(t) are in L^R), then f f(t)e"sdt converges in (X). 
— oo 

Proof. Assume S=AT with TA selfadjoint. 3 / > 0 such that |w>-1(e i w-1)|s/ 
for all w^R, w^O. For A£R, A^O, let g(X)=X~1(ea'-1). Then |g(A)|s / | i | 

10 
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on R. Thus 
lle"Sll = \\Ag(TA)T\\ s М У Г | | / | / | . 

Corollary 2.5 shows that when S has a selfadjoint factorization through Hil-
bert space, then S is in the class of operators studied in [2]. 

Corollary 2.6. Assume (Al) and (A2) hold. Assume / € Щ Л ) with f(A)=Ag(A) 
X£A, g£BM (A), where in addition limg(A)=g(0)=0. Then 3{/„} a sequence of 
simple functions in with f„(S)^f(S) in 38(X). In particular such a se-
quence exists for f{S)=S2. 

Proof. Let 
£„ = sup {|g(A)|: AeJ,|A| < и-1}. 

Then by hypotheis, e„->-0. Choose {/„} a sequence of simple functions such that 
for each n s l , 

\f(co)-ta(co)\ ^n-* (co£A). 
Thus, 

|(/(A)/A)-(infA)/A)| s и-1 

whenever Ad A and |А|^и -1. Let yn be the characteristic function of the 
{X£A: |А|йи-1}. Define/„ to be the simple function f„=x„t„, л=1. Then 

\gW~(fnWlA)| s n~1 + sn 

for all At A. Therefore (/„(A)/A)-g(A) uniformly on A, so fn(S)-*f(S) in 3S(X) 
by Theorem 2.4 (3). 

Assume S=AT with ТА normal, and assume 0£A = a(TA). Let U be an 
open set with АЯ=и and suppose/is holomorphic on U with / (0)=0. Then g(A) = 
—f(A)/A is holomorphic on U (g(0)=/'(0)), thus /€ЯП(Л). Let f(S) be the oper-
ator in 38 (X) defined by the operational calculus constructed above. Now f ( S ) has 
another meaning defined in terms of the usual holomorphic operational calculus. 
In fact, in this case the two possible meanings of f(S) are the same. For let у be 
an appropriate curve in U surrounding A. Then using Theorem 2.1 we have 

тр-г //(A)(A — S ) - 1 dk = ¿ 1 /(A)[A-1 + X~lA(A — TA)~XT] dX = 
у У 

= A{¿" f g m - T A y l d k ) T = = f « T ) . 

Here we have used the fact that the operational calculus determined by functions 
in BM (A) and the holomorphic operational calculus coincide for normal oper-
ators. 
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As a consequence of the coincidence of the two operational calculi, it follows 
that when T is an open and closed subset of A with 0 then the spectral idempotent 
Pr determined by the usual holomorphic operational calculus satisfies Pr=Xr(S) 
where Xr denotes the characteristic function of T. 

Next we turn to some results concerning eigenvalues and eigenspaces. 

Proposit ion 2.7. If A0€C, ¿<,^0, then 

yi((Z0-S)n) = WA0-S) = A{yi().0-TA)}. 

Proof. If TAx=A0x, then ATAx=A0Ax. Thus ^{9l(A0- 7^)}g5R(A0-1S). 
Conversely, if ATy=A0y, then TATy=A0Ty, so Ty^H^-TA). Also y= 
=A(X-lTy)dA{<Sl(Ai>-TA)}. This proves 

(1) = A{yt(&-TA)}. 

To show 9l((A0-S)")=?t(Ao-S), it suffices to prove this for n=2. Suppose 
x£9t((A0-S)2), so (A 0 -5)x€9l (A 0 -5) . By(l), ^y^(A0-TA) with ( A 0 - S ) x = 
=Ay. Then (A0 — TA)Tx=T(A0 — AT) x—TAy=Aqj. Therefore (A0-TA)2Tx= 
=A0(A0— TA)y=0. Since TA is normal, this implies 0 = ( A 0 - T A ) T x = T ( A 0 - A T ) x . 
Then as (A0-S)x£91(^-5), we have Q=AT(A0-AT)x=Aa(^-AT)x. Thus, 
(X-AT)x=0. 

Proposit ion 2.8. Assume (Al) and (A2) hold. 
(1) If A0^0 is an isolated point of c(S), then A0 is an eigenvalue of S. 
(2) Assume A0?±Q is an eigenvalue of S. Let X0 be the corresponding eigenspace. 

Let Xo be the characteristic function of {A0}, so x0Ç9Jl(zl). Then P0=xo(S) is a 
projection with 0t(Po)=Xo and 

Proof. Assume A0^0 is an isolated point of <r(S). Then A0 is an isolated 
point of o(TA), and since TA is normal, it follows that A0 is an eigenvalue of TA. 
By Proposition 2.7 A0 is an eigenvalue of S. 

Now assume 0 is an eigenvalue of S. Let X0, x„, and P0 be as in (2). By 
Proposition 2.7 A0 is an eigenvalue of TA. Let Ha be the corresponding eigenspace. 
Since TA is normal, Q0=x0(TA) is the orthogonal projection with 0t(Q0) = H0. 
Now AXO(A)=AK,ZO(A) on A, so P0(A0-S)=(A0-S)P0=0. This proves ât(P0)QX0 

and ^(A0—S)g91 (P0). By Proposition 2.7 AH0=X0. We prove that AH0Q@{P0) 
to complete the proof of (2). Set s(A)=A_1x0(A), AÇA. Then P0=Ag(TA)T, and 
for x£H0, P0Ax=Ag(TA)TAx=AQ0x=Ax. 

A number AÇC is a Fredholm point of T£B{X) if A—T is a Fredholm 
operator. Let n00(T) denote the set of eigenvalues of T of finite multiplicity. When 
Tis a normal operator on Hilbert space, then a Fredholm point of T with AÇ_o(T) 
is an isolated point of o(T) and A£nw(T). 

9* 
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In the next theorem we prove some results concerning eigenvectors and Fred-
holm points of S. 

Theorem 2.9. 
(1) Assume that 3A(S) is dense in X. For A0£a(S), Яо^0, either A0 is an eigen-

value of S, or â$(A0—S) is dense in X. When (Al) and (A2) hold, a(S) is the union 
of the point spectrum and continuous spectrum of S. 

(2) Assume Я£С, A^O. Then A is a Fredholm point of S if and only if A is a 
Fredholm point of TA. 

(3) When A£a(S), А ¿¿О, and A is a Fredholm point of S, then A is an isolated 
point of a(S) and ?.£n0Q(S). 

(4) If A.£n00(S),A9iO, then A is a Fredholm point of S and (A—S) has index zero. 

Proof. First we prove (1). Assume A0^0 and 91(Я0—5') = {0}. Then by 
Proposition 2.7 91(Я0-ГЛ)={0}, and since ТА is normal, we have ( A 0 - T A ) H 
is dense in H. Since 3i(S) is dense in X, it follows that 3%(A) is dense in X. Therefore 
A(A0— TA)H=(A0—AT)AH is dense in X. Thus, 3%(Ab-S) is dense in X. 

Now we prove (2). Assume Я^О is a Fredholm point of TA. Then ^R^ 38(H) 
and 3 F, G £ 38(H) with 3&(F) and 3Î(G) finite dimensional so that 

(A — TA)R = I— F and R(A-TA) = I-G. 
Then 

(A-AT^A-^ + A-i-ART) = /+ ART-AT-А~г ATARI = 

= I-A-1AT+A~1A(A-TA)RT= I-A~1AT+A-1A(I-F)T = I—A-1 AFT. 

Similarly, 
(A^ + A^ARI^A-AT) = I — ).~1AGT. 

Therefore Я is a Fredholm point of S=AT. The converse is proved in exactly the 
same way. 

Now assume as in (3) that A.^a(S), A?±0, and Я is a Fredholm point of S. 
By (2), Я is a Fredholm point of ТА. Since ТА is normal, this implies that Я is an 
isolated point of а (ТА) and X£n00(TA). Then by Theorem 2.1 Я is an isolated point 
of <7(5). Also, by Proposition 2.7 $ГС(Я-5) = Л$П(Я-ТА). Since A is one-to-one 
on ЩА-ТА), ЩА-S) has finite dimension. Therefore AÇn00(S). 

Assume ?.£n00(S), A?±0. Then just as above, A£n00(TA). Since TA is normal 
Я is a Fredholm point of ТА and an isolated point of <т(ТА). Thus, by part (2), Я is a 
Fredholm point of S and an isolated point of о (S). It follows that A—S has index 
zero [13, VI, Theorem 4.5]. This proves (4). 

For an operator T£B(X), let 

W(T) — {Я^С: A—T is not a Fredholm operator with index zero}. 
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The set fV(T) is called the Weyl spectrum of T. When T is a normal operator on 
Hilbert space, 

W(T) = a(T)\nm (T). 

When this equality holds for some T£3$(X), then one says that Weyl's Theorem 
holds for T; see [3]. 

Parts (3) and (4) of Theorem 2.9 imply the following corollary. 

Corollary 2.10. When 0$Tt00(S), then W(S)=o(S)\n00(S). Therefore in 
this case Weyl's Theorem holds for S. 

An operator T£3$(X) is a Riesz operator if the nonzero spectrum of T con-
sists of poles of finite rank of the resolvent of T. This implies that a{T) is either 
finite or a sequence converging to zero, and cr (T) \ {0}cn 0 0 (T ) . Every compact 
operator is a Riesz operator. 

Proposit ion 2.11. If S is a Riesz operator, then TA is compact and S2 is 
compact. 

Proof. Assume S is a Riesz operator. If S has no nonzero eigenvalue, then 
<7(S) = {0}, which implies a(TA)=0. In this case TA=0 and S2=A{TA)T=0. 

Now assume S has a nonzero eigenvalue, and let {At}fcgl be the sequence of 
distinct nonzero eigenvalues of S (of course, this set may be finite). For each k 
let Xk be the eigenspace of S corresponding to the eigenvalue Xk. Since S is a Riesz 
operator, ¿¿->0 and each Xk is finite dimensional. By Proposition 2.7 Xk is an 
eigenvalue of TA and Xk=A9l(Xk—TA), Clearly ,4 is one-to-one on 
yi(Xk-TA), so y\.{).k-TA) is finite dimensional. Then as TA is normal, TA must 
be compact. It follows that S2—A(TA)T is compact. 

Theorem 2.12. Assume S is a Riesz operator. Let [y-k}ksl be the sequence of 
distinct nonzero eigenvalues of S, and let Xk be the eigenspace of S corresponding to 
the eigenvalue Xk, fcsl. Then there exists a sequence of projection operators, 
{Pk}Q3S(X) with PkPj=0 if k^j, SPk=PkS=XkP, and M(Pk)=Xk, km I, such 
that for all x£X, 

Sx = AkPkx + Nx. 
kisl 

Here N is the nilpotent part of S. Furthermore, for //S2, 

5»= 2 W 
I t s 1 

where convergence is in the operator norm. 

Proof. By Proposition 2.11 TA is compact. Let Ek be the orthogonal projec-
tion with range the eigenspace of TA corresponding to Xk. Define Pk=?.k1AEkT, 
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¿ S i . Then 

PkPj = Xk
1Aj1 AEkTAEjT = Xk

1AEkEJT = * * * j} 

Also, SPk=Xk
1ATAEkT=AEkT=XkP, and similarly, PkS=XkP. 

Since SPk=XkPk, it follows that @(Pk)QXk. Now by Proposition 2.7 Xk = 
=A9l(Xk-TA). If x£Xk, then choose y with TAy=Xky and x=Ay. Then 
Pkx=Xk

 1AEkTx=Xk
 1AEkTAy=AEty=Ay=x. This proves M(Pk)=Xk. 

Let E0 be the orthogonal projection with range 91 (TA). Since TA is normal and 
compact, for every ydH we have 

y= 2E*y+E<>y-km l 
Thus, for x£X, 

Tx= 2 EkTx+E0Tx, 
ksi 

and applying A, 

Sx = ATx - 2 AEkTx+AE0Tx = 2" XkPkx + Nx. 
ks 1 ftSl 

Finally for ws2 , (TA)"~1= 2 Mi'1^, so 
km l 

S" = AiTAf-^T = 2^lPk-
kmi 

The next result concerns the restriction of S to a closed 5-invariant subspace 
of X. It has application to the situation when X=L°°(Q, n), where Q is a locally 
compact Hausdorff space and p is a regular Borel measure, and S£3$(X) leaves 
invariant the subspace of bounded continuous functions on Q. 

Proposit ion 2.13. Assume S=AT where TA is self adjoint. Assume Y is a 
closed S-invariant subspace of X. Let S be the restriction of S to Y, so S£38(Y). 
Then § has a self adjoint factorization through Hilbert space. Furthermore, a (S)^ 
i<7(5) U{0}. 

Proof. Let 8 be the closure of T(Y) in H. Define f : Y—H by f ( y ) = Ty 
for y£Y. Define A: H-Y, A(z)=Az for z£H. Here one notes that A(T(Y))gY, 
so A(H)QY. Then S=AT and TA is selfadjoint in ft. In fact, since A(fl)<gY, 
we have TA(H)QT(Y)Qff. This last inclusion shows that H is 7V4-invariant. 
It follows that o(fA)Qo(TA)U{0}. Therefore <7(S)g<7(S)U{0}. 

3. Examples. This section is devoted to examples of classes of operators on 
Banach spaces which have selfadjoint or normal factorizations through a Hilbert 
space. The specific operators involved are of the type that occur commonly in oper-
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ator theory and the applications of operator theory. There are also a few examples 
of operators which are closely related to selfadjoint operators, but which do not 
have a selfadjoint factorization on Hilbert space. 

Example I. Let H be a Hilbert space. Assume V, W, R£@(H) with R^O 
and WV selfadjoint. Then VRW has a selfadjoint factorization through H. For 
set T=Rll2W and A = VR1'2. Then A, S=AT and TA=Rll2WVRl12 

is a selfadjoint operator. 
Specific examples of operators S of the type considered above are well known 

in operator theory; see [10, p. 345]. 

Example II. Let X be a Banach space with a bounded pre-innerproduct (x, y), 
x,y£X. This means that the form (x,y) has all the properties of an innerproduct 
except that 

K = {x£X: (x,y ) = 0 for all y£X} 

may be nonzero. Also, that the form is bounded means 3 C > 0 such that 

|(x,j)| == C M I I J I I (x,y£X). 

The quotient space X/K has an innerproduct determined in the natural way 
(x + K,y + K) = (x,y) (x,ydX). 

Let H be the completion of X/K in the norm determined by the innerproduct. Many 
authors study operators in 38 (X) which are selfadjoint with respect to a given bounded 
innerproduct on X; see for example [10, Chapter 9]. We consider the case where 

S has an adjoint S*€&(X) where (Sx, y)=(x, iS1*» for all x,y€X, 
and 3 / > 0 with 
( i f ) I \ S x \ \ x ^ J { x , x ? l * (x€X). 

Using the special assumption ( t ) , we will show that S has a factorization through H. 
Note that (if) implies that S(A:)={0}. Then S determines an operator S: X/K+X 
in the natural way 

S(x + K) = Sx (x£X). 
(#) implies that 

|| S(x+K)\\x^J(x + K,x+K)1'2 (x€ X), 

and it follows that S has an extension to a bounded linear operator A: H—X with 
A(x+K)=Sx for all xdX. Let T: X^H be given by Tx=x+K. The fact 
that the pre-innerproduct is bounded implies the continuity of T. Then Sx=ATx 
for all x£X, and 

TA(x+K) = Sx+K (xeX). 

It follows immediately that when S=S*, then TA is selfadjoint. When 5 is normal 
further argument is necessary. First, let W be the adjoint of TA on H. Note that 
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S*(X)={0} since (Sx, Sx)=(S*Sx, x)=(SS*x, x)=(S*x, S*x) for all x£X. 
Let S* be defined on X/K in the usual way, S*(x+K) = S* x+K. For x, y£X, 
(x+K,W(y+K))=(Sx+K,y+K)=(x+K,S*y+K). Therefore W(y+K) = 
= S*y+K for all yeX. Thus, for y£X, 

(TA) W(y + K) = SS*y + K = S*Sy + K= W(TA)(y + K). 

This proves TA is normal on H. 
Note that in the situation describe above, TA is the unique extension of S to an 

operator on H. By the theory in Section 2, S and this extension have essentially the 
same spectral theory. 

Now we consider a specific class of examples where this discussion applies. Let 
(£}, N) be a cr-finite measure space, and let X=L2=L2(Q, N). Assume Q£L°°(Q) 
with g ( 0 = 0 a.e. on Q. Define a pre-innerproduct on Zb y 

(/ g)a = J f(x)W)eix) dpix) (f,g£X). 
(2 

Then 
\ ( f g ) e \ 3= l i e n - l l / l l M ( f . g e x ) , 

so this pre-innerproduct is bounded. Let V£3&(X) be selfadjoint, and define 
se@(x) by 

S ( f ) = v(Qf) (fex). 

It is easy to verify that S satisfies (if): For f£X, l|S/ll = ||K(g/")||^||F|| ||e/l|=i 
S||K|| ||e||i£2( f \f(x)\2Q(x)d[i(x))"2. Also, 5 is symmetric with respect to the 

n 
preinnerproduct: 

( S ( f ) , g)0 = J v(ef)gQ dp = (V(Qf), eg) = (,of.; V(eg)) = (/, s(g))e. 
Si 

In this case H=L2(Q), the L2-space corresponding to the measure Q dpi. Then S 
has a selfadjoint factorization S=AT with TA the unique extension of S to a 
bounded selfadjoint operator on L2(Q). As noted before, the spectral theory of S 
on L2 is essentially the same as that of the selfadjoint operator TA on L2(Q). 

Now we give an example of an operator selfadjoint with respect to an inner-
product which does not have a selfadjoint factorization through Hilbert space. Let 
X be the disk algebra; the algebra of all continuous complex-valued functions defined 
on the closed unit disk D, and holomorphic on the interior of D. Define a bounded 
innerproduct on X by 

(/.*).= ¿/(»-^iOO»-2 (f,g$X). 
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Let S£®(X) be given by 

S(f)(z) = zf(z) (ztDJeX). 

Then S is selfadjoint with respect to the given innerproduct. But a (S)=D, so S 
has no selfadjoint factorization on a Hilbert space. 

There is an extension S of S to a selfadjoint operator on H, the comple-
tion of X with respect to the innerproduct. The vectors in H are sequences in 
l2(n~2), and 

It is easy to see that S is a Hilbert—Schmidt operator on H. Thus, there exists a 
Hilbert—Schmidt operator on H which when restricted to an invariant Banach 
subspace of H no longer has the properties of a selfadjoint operator. 

Example III. Let (Q, ¡1) be a measure space with ¡i a finite measure. We set 
LP=LP(Q,n) for l ^ g o o . Assume S: LX^LT. Then for l ^ S ^ 

S(LP) Q SiL1) Q L°° c u . 

It is straightforward to check that S is closed as an operator from LP to LP. Thus 
for each p, S determines a bounded linear operator Sp: LP^-LP. We prove that 
for each p, Sp has a factorization through Hilbert space. First consider the case where 

Then 
S(Lp) g L" g L2, and L2QL". 

Let T: Lp—L2 be determined by S1 (again, T is closed, hence continuous). Let A 
be the continuous embedding of L2 into LP. Then SP=AT is a factorization of Sp 

through L2. Note that T A ( f ) = S(J) for all f£L2, so TA = S2. 
Now suppose 2 i n which case 

S(L2) g L~ g LP, and Lp g L2. 

Let T be the continuous embedding of LP into L2, and let A be the bounded linear 
operator from L2 into LP determined by S. Then SP=AT is a factorization of Sp 

through L2, and TA = S2 on L2. We summarize these results in a theorem. 

Theorem 3.1. Let (Q, ¡i) be a finite measure space. Assume S: L1-*L°°. Then 
for each p, 1 S determines an operator Sp£88(LP), Sp has a factorization 
Sp = AT through L-, and TA = S2. Therefore if S2 is normal then the factoriza-
tion is normal. 

Now we look at two specific classes of examples where Theorem 3.1 applies. 
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Corollary 3.2. Assume (Q,n) is afinite measure space and that KdLT (QxQ). 
Let S be defined by 

s(f)(x)= fK(x,t)f(t)dp(t) (/ez,1). 

Then S(L1)QL°°. If S2 is a normal operator, then Sp has a normal factorization 
through L2 for 1 gpgoo. In particular, if K(x, t)=K(t,x) a.e. on QXQ, then Sp 

has a self adjoint factorization through L2 for all p. 

Corollary 3.3. Let ip(t) and cp(t) be complex-valued measurable functions on 
(a, b) with 

(i) \\]/(t)\ increasing on (a,b); 
(ii) \(p(t)\ decreasing on (a, b); 

(iii) (p\p£LT[a, b]. 
Define 

K ' [(p(t)\j/(x) a ^ x ^ t s b. 

Let S be the integral operator determined by the kernel K. Then S: Ll[a, b] -~L°°[a, b] 
and S2 is selfadjoint. 

Proof. It is straightforward to check that K{x, t) is bounded. 

Example IV. Let ^ b e a Banach space which is a subspace of a Hilbert space 
H with X continuously embedded in H. Assume R£3$(H) with R selfadjoint (or 
normal) and suppose R(H)QX. Let S be the restriction of R to X. It is easy to 
check that S is closed on X so Si28{X). Let T: X-+H be the continuous 
embedding. Define A: H^X by Ay=Ry, y£H. Again, A is closed, hence con-
tinuous. Then S=AT and TA=R. Examples of this type are quite common. 

Here is a specific example. Let G be a locally compact unimodular group with 
a fixed left Haar measure. Fix k£L1(G)CiL2(G) such that k(x~1)^k(x), x£G. 
Then k(xt_1) is a selfadjoint kernel, and the corresponding convolution operator 

R(f)(*)= f k(xt~x)f(t)dt (/€L2(G)) 
G 

is selfadjoint on L2(G). Let X be the Banach subspace of L2(G) consisting of all 
those f£L2(G) which are continuous and bounded on G. By [9, (20.19) (iii)] 
R(L2(Gj)QX. Thus, as indicated above the operator S£@(X) defined by 

S(f)(x)= f k(xrx)f(t)dt ( f i X ) 
G 

has a selfadjoint factorization through L2(G). 
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We give one more specific class of examples. Let X=L2[0, °°)nLp[0, •») for 
some p, 1 or let X be the set of f£L2[0, which are bounded and con-
tinuous on [0, For <p, ipdX, let K(x, t) be the kernel 

~ \<p(t)il/(x) Osxgi. 

Let R be the selfadjoint operator on L2[0, °o) determined by this kernel. For 
/ € L 2 [ 0 , + 

X oo 

R(/)(x) = W ) J xl>(t)f(t)dt + W ) f <P(t)fO)dt. 
o * 

For x^O, f£L2[0, oo), 

i « ( / x * ) i s i9»(*)iii^iiBii/ii2+i^(*)i II^II, «/a«. 

This inequality proves that R(J)£X. Thus, as before, the integral operator S on 
X determined by the kernel K has a selfadjoint factorization through L2[0, oo). 

Example V. Let (i2, /i) be a c7-finite measure space. We construct a class 
of operators on L°° (and later on V) which have a selfadjoint factorization through L2. 
If / and g are measurable functions on 

Q with JgdL\ then let (J,g)= f fg dp. 
Assume ° 
(*) V: L1 —• L°° with (V(f), g) = (/, V(g)) for all f,gdL\ 
Assume k^L1, fcsO a.e. on Q. Define T: L°°->L2 by 

T ( f ) = W f (/€L°°). 
Define A: L2+L°° by 

A ( f ) = V ( k ^ f ) (/6L2). 
For f£L2, 

U f I U = F ( £ 1 / 2 / ) l l - S F l l l l ^ 1 / 2 / l l i S ||K|| | |&1 /2 | | i | | / | | 2 

where the last inequality follows by applying the Cauchy—Schwarz Inequality. 
Therefore A is bounded. Thus, S=AT: LT^LT, 

S ( f ) = V(kf) (feL~), 

has a factorization through L2. We check that TA: L2-+L2 is selfadjoint. For 
f,g£L2, kll2f and kV2g are in L1, so using (* ) we have 

(TA(f), g) = (k^Vik^f), g) = (Vik^f ), kV*g) = (k1'2/, V(k1/2g)) = (f,TA(g)). 

Now we consider a related operator on L1 that factors. Again, assume V is 
as in (*), and k£L\ k^0 a.e. on Q. Define T\ Z,1—Z,2 by 

T ( f ) = W*V{f) (/(¿L1), 
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and A: L2—L1 by 
A ( f ) = k^f (feL>). 

Then R=AT: 
R ( f ) = kV(f) (/CL1), 

and a computation similar to that above proves that TA is selfadjoint on L2. 
We summarize this discussion in a theorem. 

Theorem 3.4. Assume V: L1-*L°° with (V(f),g)=(f V(gj) for all fgtL1. 
Assume k^L1, k^Q a.e. on Q. Then S: L°°—L°° and R: LX-~LX defined by 

S ( f ) = V(kf) (/6L-), 

R ( f ) = kV(f) (/6L1), 
/iflfe selfadjoint factorizations through L2. 

Next we give some examples of operators V which satisfy (*). 

Proposit ion 3.5. Let (O, n) be a a-finite measure space and assume 
K£L°°(QXQ) with K(x, t)=K(t,x) a.e. Let V be the corresponding integral operator 

V(f)(x) = ¡K(x,t)f(t)dt (ffM(Q)). 
A 

Then V satisfies (*). 

The proof is elementary, so it will not be given. 

Proposit ion 3.6. Assume q> and are C-valued functions on (0, with 
(i) |<K0l is increasing on (0, 

(ii) | <p (i)| is decreasing on (0, + 
(Hi) <pHL~(0, 

Let 

K ( x , t ) = f f m o ^ / s x , 
v ' [<p(t)ll/(x) O s x g l . 

Let V be the integral operator determined by the kernel K. Then V satisfies (*). 

The proof of this proposition is straightforward. 
Now, without providing the details, we discuss two concrete situations involving 

kernels of the types in Propositions 3.5 and 3.6. Let W be the space of all bounded 
C-valued continuous functions f on (0, such that / ' exists and is continuous 
on (0,°°), and /"(x) exists for a.e. x in (0, <*>). Assume (?(i)>0 on (0, and 
Qev-fo, °o). Fix 0>o. 

First consider the differential operator 
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with domain ¡¿(L)QL°°(0, given by 

3(L) = {fÇtV: Q{trl{r{t) + a*f{t))dL-{Q, «,)}, 

and L ( f ) = e ( 0 _ 1 ( / " ( 0 + « 2 / (0) for №(L). 
Let 

K(x. t) = - a ~ f ° S 

Ism 

K(x, t) is a bounded kernel. Set J(x, t)=K(x, t)g(t), x, t>-0, and let S be the 
integral operator on L°°(Q, determined by J . By Theorem 3.4 S has a self-
adjoint factorization through L2(0, »). Also, S is a right inverse for L, meaning 
S(L°°)Q@(L) and L(S ( / ) ) = / for /€L°°. In addition, S is a Fredholm inverse 
for L. 

Let W, g, and a be as above. We consider a second differential operator 

K is a kernel of the type considered in Proposition 3.6. Set J(x, t)=K(x, t)g(t), 
x, t>0, and let S be the integral operator on LT(0, with kernel/. By Theorem 3.4 
S has a selfadjoint factorization on L2{0, =»). Again in this case S is a right inverse 
of L and a Fredholm inverse for L. 

Example VI. Let g(t) be the weight function on [0,1] defined by q(t)=e1", 
0 < f ^ l . Let L2(Q) be the Hilbert space of ZMunctions on [0,1] relative to the 
measure q(t) dt. Let £2=L2[0,1], and note L2(q)QL2. We construct a selfadjoint 
Hilbert—Schmidt operator S on L2(Q) such that S has an extension S^SS (L2) 
such that S is not compact and a(S) is not a subset of R. 

Let K(x, t) be the kernel 

with 
3{L) = {f<LW: e(tr\f"(t)-a2f(t))tL~(p,~)}. 

Let 

(1) K is a Hilbert—Schmidt kernel on L2(Q). 

Proof. First note that 
X X X 

f e-(1/o dt = f t2(r2e-(1"ï)dt s X2 f t~2e~(x,,) dt = x2e~^x>. 
0 0 0 
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Then 
1 1 1 X 

f [ f K{x, tfe(t)dt)e{x)dx = J x-2e(x)[f e_ ( 1 / , ) cfrj dx =g 
0 0 0 0 

1 
f x-2

e(x)[x2e-<-1'^]dx = 1. 
o 

Let T be the Hilbert—Schmidt operator determined by the kernel K. The adjoint 
kernel of K, K*, is given by 

K*(x - i ° 0 S / < x S 1, 
A 1 ' l ) ~ I f - ^ i x ) - 1 O s x s i s l . 

The corresponding operator is the adjoint of T. Let S= T+ T* on L2(q). S is 
determined by the kernel K+K*, so for f€L2(o), 

S(f)(x) = f K(x, t)f(t)Q(t) dt + f K\x, t)f(t)Q(t) dt = 
o 

l 

Let 

= x - 1 / f(t)dt + Q(x)-x f t-x
Q(t)f{t)dt. 

0 * 

i o O s / < i s i , 
{ x ' 0 ~ X o M - ^ e O ) O s x s i s i . 

(2) J is a Hilbert—Schmidt kernel on L2. 

Proof. For x > 0 
1 1 r i l l 

f J(x, t f d t = Q(X)~2 J r2e2"dt = e(x)-2[-ye2 + y 

which is a bounded continuous function of x on (0,1]. 
Define S on L2 by 

S(f)(x) = x-1 f f ( t ) d t + f J(x, t)f(t)dt. 
0 0 

The first summand is the Cesaro operator on L2[0, 1], while the second, as verified 
in (2), is a Hilbert—Schmidt operator on L2. The Cesaro operator is studied in [4] 
where it is verified that it is bounded on 1?. Thus, S£B(L2), and by definition S 
is an extension of S. Now the Cesaro operator has spectrum a disk [4], and the 

i 
operator /-»• J J(x, 0 / ( 0 dt is compact. These two facts imply that S is not com-

o 
pact, and that a(S) is not a subset of R. 
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4. Regularity, hyperinvariant subspaces. Let si be a commutative Banach alge-
bra with unit. We denote the Gelfand space of si by Q^ (Q^ is the set of all nonzero 
multiplicative linear functionals on si equipped with the relative weak-*topology). 
For f£si, let / denote the Gelfand transform of / , so f(ip)=ip(f) for i 
A subset D of si strongly separates points of Q^ if whenever {¡/1, i i / ^ 7^2, 
then 3/€!> with /OA^M/OAa), and whenever 1 3 g € D with g(ip)^0. The 
algebra si is regular if whenever T is a closed subset of Q^ and 1p£ QJ\T, then 
3 f £ s i such that /(jT) = {0} and f(ip)^0. Let rad (si) denote the Jacobson 
radical of si. A good reference for the theory of Banach algebras is [5]. 

Now we prove a general result in a Banach algebra setting which applies to 
operators S that have selfadjoint factorizations. Some form of this result is certainly 
known (see [8]), but we include it since the proof is short and elementary. 

Theorem 4.1. Let SB be a regular commutative semisimple Banach algebra with 
unit. Let si be a commutative Banach algebra with unit. Assume cp: 08—si is a 
unital algebra homomorphism such that <p(SS) strongly separates points of Q^. Then 

(1) si is regular; 
(2) Assume S£ä$(X) and si is a closed subalgebra of ¿S(X) with S and I in si 

Such that si satisfies the hypotheses of the theorem. Also assume that si has the prop-
erty that when R£SS(X) and RS=SR, then RT=TR for all T£si. If o(S) 
contains more than one number, then S has a proper closed hyperinvariant subspace 

Proof. Define T: Q^Qm by T(Ip) = ipo(p. Then T is one-to-one and con-
tinuous. Now assume f is a closed subset of Q^ and 1/̂ 6 Q J \ T . Since T is compact, 
t(T) is compact, and also, t(iPM*(0- Then 3 / 6 ^ suchthat /(z(r)) = { 0} and 
/(T (iAi)) 5̂ 0- This proves si is regular. 

Now assume S and si are as in (2). By hypothesis a(5) contains at least two 
points. Since o(S) Qa^(S), o^(S) contains at least two points. Thus, 3<Ai, <p2£ 
with ip19iip2, then r(\pj)9ir(\p2) so we can choose f suchthat / ^ ( 1 / 0 ) ^ 0 , 
k = 1,2, and Af2=0. Therefore q>(fk)^0, k = \,2, and <p(/iM/2)=0- Let W 
be the closure of (p(f2)X in X. W is proper since (p(f1)fV={0}. If R£@S(X) com-
mutes with S, then R<p(f2) = cp(f2)R, so R(W)QW. 

Theorem 4.1 applies to the situation where S has a selfadjoint factorization on 
Hilbert space. The map q> involved is the operational calculus. As part of the proof 
of this result, we prove a preliminary proposition. 

Let A be a compact subset of C. For /£BM (A), define 

l l /L = sup{|/(A)|: AiA). 

Also, let C(A) denote the algebra of all complex-valued continuous functions on A. 
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Proposit ion 4.2. Assume that S has a selfadjoint factorization through Hilbert 
space. Also, assume that (Al) and (A2) hold. Set A=a(S). Define 

J?={fdC(A): 3g£C(A) with /(A) = Ag(A) on A}. 

Let 38 be J with a unit adjoined. Let si be the closed subalgebra of 38 (X) generated 
by S and I. Then 38 is a regular semisimple Banach algebra, and 3(P- 38—si with 
cp a continuous unital algebra homomorphism such that (p(38) separates points of Q^. 

Proof. One easily checks that J is an ideal in C(A) and that J is a Banach. 
algebra in the norm ||/|| =max( | | / |U ||gL) where gdC(A) with /(A) = 
=Ag(A) on A. It follows that J , and hence 38, is a regular semisimple Banach 
algebra. 

Now For / £ . / , let <p(f)=f(S), and extend <p to 38 by setting 
(p(l)=I. Note that <p is continuous on J by Theorem2.4 (3). We still must check 
that <p(J)Qsi. Assume /£,/" with g£C (A), f(?.)~ XgQ.) on A. Choose a sequence 
of polynomials {tf„(A)} such that lk„-gn |L-0. Set pn(X)=lqnQ), so 
Then ||p„—/L—0, so />„—/ in the norm on J. Therefore {pn(S)}Qsi and 
Pn(S)*f(S) in 38(X). Thus, f(S)dd. Finally, q>(38) separates points of Q^ 
since I, S£ cp (38). 

Theorem 4.3. Assume S£3$(X) has a selfadjoint factorization through Hil-
bert space. 

(1) If a(S) contains at least two numbers, then S has a proper closed hyper-
invariant subspace. 

Let si be the closed subalgebra of 38(X) generated by S and I. Assume (Al) and 
(A2) hold. Then 

(2) si is a regular Banach algebra, rad {¿¿)2 = {0}, and SR=RS=0 for all 
Rd rad(.«0; 

(3) If 3k(S) is dense in X or 5R(S) = {0}, then si is semisimple. 

Proof. If S^O and 9i(S)Ti{0}, then 91(5) is a proper closed hyperinvariant 
subspace of S. Thus we may assume 5R(iS) = {0}. Let N be the nilpotent part of S. 
Since SN=0, in this case N=0. Then by Propositions 1.2 and 1.3 we may assume 
that S has a factorization S=ATW\ih TA selfadjoint such that (Al) and (A2) hold. 
If TA is invertible, then by Proposition 1.3 S is invertible. In this case S is similar to 
the selfadjoint operator TA. It follows easily that S has a proper closed hyper-
invariant subspace (assuming CT(.S) has more than one point). Thus, to establish 
(1) we may assume (Al) and (A2) hold. 

Assuming (Al) and (A2) hold, Proposition 4.2 applies. Then Theorem 4.1 proves 
(1) and that si is regular. 
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Now assume Rdra&(si). Choose a sequence of polynomials {p„(A)} such 
that pn(S)—R in si. Since si is a closed subalgebra of SS(X), the spectral radius of 
V£si relative to si is the same as r(V), the spectral radius of V in B(X). Now 
r(pn(S))-*r(R)=0. Since (7(pn(S)) = {pn(fi): p£c(S)}, it follows that pn(l)-~0 
uniformly on A. Therefore by Theorem2.4 (3) Sp„(S)-*0, so SR=0. Also, it 
now follows that Rp„(S)=p„(0)R, and since />„(0)—0, we have R2—0. This com-
pletes the proof of (2). 

(3) follows easily from the fact derived in (2) that for J?6rad (si), SR=RS=0. 
In our final result, we show that when S has a selfadjoint factorization through 

Hilbert space, then S can be approximated by operators which are similar to self-
adjoint operators. 

Theorem 4.4. Assume S£&(X) has a selfadjoint factorization through a Hil-
bert space, and that (Al) and (A2) hold. Then there exists a collection of projection 
operators {PE}E^0Q3S(X) such that PES=SPC for £>0, and 

(i) PES considered as an operator on PE(X) is similar to a selfadjoint operator for 
each e>0; and 

(ii) S is the strong limit as £->-0+ of SPE on X. 

Proof. Assume S=AT is factorization of S through H with TA selfadjoint 
and that (Al) and (A2) hold. Let A=o(TA). For let ,tj be the charac-
teristic function of the specified interval and set Et=X(_„, ¡¡(TA). Thus, {£,},eR is 
the usual spectral resolution of the identity for TA. In this situation the strong limit 
of E,—E0 as f— 0~ is the projection on 9l(TA) which is 0 by (Al) [11, p. 361]. 
Also, E, is strongly continuous from the right on R, so the strong limit of Ee—E_e=0 
as e—0+. Let be the characteristic function of (— e]U(fi, +<»). Then Qe= 
=Xe(TA)=I-(Ec-E-e) has strong limit / as £ -0+ . Let Pc=xe(S). Consider the 
operator SPC on the space Xe=PcX. Let Ht=QcH. Applying the operational 
calculus to the function Ax£(A), we have 

(1) SPC = AQBT. 

Then TA (TPe A)=T(SPE) A=T(AQeT) A by (1). Then TA (TPCA—QETA)=0, so 

(2) (TA)Qe = TP, A. 
Let 

Te = Q,TPt: X - H„ and Ae = PeAQc: H. - Xc. 

Then using (1) and (2) we have 

AETE = PEAQETPE = SPE, and TEAE = QETPTAQE = (TA)QE. 

Now let f(X)=X~1xE(l). Then TAf(TA)=Qe, while Sf(S)=Pe. Therefore TAQt 

10 
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is invertible on He and SPe is invertible on XE. By Proposition 1.3 SPe as an oper-
ator on Xt is similar to the selfadjoint operator TAQe on He. This proves (i). 

To prove (ii), recall that we have shown that / is the strong limit of Qz as e—0+. 
Then for x£X, QeTx-~Tx, and therefore by (1), 

SPex = AQcTx - ATx = Sx. 
Thus, (ii) holds. 
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