Strongly dense simultaneous similarity orbits of operators

JOSÉ BARRÍA

Introduction

Let X be a (real or complex) Banach space and let $B(X)$ denote the algebra of all bounded linear operators on X. Let $B^{(n)}(X)$ denote the product $B(X) \times \ldots \times B(X)$ of n copies of $B(X)$. The group of invertible operators in $B(X)$ acts on $B^{(n)}(X)$ by conjugation $A^{-1}\left(T_{1}, \ldots, T_{n}\right) A=\left(A^{-1} T_{1} A, \ldots, A^{-1} T_{n} A\right)$. For $\left(T_{1}, \ldots, T_{n}\right)$ in $B^{(n)}(X)$ denote by $S\left(T_{1}, \ldots, T_{n}\right)$ the orbit of $\left(T_{1}, \ldots, T_{n}\right)$ in $B^{(n)}(X)$,

$$
\begin{gathered}
S\left(T_{1}, \ldots, T_{n}\right)= \\
=\left\{A^{-1}\left(T_{1}, \ldots, T_{n}\right) A=\left(A^{-1} T_{1} A, \ldots, A^{-1} T_{n} A\right): A \text { is invertible in } B(X)\right\} .
\end{gathered}
$$

The purpose of this paper is to describe those orbits $S\left(T_{1}, \ldots, T_{n}\right)$ which are strongly dense in $B^{(n)}(X)$. Recall that a net $\left\{S_{\lambda}\right\}$ in $B(X)$ converges strongly to an operator S in $B(X)$ if and only if $\lim _{\lambda} S_{\lambda} f=S f$ for all f in X. If X is finite-dimensional then the strong topology coincides with the norm topology, and therefore $S\left(T_{1}, \ldots, T_{n}\right)$ is never dense in $B^{(n)}(X)$. If X is infinite-dimensional (and $n=1$), then $S(T)$ is strongly dense in $B(X)$ for a very large set of T 's. More precisely, in [2] it was shown that $S(T)$ is strongly dense if and only if T is in the complement of the set $\{\lambda I+F: \lambda \in \mathbf{K}, F$ has finite rank $\}$ (\mathbf{K} is the field of scalars and I is the identity operator on X). Observe that an operator T is not a scalar plus a finite rank operator if and only if $\alpha_{0} I+\alpha_{1} T$ has infinite rank for all nonzero $\left(\alpha_{0}, \alpha_{1}\right)$ in \mathbf{K}^{2}. This suggests to consider those n-tuples (T_{1}, \ldots, T_{n}) such that $\alpha_{0} I+\alpha_{1} T_{1}+\ldots+$. $+\alpha_{n} T_{n}$ has infinite rank for all nonzero $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ in K^{n+1}. In this paper we show that this condition on $\left(T_{1}, \ldots, T_{n}\right)$ characterizes the strong density of $S\left(T_{1}, \ldots, T_{n}\right)$ in $B^{(n)}(X)$. Another result from [2] states that $S(T)$ is strongly dense if and only if $S(T)$ is weakly dense. The corresponding generalization to n-tuples is also true. From [1] it follows that the strong density of $S(T)$ can be described in terms of compressions. If P is an idempotent in $B(X)$ with range X_{0}, then the
compression of $S\left(T_{1}, \ldots, T_{n}\right)$ to X_{0} is defined as the restriction of $\operatorname{PS}\left(T_{1}, \ldots, P_{n}\right) P$ to X_{0}. Then for n-tuples the density of $S\left(T_{1}, \ldots, T_{n}\right)$ is characterized by the condition that the compression of $S\left(T_{1}, \ldots, T_{n}\right)$ to any finite-dimensional subspace $X_{0}(\subseteq X)$ is equal to the full algebra $B^{(n)}\left(X_{0}\right)$.

Preliminaries

Lemma 1. Let n be a fixed positive integer. For $1 \leqq i \leqq n$ and $m \geqq 1$, let $f_{m}^{(i)}$, $f^{(i)}$ be vectors in X such that $f_{m}^{(i)} \rightarrow f^{(i)}(m \rightarrow \infty)$. Let $g_{m}=\alpha_{m}^{(1)} f_{m}^{(1)}+\ldots+\alpha_{m}^{(n)} f_{m}^{(n)}$, with $\alpha_{m}^{(i)} \in \mathbf{K}$. If $f^{(1)}, \ldots, f^{(n)}$ are linearly independent and if the sequence $\left\{g_{m}\right\}_{m=1}^{\infty}$ converges, then there are scalars $\alpha^{(1)}, \ldots, \alpha^{(n)}$ such that $\alpha_{m}^{(i)} \rightarrow \alpha^{(i)}(m \rightarrow \infty)$ for $i=1, \ldots, n$.

Proof. If $n=1$ we choose a bounded linear functional Φ on X such that $\Phi\left(f_{1}\right)=1$, then $g_{m}=\alpha_{m}^{(1)} f_{m}^{(1)}$ implies that $\lim _{m \rightarrow \infty} \alpha_{m}^{(1)}=\lim _{m \rightarrow \infty} \Phi\left(g_{m}\right)$. Now we assume that $n \geqq 2$. The next step is to show that $\left\{\left|\alpha_{m}^{(1)}\right|\right\}_{m=1}^{\infty}$ cannot converge to infinity. Indeed, if $\left|\alpha_{m}^{(1)}\right| \rightarrow \infty(m \rightarrow \infty)$, then the left hand side of

$$
\frac{g_{m}}{\alpha_{m}^{(1)}}-f_{m}^{(1)}=\frac{\alpha_{m}^{(2)}}{\alpha_{m}^{(1)}} f_{m}^{(2)}+\ldots+\frac{\alpha_{m}^{(n)}}{\alpha_{m}^{(1)}} f_{m}^{(n)}
$$

converges to $-f^{(1)}$ and then the induction hypothesis can be applied to $f_{m}^{(2)}, \ldots, f_{m}^{(n)}$ to conclude that there are scalars $\beta^{(2)}, \ldots, \beta^{(n)}$ such that $-f^{(1)}=\beta^{(2)} f^{(2)}+\ldots+\beta^{(n)} f^{(n)}$. This contradicts the fact that $f^{(1)}, \ldots, f^{(n)}$ are linearly independent. The same reasoning applies to any subsequence of $\left\{\left|\alpha_{m}^{(1)}\right|\right\}_{m=1}^{\infty}$, therefore $\left\{\alpha_{m}^{(1)}\right\}_{m=1}^{\infty}$ is bounded. Next, let $\left\{m_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of positive integers such that $\alpha_{m_{k}}^{(1)} \rightarrow \alpha^{(1)}$ $(k \rightarrow \infty)$ for some scalar $\alpha^{(1)}$. Then from the induction hypothesis it follows that there are scalars $\alpha^{(2)}, \ldots, \alpha^{(n)}$ such that $\alpha_{m_{k}}^{(i)} \rightarrow \alpha^{(i)}(k \rightarrow \infty)$ for $i=1, \ldots, n$. Since $f^{(1)}, \ldots, f^{(n)}$ are linearly independent, the scalars $\alpha^{(1)}, \ldots, \alpha^{(n)}$ are independent of the sequence $\left\{m_{k}\right\}_{k=1}^{\infty}$. Then it follows that $\alpha_{m}^{(i)} \rightarrow \alpha^{(i)}(m \rightarrow \infty)$ for $i=1, \ldots, n$.

Lemma 2. Let $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$. Assume that for every vector f in X the set $\left\{T_{1} f, T_{2} f, \ldots, T_{n} f\right\}$ is linearly dependent. Then there is a nonzero n-tuple ($\alpha_{1}, \ldots, \alpha_{n}$) in K^{n} such that $\alpha_{1} T_{1}+\ldots+\alpha_{n} T_{n}$ has rank less than or equal to $n-1$.

Proof. If $n=1$ then the hypothesis reduces to $T_{1} f=0$ for all f in X, and the conclusion holds. Assume that $n \geqq 2$. Let D be the set of all vectors f in X such that $\left\{T_{1} f, \ldots, T_{n-1} f\right\}$ is linearly dependent. If $D=X$ then the conclusion follows by induction. Assume that $D \neq X$. An easy compactness argument in K^{n} implies that D is a closed set. For every vector h in $X \backslash D$ (the complement of D) the set $\left\{T_{1} h, \ldots, T_{n-1} h\right\}$ is linearly independent; then from the linear dependence of $\left\{T_{1} h, \ldots, T_{n-1} h, T_{n} h\right\}$ it follows that there are functions $\alpha_{1}, \ldots, \alpha_{n-1}$ from $X \backslash D$
to K such that

$$
\begin{equation*}
\alpha_{1}(h) T_{1} h+\ldots+\alpha_{n-1}(h) T_{n-1} h+T_{n} h=0 \quad \text { for all } h \text { in } X \backslash D \tag{1}
\end{equation*}
$$

Let f be a fixed vector in $X \backslash D$, and let M be the subspace spanned by $\left\{T_{1} f, \ldots, T_{n-1} f\right\}$. The proof will be completed by showing that the range of $\alpha_{1}(f) T_{1}+\ldots+\alpha_{n-1}(f) T_{n-1}+T_{n}$ is contained in M. Let g be an arbitrary vector in X. Since $X \backslash D$ is open, there is a positive δ such that $f+\lambda g \in X \backslash D$ for $|\lambda|<\delta$. If $|\lambda|<\delta$, from (1) we obtain

$$
\begin{equation*}
\alpha_{1}(f+\lambda g) T_{1}(f+\lambda g)+\ldots+\alpha_{n-1}(f+\lambda g) T_{n-1}(f+\lambda g)+T_{n}(f+\lambda g)=0 \tag{2}
\end{equation*}
$$

and (with $\lambda=0$)
(3)

$$
\alpha_{1}(f) T_{1} f+\ldots+\alpha_{n-1}(f) T_{n-1} f+T_{n} f=0
$$

Subtracting (3) from (2) we get

$$
\begin{gathered}
\lambda\left[\alpha_{1}(f+\lambda g) T_{1} g+\ldots+\alpha_{n-1}(f+\lambda g) T_{n-1} g+T_{n} g\right]= \\
=\left[\alpha_{1}(f)-\alpha_{1}(f+\lambda g)\right] T_{1} f+\ldots+\left[\alpha_{n-1}(f)-\alpha_{n-1}(f+\lambda g)\right] T_{n-1} f
\end{gathered}
$$

which implies that

$$
\begin{equation*}
\alpha_{1}(f+\lambda g) T_{1} g+\ldots+\alpha_{n-1}(f+\lambda g) T_{n-1} g+T_{n} g \in M \quad \text { for } \quad 0<|\lambda|<\delta \tag{4}
\end{equation*}
$$

Let $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ be a sequence of scalars such that $\lambda_{m} \rightarrow 0(m \rightarrow \infty)$. If we define $f_{m}^{(i)}=$ $=T_{i}\left(f+\lambda_{m} g\right)(1 \leqq i \leqq n-1)$, then $f_{m}^{(i)} \rightarrow T_{i} f(m \rightarrow \infty)$, and $T_{1} f, \ldots, T_{n-1} f$ are linearly independent. Then, using (2), we can apply Lemma 1 , with $g_{m}=-T_{n}\left(f+\lambda_{m} g\right)$, to conclude that $\alpha_{i}\left(f+\lambda_{m} g\right) \rightarrow \alpha^{(i)}(m \rightarrow \infty)$ for $i=1, \ldots, n-1$. Then, from (2) again, $\alpha^{(1)} T_{1} f+\ldots+\alpha^{(n-1)} T_{n-1} f+T_{n} f=0$, and comparing with (3) it follows that $\alpha^{(i)}=\alpha_{i}(f)$ for $i=1, \ldots, \ldots, n-1$. This shows that the functions $\lambda \rightarrow \alpha_{i}(f+\lambda g)(|\lambda|<\delta)$ are continuous at $\lambda=0$ in every direction. Since M is a closed subspace, from (4) we conclude that $\alpha_{1}(f) T_{1} g+\ldots+\alpha_{n-1}(f) T_{n-1} g+T_{n} g \in M$. Since g is an arbitrary vector, then the range of $\alpha_{1}(f) T_{1}+\ldots+\alpha_{n-1}(f) T_{n-1}+T_{n}$ is contained in M.

Lemma 3. Let $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$. Assume that every nontrivial linear combination of T_{1}, \ldots, T_{n} has infinite rank. Then given a positive integer m there are vectors f_{1}, \ldots, f_{m} in X such that $\left\{T_{i} f_{j}: 1 \leqq i \leqq n, 1 \leqq j \leqq m\right\}$ is a linearly independent set.

Proof. If f_{1}, \ldots, f_{m} are vectors in X then we denote by $L\left(f_{1}, \ldots, f_{m}\right)$ the set $\left\{T_{i} f_{j}: 1 \leqq i \leqq n, 1 \leqq j \leqq m\right\}$. If $m=1$, then what is wanted is a vector f in X such that $T_{1} f, \ldots, T_{n} f$ are linearly independent. If this is not true then Lemma 2 implies that some nontrivial linear combination of T_{1}, \ldots, T_{n} has finite rank. Since this contradicts the hypothesis, the lemma holds for $m=1$. Now we assume that $L\left(f_{1}, \ldots, f_{m}\right)$ is a linearly independent set for some vectors f_{1}, \ldots, f_{m}. Let M be the subspace spanned by $L\left(f_{1}, \ldots, f_{m}\right)$ and let N be a closed subspace which is a complement of
M (i.e., $X=M+N$ and $M \cap N=(0))$. Let P be the idempotent in $B(X)$ with range N and null space M. Since $T_{i}=(I-P) T_{i}+P T_{i}(I-P)+P T_{i} P$, and since $I-P$ has finite rank, then every nontrivial linear combination of $P T_{1} P, \ldots, P T_{n} P$ has infinite rank. Now from the first part of the proof it follows that there is a vector g in N such that $P T_{1} g, \ldots, P T_{n} g$ are linearly independent. If we define $f_{m+1}=g$, then $L\left(f_{1}, \ldots, f_{m}, f_{m+1}\right)$ is linearly independent. Indeed, if $\sum_{i=1}^{n} \sum_{j=1}^{m+1} \alpha_{i j} T_{i} f_{j}=0$, and since P annihilates $L\left(f_{1}, \ldots, f_{m}\right)$, it follows that $\sum_{i=1}^{n} \alpha_{i, m+1} P T_{i} g=0$, and therefore $\alpha_{i, m+1}=0$ for $i=1, \ldots, n$; finally, since $L\left(f_{1}, \ldots, f_{m}\right)$ is linearly independent we conclude that $\alpha_{i j}=0$ for all i and j.

Density

Theorem 4. Let $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$. Assume that every nontrivial linear combination of I, T_{1}, \ldots, T_{n} has infinite rank. Then the similarity orbit $S\left(T_{1}, \ldots, T_{n}\right)$ is strongly dense in $B^{(n)}(X)$.

Proof. Let $\tilde{S}=\left(S_{1}, \ldots, S_{n}\right) \in B^{(n)}(X)$ and let U be a strong neighborhood of \tilde{S}. Then there are linearly independent vectors e_{1}, \ldots, e_{m} in X and a positive number ε such that U contains

$$
\left\{\left(A_{1}, \ldots, A_{n}\right) \in B^{(n)}(X):\left\|\left(A_{i}-S_{i}\right) e_{j}\right\|<\varepsilon, 1 \leqq i \leqq n, 1 \leqq j \leqq m\right\}
$$

Let M be the span of $\left\{e_{1}, \ldots, e_{m}\right\}$. Let N be a complement of the subspace $M+S_{1} M+\ldots+S_{n} M$. Since N is infinite-dimensional, we can choose in N a set $\left\{h_{i j}: 1 \leqq i \leqq n, 1 \leqq j \leqq m\right\}$ of linearly independent vectors such that $\left\|h_{i j}\right\|<\varepsilon$ for all i, j. Let $f_{i j}=S_{i} e_{j}+h_{i j}$. Then the set $\left\{e_{i}, f_{i j}: 1 \leqq i \leqq n, 1 \leqq j \leqq m\right\}$ is linearly independent and $\left\|S_{i} e_{j}-f_{i j}\right\|<\varepsilon$ for all i and j. We apply Lemma 3 to I, T_{1}, \ldots, T_{n} to find vectors f_{1}, \ldots, f_{m} in X such that $\left\{f_{j}, T_{i} f_{j}: 1 \leqq i \leqq n, l \leqq j \leqq m\right\}$ is a linearly independent set. If A is an invertible operator on X such that $A e_{j}=f_{j}$ and $A f_{i j}=$ $=T_{i} f_{j}$ for $1 \leqq i \leqq n$ and $1 \leqq j \leqq m$, then

$$
\left\|\left(A^{-1} T_{i} A-S_{i}\right) e_{j}\right\|=\left\|A^{-1} T_{i} f_{j}-S_{i} e_{j}\right\|=\left\|A^{-1} A f_{i j}-S_{i} e_{j}\right\|=\left\|f_{i j}-S_{i} e_{j}\right\|<\varepsilon
$$

for all i and j. Therefore $\left(A^{-1} T_{1} A, \ldots, A^{-1} T_{n} A\right) \in U$, and $S\left(T_{1}, \ldots, T_{n}\right)$ is strongly dense in $B^{(n)}(X)$.

Theorem 5. Let $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$. Assume that every nontrivial linear combination of I, T_{1}, \ldots, T_{n} has infinite rank. Then the compression of $S\left(T_{1}, \ldots, T_{n}\right)$ to a given finite-dimensional subspace M is equal to $B^{(n)}(M)$. More precisely, if P is an idempotent in $B(X)$ with range M, then the restriction of $P S\left(T_{1}, \ldots, T_{n}\right) P$ to M is $B^{(n)}(M)$.

Proof. Let P be a fixed idempotent in $B(X)$ with range M. Let (F_{1}, \ldots, F_{n}) be arbitrary in $B^{(n)}(M)$. Let $T_{0}=I$ and $m=\operatorname{dim} M$. By Lemma 3 there are vectors f_{1}, \ldots, f_{m} such that $\left\{T_{i} f_{j}: 0 \leqq i \leqq n, 1 \leqq j \leqq m\right\}$ is a linearly independent set. For $0 \leqq i \leqq n$ let N_{i} be the subspace spanned by $\left\{T_{i} f_{1}, \ldots, T_{i} f_{m}\right\}$. We choose linearly independent subspaces $M_{0}, M_{1}, \ldots, M_{n}$ (i.e., $g_{i} \in M_{i}$ and $g_{0}+g_{1}+\ldots+g_{n}=0$ imply that $g_{i}=0$ for all i) satisfying the following conditions: $M_{0}=M, M_{i} \subset \operatorname{ker} P$ for $1 \leqq i \leqq n$, and $\operatorname{dim} M_{i}=m$ for all i. Let $B \in B(X)$ be an invertible operator such that $B M_{i}=N_{i}$ for $0 \leqq i \leqq n$. Let $S_{i}=B^{-1} T_{i} B(1 \leqq i \leqq n)$. Then

$$
B S_{i}(M)=T_{i} B M_{0}=T_{i} N_{0}=N_{i}=B M_{i}
$$

and therefore $S_{i} M=M_{i}$. In particular, S_{i} is injective on M, and we can find $C_{i} \in B\left(M_{i}, M\right)$ such that $C_{i} S_{i} f=-F_{i} f$ for all f in M. Let M_{n+1} be a subspace of ker P which is a complement (in ker P) of the subspace $M_{1}+M_{2}+\ldots+M_{n}$. Then $X=M_{0}+M_{1}+\ldots+M_{n+1}$, and we use this decomposition of X to define the operator C on X given by the $(n+2) \times(n+2)$ operator matrix,

$$
C=\left[\begin{array}{cccccc}
I & C_{1} & C_{2} & \ldots & C_{n} & 0 \\
0 & I & 0 & \ldots & 0 & 0 \\
& & \cdot & \ddots & \vdots & \vdots \\
& 0 & & & I & 0
\end{array}\right]
$$

Then C is invertible, and C^{-1} is the operator matrix whose first row is $\left[1,-C_{1},-C_{2}, \ldots,-C_{n}, 0\right]$, and the other rows are identical to the corresponding rows of C. Now for $f \in M$ and $1 \leqq i \leqq n$ we have (denoting the ($i+1$)-th component of the vector f by $S_{i} f$)

$$
\begin{gathered}
C^{-1} S_{i} C f=C^{-1} S_{i} C\langle f, 0, \ldots, 0\rangle=C^{-1} S_{i}\langle f, 0, \ldots, 0\rangle= \\
=C^{-1}\left\langle 0, \ldots, 0, S_{i} f, 0, \ldots, 0\right\rangle=\left\langle-C_{i} S_{i} f, *, \ldots, *\right\rangle
\end{gathered}
$$

(the third equality follows from $S_{i} M=M_{i}$), and therefore $P C^{-1} S_{i} C f=-C_{i} S_{i} f=$ $=F_{i} f$. Finally, with $A=B C$, the restriction of $P A^{-1} T_{i} A$ to M is F_{i} for $i=1, \ldots, n$.

Corollary 6. Let $T_{1}, T_{2}, \ldots, T_{n} \in B(X)$. The following statements are equivalent:
(1) $S\left(T_{1}, \ldots, T_{n}\right)$ is strongly dense in $B^{(n)}(X)$.
(2) $S\left(T_{1}, \ldots, T_{n}\right)$ is weakly dense in $B^{(n)}(X)$.
(3) Every nontrivial linear combination of $1, T_{1}, \ldots, T_{n}$ has infinite rank.
(4) For every finite-dimensional subspace M of X the compression of $S\left(T_{1}, \ldots, T_{n}\right)$ to M is equal to $B^{(n)}(M)$.

Proof. Since the strong topology is finer than the weak topology, then (1) implies (2). Next we assume that some linear combination $\alpha_{0} I+\alpha_{1} T_{1}+\ldots+\alpha_{n} T_{n}=F$
has finite rank and $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$. Let $\left(S_{1}, \ldots, S_{n}\right) \in S\left(T_{1}, \ldots, T_{n}\right)$. Then there is an invertible operator A on X such that $S_{i}=A^{-1} T_{i} A$ for $1 \leqq i \leqq n$. Therefore $\alpha_{0} I+\alpha_{1} S_{1}+\ldots+\alpha_{n} S_{n}=A^{-1} F A$ and rank $\left(\alpha_{0} I+\alpha_{1} S_{1}+\ldots+\alpha_{n} S_{n}\right)=$ rank $F<\infty$. Since the set $\{S \in B(X)$: rank $S \leqq$ rank $F\}$ is weakly closed, it follows that the weak closure of $S\left(T_{1}, \ldots, T_{n}\right)$ is contained in the set

$$
\left\{\left(S_{1}, \ldots, S_{n}\right) \in B^{(n)}(X): \operatorname{rank}\left(\alpha_{0} I+\alpha_{1} S_{1}+\ldots+\alpha_{n} S_{n}\right) \leqq \operatorname{rank} F\right\},
$$

and this set is smaller than $B^{(n)}(X)$. Hence (2) implies (3). Now by Theorem 4 we conclude that (1), (2), and (3) are equivalent. By Theorem 5, (3) implies (4). Now we assume that (4) holds. Let ($\left.\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$. Let M be an arbitrary finite-dimensional subspace of X. Choose $\left(F_{1}, \ldots, F_{n}\right)$ in $B^{(n)}(M)$ such that $\alpha_{0} I+\alpha_{1} F_{1}+\ldots+$ $+\alpha_{n} F_{n}=I$ (the identity on M). By (4), there is an invertible operator A on X such that the compression of $A^{-1} T_{i} A$ to M is $F_{i}(1 \leqq i \leqq n)$. Then

$$
\begin{gathered}
\operatorname{rank}\left(\alpha_{0} I+\alpha_{1} T_{1}+\ldots+\alpha_{n} T_{n}\right)=\operatorname{rank} A^{-1}\left(\alpha_{0} I+\alpha_{1} T_{1}+\ldots+\alpha_{n} T_{n}\right) A \geqq \\
\geqq \operatorname{rank}\left(\alpha_{0} I+\alpha_{1} F_{1}+\ldots+\alpha_{n} F_{n}\right)=\operatorname{dim} M .
\end{gathered}
$$

Since M is arbitrary, we conclude that $\alpha_{0} I+\alpha_{1} T_{1}+\ldots+\alpha_{n} T_{n}$ has infinite rank. This shows that (4) implies (3).

References

[1] J. Barría and P. R. Halmos, Weakly transitive matrices, Illinois J. Math., 28 (1984), 370378.
[2] D. W. Hadwin, E. A. Nordgren, H. Radjavi and P. Rosenthal, Most similarity orbits are strongly dense, Proc. Amer. Math. Soc., 76 (1979), 250-252.

