Strongly dense simultaneous similarity orbits of operators

JOSÉ BARRÍA

Introduction

Let X be a (real or complex) Banach space and let B(X) denote the algebra of all bounded linear operators on X. Let $B^{(n)}(X)$ denote the product $B(X) \times ... \times B(X)$ of n copies of B(X). The group of invertible operators in B(X) acts on $B^{(n)}(X)$ by conjugation $A^{-1}(T_1, ..., T_n) A = (A^{-1}T_1A, ..., A^{-1}T_nA)$. For $(T_1, ..., T_n)$ in $B^{(n)}(X)$ denote by $S(T_1, ..., T_n)$ the orbit of $(T_1, ..., T_n)$ in $B^{(n)}(X)$,

$$S(T_1, ..., T_n) =$$

= {A⁻¹(T₁, ..., T_n)A = (A⁻¹T₁A, ..., A⁻¹T_nA): A is invertible in B(X)}.

The purpose of this paper is to describe those orbits $S(T_1, ..., T_n)$ which are strongly dense in $B^{(n)}(X)$. Recall that a net $\{S_{\lambda}\}$ in B(X) converges strongly to an operator S in B(X) if and only if $\lim_{X \to a} S_{\lambda} f = Sf$ for all f in X. If X is finite-dimensional then the strong topology coincides with the norm topology, and therefore $S(T_1, ..., T_n)$ is never dense in $B^{(n)}(X)$. If X is infinite-dimensional (and n=1), then S(T) is strongly dense in B(X) for a very large set of T's. More precisely, in [2] it was shown that S(T) is strongly dense if and only if T is in the complement of the set $\{\lambda I + F: \lambda \in \mathbf{K}, F \text{ has finite rank}\}$ (K is the field of scalars and I is the identity operator on X). Observe that an operator T is not a scalar plus a finite rank operator if and only if $\alpha_0 I + \alpha_1 T$ has infinite rank for all nonzero (α_0, α_1) in K². This suggests to consider those *n*-tuples $(T_1, ..., T_n)$ such that $\alpha_0 I + \alpha_1 T_1 + ... + ...$ $+\alpha_n T_n$ has infinite rank for all nonzero $(\alpha_0, \alpha_1, ..., \alpha_n)$ in \mathbf{K}^{n+1} . In this paper we show that this condition on $(T_1, ..., T_n)$ characterizes the strong density of $S(T_1, ..., T_n)$ in $B^{(n)}(X)$. Another result from [2] states that S(T) is strongly dense if and only if S(T) is weakly dense. The corresponding generalization to *n*-tuples is also true. From [1] it follows that the strong density of S(T) can be described in terms of compressions. If P is an idempotent in B(X) with range X_0 , then the

Received July 12, 1990.

José Barría

compression of $S(T_1, ..., T_n)$ to X_0 is defined as the restriction of $PS(T_1, ..., P_n)P$ to X_0 . Then for *n*-tuples the density of $S(T_1, ..., T_n)$ is characterized by the condition that the compression of $S(T_1, ..., T_n)$ to any finite-dimensional subspace $X_0 \subseteq X$ is equal to the full algebra $B^{(n)}(X_0)$.

Preliminaries

Lemma 1. Let n be a fixed positive integer. For $1 \le i \le n$ and $m \ge 1$, let $f_m^{(i)}$, $f^{(i)}$ be vectors in X such that $f_m^{(i)} \to f^{(i)} (m \to \infty)$. Let $g_m = \alpha_m^{(1)} f_m^{(1)} + \ldots + \alpha_m^{(n)} f_m^{(n)}$, with $\alpha_m^{(i)} \in \mathbf{K}$. If $f^{(1)}, \ldots, f^{(n)}$ are linearly independent and if the sequence $\{g_m\}_{m=1}^{\infty}$ converges, then there are scalars $\alpha^{(1)}, \ldots, \alpha^{(n)}$ such that $\alpha_m^{(i)} \to \alpha^{(i)} (m \to \infty)$ for $i = 1, \ldots, n$.

Proof. If n=1 we choose a bounded linear functional Φ on X such that $\Phi(f_1)=1$, then $g_m = \alpha_m^{(1)} f_m^{(1)}$ implies that $\lim_{m \to \infty} \alpha_m^{(1)} = \lim_{m \to \infty} \Phi(g_m)$. Now we assume that $n \ge 2$. The next step is to show that $\{|\alpha_m^{(1)}|\}_{m=1}^{\infty}$ cannot converge to infinity. Indeed, if $|\alpha_m^{(1)}| \to \infty (m \to \infty)$, then the left hand side of

$$\frac{g_m}{\alpha_m^{(1)}} - f_m^{(1)} = \frac{\alpha_m^{(2)}}{\alpha_m^{(1)}} f_m^{(2)} + \dots + \frac{\alpha_m^{(n)}}{\alpha_m^{(1)}} f_m^{(n)}$$

converges to $-f^{(1)}$ and then the induction hypothesis can be applied to $f_m^{(2)}, \ldots, f_m^{(n)}$ to conclude that there are scalars $\beta^{(2)}, \ldots, \beta^{(n)}$ such that $-f^{(1)} = \beta^{(2)} f^{(2)} + \ldots + \beta^{(n)} f^{(n)}$. This contradicts the fact that $f^{(1)}, \ldots, f^{(n)}$ are linearly independent. The same reasoning applies to any subsequence of $\{|\alpha_m^{(1)}|\}_{m=1}^{\infty}$, therefore $\{\alpha_m^{(1)}\}_{m=1}^{\infty}$ is bounded. Next, let $\{m_k\}_{k=1}^{\infty}$ be an increasing sequence of positive integers such that $\alpha_{m_k}^{(1)} \to \alpha^{(1)}$ $(k \to \infty)$ for some scalar $\alpha^{(1)}$. Then from the induction hypothesis it follows that there are scalars $\alpha^{(2)}, \ldots, \alpha^{(n)}$ such that $\alpha_{m_k}^{(i)} \to \alpha^{(i)}$ $(k \to \infty)$ for $i=1, \ldots, n$. Since $f^{(1)}, \ldots, f^{(n)}$ are linearly independent, the scalars $\alpha^{(1)}, \ldots, \alpha^{(n)}$ are independent of the sequence $\{m_k\}_{k=1}^{\infty}$. Then it follows that $\alpha_m^{(i)} \to \alpha^{(i)}$ $(m \to \infty)$ for $i=1, \ldots, n$.

Lemma 2. Let $T_1, T_2, ..., T_n \in B(X)$. Assume that for every vector f in X the set $\{T_1f, T_2f, ..., T_nf\}$ is linearly dependent. Then there is a nonzero n-tuple $(\alpha_1, ..., \alpha_n)$ in \mathbb{K}^n such that $\alpha_1T_1 + ... + \alpha_nT_n$ has rank less than or equal to n-1.

Proof. If n=1 then the hypothesis reduces to $T_1f=0$ for all f in X, and the conclusion holds. Assume that $n \ge 2$. Let D be the set of all vectors f in X such that $\{T_1f, ..., T_{n-1}f\}$ is linearly dependent. If D=X then the conclusion follows by induction. Assume that $D \ne X$. An easy compactness argument in \mathbb{K}^n implies that D is a closed set. For every vector h in $X \setminus D$ (the complement of D) the set $\{T_1h, ..., T_{n-1}h\}$ is linearly independent; then from the linear dependence of $\{T_1h, ..., T_{n-1}h, T_nh\}$ it follows that there are functions $\alpha_1, ..., \alpha_{n-1}$ from $X \setminus D$ to K such that

(1)
$$\alpha_1(h)T_1h + \ldots + \alpha_{n-1}(h)T_{n-1}h + T_nh = 0 \quad \text{for all } h \text{ in } X \setminus D.$$

Let f be a fixed vector in $X \ D$, and let M be the subspace spanned by $\{T_1f, ..., T_{n-1}f\}$. The proof will be completed by showing that the range of $\alpha_1(f)T_1 + ... + \alpha_{n-1}(f)T_{n-1} + T_n$ is contained in M. Let g be an arbitrary vector in X. Since $X \ D$ is open, there is a positive δ such that $f + \lambda g \in X \ D$ for $|\lambda| < \delta$. If $|\lambda| < \delta$, from (1) we obtain

(2)
$$\alpha_1(f+\lambda g)T_1(f+\lambda g) + \ldots + \alpha_{n-1}(f+\lambda g)T_{n-1}(f+\lambda g) + T_n(f+\lambda g) = 0,$$

and (with $\lambda = 0$)

(3)
$$\alpha_1(f)T_1f + \ldots + \alpha_{n-1}(f)T_{n-1}f + T_nf = 0.$$

Subtracting (3) from (2) we get

$$\lambda[\alpha_1(f+\lambda g)T_1g+\ldots+\alpha_{n-1}(f+\lambda g)T_{n-1}g+T_ng] =$$
$$= [\alpha_1(f)-\alpha_1(f+\lambda g)]T_1f+\ldots+[\alpha_{n-1}(f)-\alpha_{n-1}(f+\lambda g)]T_{n-1}f$$

which implies that

(4)
$$\alpha_1(f+\lambda g)T_1g+\ldots+\alpha_{n-1}(f+\lambda g)T_{n-1}g+T_ng\in M \quad \text{for} \quad 0<|\lambda|<\delta.$$

Let $\{\lambda_m\}_{m=1}^{\infty}$ be a sequence of scalars such that $\lambda_m \to 0 \ (m \to \infty)$. If we define $f_m^{(i)} = T_i(f + \lambda_m g) \ (1 \le i \le n-1)$, then $f_m^{(i)} \to T_i f \ (m \to \infty)$, and $T_1 f, \ldots, T_{n-1} f$ are linearly independent. Then, using (2), we can apply Lemma 1, with $g_m = -T_n(f + \lambda_m g)$, to conclude that $\alpha_i(f + \lambda_m g) \to \alpha^{(i)} \ (m \to \infty)$ for $i=1, \ldots, n-1$. Then, from (2) again, $\alpha^{(1)}T_1 f + \ldots + \alpha^{(n-1)}T_{n-1}f + T_n f = 0$, and comparing with (3) it follows that $\alpha^{(i)} = \alpha_i(f)$ for $i=1, \ldots, n-1$. This shows that the functions $\lambda \to \alpha_i(f + \lambda g)(|\lambda| < \delta)$ are continuous at $\lambda = 0$ in every direction. Since M is a closed subspace, from (4) we conclude that $\alpha_1(f)T_1g + \ldots + \alpha_{n-1}(f)T_{n-1}g + T_ng \in M$. Since g is an arbitrary vector, then the range of $\alpha_1(f)T_1 + \ldots + \alpha_{n-1}(f)T_{n-1} + T_n$ is contained in M.

Lemma 3. Let $T_1, T_2, ..., T_n \in B(X)$. Assume that every nontrivial linear combination of $T_1, ..., T_n$ has infinite rank. Then given a positive integer m there are vectors $f_1, ..., f_m$ in X such that $\{T_i f_j: 1 \le i \le n, 1 \le j \le m\}$ is a linearly independent set.

Proof. If $f_1, ..., f_m$ are vectors in X then we denote by $L(f_1, ..., f_m)$ the set $\{T_i f_j: 1 \le i \le n, 1 \le j \le m\}$. If m=1, then what is wanted is a vector f in X such that $T_1 f_1, ..., T_n f$ are linearly independent. If this is not true then Lemma 2 implies that some nontrivial linear combination of $T_1, ..., T_n$ has finite rank. Since this contradicts the hypothesis, the lemma holds for m=1. Now we assume that $L(f_1, ..., f_m)$ is a linearly independent set for some vectors $f_1, ..., f_m$. Let M be the subspace spanned by $L(f_1, ..., f_m)$ and let N be a closed subspace which is a complement of

M (i.e., X=M+N and $M\cap N=(0)$). Let P be the idempotent in B(X) with range N and null space M. Since $T_i=(I-P)T_i+PT_i(I-P)+PT_iP$, and since I-P has finite rank, then every nontrivial linear combination of PT_1P , ..., PT_nP has infinite rank. Now from the first part of the proof it follows that there is a vector g in N such that PT_1g , ..., PT_ng are linearly independent. If we define $f_{m+1}=g$, then $L(f_1, \ldots, f_m, f_{m+1})$ is linearly independent. Indeed, if $\sum_{i=1}^n \sum_{j=1}^{m+1} \alpha_{ij}T_if_j=0$, and since P annihilates $L(f_1, \ldots, f_m)$, it follows that $\sum_{i=1}^n \alpha_{i,m+1}PT_ig=0$, and therefore $\alpha_{i,m+1}=0$ for $i=1, \ldots, n$; finally, since $L(f_1, \ldots, f_m)$ is linearly independent we conclude that $\alpha_{ij}=0$ for all i and j.

Density

Theorem 4. Let $T_1, T_2, ..., T_n \in B(X)$. Assume that every nontrivial linear combination of $I, T_1, ..., T_n$ has infinite rank. Then the similarity orbit $S(T_1, ..., T_n)$ is strongly dense in $B^{(n)}(X)$.

Proof. Let $\tilde{S} = (S_1, ..., S_n) \in B^{(n)}(X)$ and let U be a strong neighborhood of \tilde{S} . Then there are linearly independent vectors $e_1, ..., e_m$ in X and a positive number ε such that U contains

$$\{(A_1, ..., A_n) \in B^{(n)}(X) : ||(A_i - S_i)e_j|| < \varepsilon, 1 \le i \le n, 1 \le j \le m\}.$$

Let *M* be the span of $\{e_1, ..., e_m\}$. Let *N* be a complement of the subspace $M + S_1M + ... + S_nM$. Since *N* is infinite-dimensional, we can choose in *N* a set $\{h_{ij}: 1 \le i \le n, 1 \le j \le m\}$ of linearly independent vectors such that $||h_{ij}|| < \varepsilon$ for all *i*, *j*. Let $f_{ij} = S_i e_j + h_{ij}$. Then the set $\{e_i, f_{ij}: 1 \le i \le n, 1 \le j \le m\}$ is linearly independent and $||S_i e_j - f_{ij}|| < \varepsilon$ for all *i* and *j*. We apply Lemma 3 to *I*, $T_1, ..., T_n$ to find vectors $f_1, ..., f_m$ in *X* such that $\{f_j, T_i f_j: 1 \le i \le n, 1 \le j \le m\}$ is a linearly independent set. If *A* is an invertible operator on *X* such that $Ae_j = f_j$ and $Af_{ij} = =T_i f_j$ for $1 \le i \le n$ and $1 \le j \le m$, then

$$\|(A^{-1}T_iA - S_i)e_j\| = \|A^{-1}T_if_j - S_ie_j\| = \|A^{-1}Af_{ij} - S_ie_j\| = \|f_{ij} - S_ie_j\| < \varepsilon$$

for all *i* and *j*. Therefore $(A^{-1}T_1A, ..., A^{-1}T_nA) \in U$, and $S(T_1, ..., T_n)$ is strongly dense in $B^{(n)}(X)$.

Theorem 5. Let $T_1, T_2, ..., T_n \in B(X)$. Assume that every nontrivial linear combination of $I, T_1, ..., T_n$ has infinite rank. Then the compression of $S(T_1, ..., T_n)$ to a given finite-dimensional subspace M is equal to $B^{(n)}(M)$. More precisely, if P is an idempotent in B(X) with range M, then the restriction of $PS(T_1, ..., T_n) P$ to M is $B^{(n)}(M)$.

Proof. Let P be a fixed idempotent in B(X) with range M. Let $(F_1, ..., F_n)$ be arbitrary in $B^{(n)}(M)$. Let $T_0 = I$ and $m = \dim M$. By Lemma 3 there are vectors $f_1, ..., f_m$ such that $\{T_i f_j: 0 \le i \le n, 1 \le j \le m\}$ is a linearly independent set. For $0 \le i \le n$ let N_i be the subspace spanned by $\{T_i f_1, ..., T_i f_m\}$. We choose linearly independent subspaces $M_0, M_1, ..., M_n$ (i.e., $g_i \in M_i$ and $g_0 + g_1 + ... + g_n = 0$ imply that $g_i = 0$ for all i) satisfying the following conditions: $M_0 = M, M_i \subset \ker P$ for $1 \le i \le n$, and $\dim M_i = m$ for all i. Let $B \in B(X)$ be an invertible operator such that $BM_i = N_i$ for $0 \le i \le n$. Let $S_i = B^{-1}T_iB$ $(1 \le i \le n)$. Then

$$BS_i(M) = T_i BM_0 = T_i N_0 = N_i = BM_i$$

and therefore $S_i M = M_i$. In particular, S_i is injective on M, and we can find $C_i \in B(M_i, M)$ such that $C_i S_i f = -F_i f$ for all f in M. Let M_{n+1} be a subspace of ker P which is a complement (in ker P) of the subspace $M_1 + M_2 + ... + M_n$. Then $X = M_0 + M_1 + ... + M_{n+1}$, and we use this decomposition of X to define the operator C on X given by the $(n+2) \times (n+2)$ operator matrix,

$$C = \begin{bmatrix} I & C_1 & C_2 & \dots & C_n & 0 \\ 0 & I & 0 & \dots & 0 & 0 \\ & \ddots & \vdots & \vdots & \vdots \\ 0 & I & 0 \\ & & 0 & I \end{bmatrix}.$$

Then C is invertible, and C^{-1} is the operator matrix whose first row is $[I, -C_1, -C_2, ..., -C_n, 0]$, and the other rows are identical to the corresponding rows of C. Now for $f \in M$ and $1 \le i \le n$ we have (denoting the (i+1)-th component of the vector f by $S_i f$)

$$C^{-1}S_iCf = C^{-1}S_iC\langle f, 0, ..., 0 \rangle = C^{-1}S_i\langle f, 0, ..., 0 \rangle =$$

= $C^{-1}\langle 0, ..., 0, S_if, 0, ..., 0 \rangle = \langle -C_iS_if, *, ..., * \rangle$

(the third equality follows from $S_i M = M_i$), and therefore $PC^{-1}S_iCf = -C_iS_if = -F_if$. Finally, with A = BC, the restriction of $PA^{-1}T_iA$ to M is F_i for i = 1, ..., n.

Corollary 6. Let $T_1, T_2, ..., T_n \in B(X)$. The following statements are equivalent:

(1) $S(T_1, ..., T_n)$ is strongly dense in $B^{(n)}(X)$.

(2) $S(T_1, ..., T_n)$ is weakly dense in $B^{(n)}(X)$.

(3) Every nontrivial linear combination of I, $T_1, ..., T_n$ has infinite rank.

(4) For every finite-dimensional subspace M of X the compression of $S(T_1, ..., T_n)$ to M is equal to $B^{(n)}(M)$.

Proof. Since the strong topology is finer than the weak topology, then (1) implies (2). Next we assume that some linear combination $\alpha_0 I + \alpha_1 T_1 + ... + \alpha_n T_n = F$

has finite rank and $(\alpha_0, \alpha_1, ..., \alpha_n) \neq 0$. Let $(S_1, ..., S_n) \in S(T_1, ..., T_n)$. Then there is an invertible operator A on X such that $S_i = A^{-1}T_iA$ for $1 \leq i \leq n$. Therefore $\alpha_0 I + \alpha_1 S_1 + ... + \alpha_n S_n = A^{-1}FA$ and rank $(\alpha_0 I + \alpha_1 S_1 + ... + \alpha_n S_n) = \text{rank } F < \infty$. Since the set $\{S \in B(X): \text{ rank } S \leq \text{rank } F\}$ is weakly closed, it follows that the weak closure of $S(T_1, ..., T_n)$ is contained in the set

$$\{(S_1, \ldots, S_n) \in B^{(n)}(X): \operatorname{rank} (\alpha_0 I + \alpha_1 S_1 + \ldots + \alpha_n S_n) \leq \operatorname{rank} F\},\$$

and this set is smaller than $B^{(n)}(X)$. Hence (2) implies (3). Now by Theorem 4 we conclude that (1), (2), and (3) are equivalent. By Theorem 5, (3) implies (4). Now we assume that (4) holds. Let $(\alpha_0, \alpha_1, ..., \alpha_n) \neq 0$. Let M be an arbitrary finite-dimensional subspace of X. Choose $(F_1, ..., F_n)$ in $B^{(n)}(M)$ such that $\alpha_0 I + \alpha_1 F_1 + ... + +\alpha_n F_n = I$ (the identity on M). By (4), there is an invertible operator A on X such that the compression of $A^{-1}T_iA$ to M is F_i $(1 \leq i \leq n)$. Then

$$\operatorname{rank} (\alpha_0 I + \alpha_1 T_1 + \ldots + \alpha_n T_n) = \operatorname{rank} A^{-1} (\alpha_0 I + \alpha_1 T_1 + \ldots + \alpha_n T_n) A \ge$$
$$\ge \operatorname{rank} (\alpha_0 I + \alpha_1 F_1 + \ldots + \alpha_n F_n) = \dim M.$$

Since M is arbitrary, we conclude that $\alpha_0 I + \alpha_1 T_1 + \ldots + \alpha_n T_n$ has infinite rank. This shows that (4) implies (3).

References

- [1] J. BARRÍA and P. R. HALMOS, Weakly transitive matrices, Illinois J. Math., 28 (1984), 370-378.
- [2] D. W. HADWIN, E. A. NORDGREN, H. RADJAVI and P. ROSENTHAL, Most similarity orbits are strongly dense, Proc. Amer. Math. Soc., 76 (1979), 250-252.

DEPARTMENT OF MATHEMATICS SANTA CLARA UNIVERSITY SANTA CLARA, CA 95053