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Strongly dense simultaneous similarity orbits of operators 

JOSÉ BARRÍA 

Introduction 

Let X be a (real or complex) Banach space and let B(X) denote the algebra of 
all bounded linear operators on X. Let B(n){X) denote the product B(X)X... XB(X) 
of n copies of B(X). The group of invertible operators in B(X) acts on BW{X) by 
conjugation A-KT1,...,Tn)A = (A~1T1A,...,A~1TnA). For (31, ...,Tn) in B^(X) 
denote by 5(71, ..., T„) the orbit of (71, ..., T„) in B(n)(X), 

S(TU ...,Tn) = 

= {A-ipi, ..., T„)A = (A-^A, ..., A~1T„A): A is invertible in B(X)}. 

The purpose of this paper is to describe those orbits >S(71, ...,T„) which are 
strongly dense in B("\X). Recall that a net {S ;} in B{X) converges strongly to an 
operator 5 in B(X) if and only if lim Sxf=Sf for all / in X. If X is finite-dimen-
sional then the strong topology coincides with the norm topology, and therefore 
5(71, ...,T„) is never dense in BW(X). If X is infinite-dimensional (and «=1), 
then S(T) is strongly dense in B(X) for a very large set of T's. More precisely, in 
[2] it was shown that S(T) is strongly dense if and only if T is in the complement 
of the set {XI+F: F has finite rank} (K is the field of scalars and I is the 
identity operator on X). Observe that an operator T is not a scalar plus a finite 
rank operator if and only if a.(>IJctxiT has infinite rank for all nonzero (a0, ax) 
in K2. This suggests to consider those «-tuples (T1,...,T„) such that a(sI-\-a1T1 +... +. 
+<xnT„ has infinite rank for all nonzero (a0, ax, ..., a„) in K"+1. In this paper we 
show that this condition on (7J, ...,7^) characterizes the strong density of 
5(71, ..., T„) in BW(X). Another result from [2] states that S(T) is strongly dense 
if and only if S(T) is weakly dense. The corresponding generalization to «-tuples 
is also true. From [1] it follows that the strong density of S(T) can be described 
in terms of compressions. If P is an idempotent in B(X) with range X0, then the 
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compression of ...,T„) to X0 is defined as the restriction of PS(Tlt ..., Pn)P 
to X0. Then for «-tuples the density of iS(7i, ...,Tn) is characterized by the condi-
tion that the compression of S(Tly ..., T„) to any finite-dimensional subspace 
X0(<gX) is equal to the full algebra 5 ( n )(X 0) . 

Preliminaries 

Lemma 1. Let n be a fixed positive integer. For lSi 'Sw and / « s i , let f j p , 
/(i) be vectors in X such that /¿n-/(i) («j-oo). Let gm=offf™ +... + a(

m
n)/^n), with 

a^K. If /(1), ...,/(n) are linearly independent and if the sequence {gm}~=1 con-
verges, then there are scalars a(1), ..., a(n) such that (m—°°) for i— 1, ...,«. 

Proof. If n = l we choose a bounded linear functional <Z> on X such that 
$ ( / i ) = l> then gm=a|n

1)/i1) implies that lim lim <t>(gm). Now we assume 
m-*- co tit-*-

that «52 . The next step is to show that cannot converge to infinity. 
Indeed, if la^l-*00 (w — t h e n the left hand side of 

„(2) „(") 
. fW _ " m /•(2) • | f(n) 
J m «,(1) J m ~ ' ^,(1) J"> „(1) Jrn (i) J m i ••• i (i) 

"m m 

converges to — f w and then the induction hypothesis can be applied to f^2 \ 
to conclude that there are scalars j?(2), ...,0 (n) such that - / ( 1 )=¿3 ( 2 ) / ( 2 ) + . • • 4-jS(n)/(n). 
This contradicts the fact that / ( 1 ) , . . . , / ( n ) are linearly independent. The same rea-
soning applies to any subsequence of {la^'IK^u therefore is bounded. 
Next, let {mk}~=l be an increasing sequence of positive integers such that a™ — a(1) 

Qc—oo) for some scalar a(1). Then from the induction hypothesis it follows that 
there are scalars a(2), ..., a(n) such that —a(,) ( & — f o r z'=l, . . . ,«. Since 
/ ( 1 ) , . . . , / ( n ) are linearly independent, the scalars a(1), ..., a(n) are independent of the 
sequence Then it follows that ajp — a(i) (wj — °°) for i = l, . . . ,«. 

Lemma 2. Let 71, 7 ,̂ ..., Tn£B(X). Assume that for every vector f in X the 
set {7^/, TJ",..., T n f ) is linearly dependent. Then there is a nonzero n-tuple{a1, ...,a„) 
in K" such that 0^71+...+txnT„ has rank less than or equal to n— 1. 

Proof. If « = 1 then the hypothesis reduces to 71/= 0 for all / in X, and 
the conclusion holds. Assume that « S 2. Let D be the set of all vectors fin X such 
that {71/,..., Tn_1f) is linearly dependent. If D=X then the conclusion follows 
by induction. Assume that D^X. An easy compactness argument in K" implies 
that D is a closed set. For every vector h in X\D (the complement of D) the set 
{Tj^h, ..., Tn_lh) is linearly independent; then from the linear dependence of 
{71/J, ...,T„^1h,T„h} it follows that there are functions a l 5 ...,an_1 from X\D 
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to K such that 

(1) a1(h)T1h+... +«n-1(h)T„-1h + T„h = 0 for all h i n Z \ D . 

Let / be a fixed vector in X\D, and let M be the subspace spanned by 
{TJ, ..., Tn_J}. The proof will be completed by showing that the range of 
aiif)T\Jr --+oLn_1{f)Tn_1

JrTn is contained in M. Let g be an arbitrary vector in X. 
Since X\D is open, there is a positive 5 such that f+Xg£X\D for |A|<c5. If 
|A|<(5, from (1) we obtain 

(2) a1(f+Xg)T1(f+Xg) + ... + «„_!(/+ Xg)Tn.1(f+ Xg) + T„(f+ Xg) = 0, 

and (with A=0) 

( 3 ) « I ( / ) ? ; / + . . . + an_1(f)Tn_1f+ Tnf = 0 . 

Subtracting (3) from (2) we get 

X[cc1(f+Xg)T1g+... +cc„-i(f+Ag)Tn-1g + Tng] = 

= [«! ( / ) -« i ( /+Ag)]71 /+ ... + [a n _ 1 ( / ) -a n _ i ( /+Ag) ]r B _ 1 / 

which implies that 

(4) a 1 ( /+Ag)r 1 g+. . .+a B _ 1 ( /+Ag)7;_ 1 g+7;g€M for 0 < |A| < 5. 
Let {Am}~=1 be a sequence of scalars such that Am—0 (m—«.). If we define = 
=Tt(J+ Xmg) ( I S / S t j - 1 ) , t h e n / « - 7 ; / ( m - v o o ) , and TJ..., Tn_J are linearly 
independent. Then, using (2), we can apply Lemma 1, with gm=—T„(j+Xmg), to 
conclude that af(/+Amg)—a(i) ( m — f o r /=1, ...,«—1. Then, from (2) again, 
a(1)71/+... +a ( n - 1 ) r n _ 1 /+7; /=0, and comparing with (3) it follows that a ( i )=a¡(/) 
for /=1, . . . , . . . , «—I. This shows that the functions A—aj(/+Ag)(|A|<5) are con-
tinuous at A=0 in every direction. Since M is a closed subspace, from (4) we con-
clude that tx1(f)T1g+ ...+ocn-1(f)Tn-lg+T„g£M. Since g is an arbitrary vector, 
then the range of a1(f)T1+...+an_1(f)T„_1+Tn is contained in M. 

Lemma 3. Let TltT2, ..., Tn£B(X). Assume that every nontrivial linear combi-
nation of Tt, ...,T„ has infinite rank. Then given a positive integer m there are vectors 
/i> •-j/m ' n X such that {7]/}: 1S /S« , l^jsm} is a linearly independent set. 

Proof. If fx, ...,fm are vectors in X then we denote by Z.(/l5 ...,/„) the set 
{Tifj". I s i s « , lS /Sm} . If m = l, then what is wanted is a vector finX such that 
TJ',..., Tnf are linearly independent. If this is not true then Lemma 2 implies that 
some nontrivial linear combination of Tx, ...,T„ has finite rank. Since this con-
tradicts the hypothesis, the lemma holds for 7?i = l. Now we assume that L(JX, ...,/m) 
is a linearly independent set for some vectors fx, . . . ,/m . Let M be the subspace 
spanned by L ( f l t ...,fm) and let N be a closed subspace which is a complement of 
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M (i.e., X=M+N and MDJV=(0)). Let P be the idempotent in B(X) with range 
N and null space M. Since Ti=(I-P)Ti+PTi(J-P)+PTiP, and since J-P has 
finite rank, then every nontrivial linear combination of PTXP, ..., PT„P has infinite 
rank. Now from the first part of the proof it follows that there is a vector g in N 
such that PTlg, ..., PTng are linearly independent. If we define fm+1=g, then 

n m + 1 

L(f i , •••,/„,/m+i) is linearly independent. Indeed, if 2 2 auTJj=0, and since 
¡=i j=i 

n 

P annihilates L ( f x , . . . , / J , it follows that 2 and therefore 
¡=i 

ai,m+i=0 for i— U . . . ,«; finally, since L ( f , ...,/m) is linearly independent we 
conclude that ai}=0 for all i and j. 

Density 

Theorem 4. Let Tj, T2, ..., Tn£B(X). Assume that every nontrivial linear com-
bination of / , Tt, ..., T„ has infinite rank. Then the similarity orbit S(T±, ...,7^,) is 
strongly dense in B(n){X). 

Proof. Let §=(,Slt ..., S„)£BM(X) and let U be a strong neighborhood of S. 
Then there are linearly independent vectors e1; ...,em in X and a positive number 
e such that U contains 

{(Alt ..., A„)^'\xy. IK^-SOejII < i l l s / s « 1 l s ; s m}. 

Let M be the span of {el5 ..., em}. Let TV be a complement of the subspace 
M + 5 1 M + . . . + S,

BM. Since N is infinite-dimensional, we can choose in JV a 
set {/¡¡j-: l^i^n, 1 of linearly independent vectors such that |]/j,j||<e 
for all i, j. Let fij = Siej+hij. Then the set { e ^ f j : l S / S n , 1 ^ / S m } is linearly 
independent and US',- e,-— f ^ < s for all i and j. We apply Lemma 3 to I, Tx, ..., Tn 

to find vectors f , . . . , /m in X such that {/}, TJj\ l ^ i ^ n , l s y s w ) is a linearly 
independent set. If A is an invertible operator on X such that Aej=fj and A f j = 
= T j f j for I s i s n and l S j g m , then 

WiA-^A-SdejW = | M - 1 ^ / } - ^ = WA^Afj-S^jW = Wfj-S^jW < e 

for all i and j. Therefore (A'^A, ..., A~lT„A)£U, and 5(7;, ..., 7;) is strongly 
dense in BM(X). 

Theorem 5. Let T±, T2, ..., Tn£B{X). Assume that every nontrivial linear com-
bination of I, Tx, ..., T„ has infinite rank. Then the compression of (7], ..., T„) to 
a given finite-dimensional subspace M is equal to B(n){M). More precisely, if P is 
an idempotent in B(X) with range M, then the restriction of PS(7^, ...,Tn)P to M is 
B^n\M). 
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Proof. Let P be a fixed idempotent in B(X) with range M. Let (Fl, ..., F„) 
be arbitrary in B(n)(M). Let T0=I and wi=dim M. By Lemma 3 there are vectors 
fu • •••>fm such that {71/}: 0 ^ / s « , l s / s m } is a linearly independent set. For 
Os i^n let Ni be the subspace spanned by {T,f, ..., 7|/m}. We choose linearly 
independent subspaces M0, Mx, Mn (i.e., g^M; and go+&i + ••• + £ n = 0 imply 
that gi=0 for all i) satisfying the following conditions: M„=M, M ;cker P for 
l S f S n , and dim M ~ m for all i. Let B£B(X) be an invertible operator such 
that BMi—Ni for 0=2/32/7. Let S ^ B ^ B ( l ^ i s n ) . Then 

BSI(M) = TIBM0 = TTN0 = NI = BMI 

and therefore StM=Mi. In particular, 5 ; is injective on M, and we can find 
C£B(Mi, M) such that C,S,f=-FJ for a l l / i n M. Let M„+1 be a subspace of 
ker P which is a complement (in ker P) of the subspace M1+M2+.. .+M I 1 . 
Then X=M0+M1+... +Mn+1, and we use this decomposition of X to define 
the operator C on X given by the (n+2)X(n+2) operator matrix, 

/ C2 C2 . . .C„ 0 
0 1 0 . . . 0 0 

C = 
0 / o 

U 1 J 

Then C is invertible, and C i s the operator matrix whose first row is 
[/, — Ci, — C2, ..., —C„, 0], and the other rows are identical to the corresponding 
rows of C. Now for f£M and l^i^n we have (denoting the (/+ l)-th component of 
the vector / by 5 , / ) 

C-1SlCf=C~1StC(f, 0, ...,0> = C-'Siif, 0, ...,0) = 

= C - 1 < 0 , ...,0,stf,0, . . . , 0 > = < - C l S i / * , . . . , *> 

(the third equality follows from SiM=Ml), and therefore PC'1SiCf-=-CiSif= 
=FJ. Finally, with A=BC, the restriction of PA^A to M is Ft for /=1 , . . . , « . 

Corollary 6. Let Ty,T2, ..., TndB(X). The following statements are equiv-
alent: 

(1) 5(71, ..., Tn) is strongly dense in BM(X). 
(2) 5(71, ..., T„) is weakly dense in BW(X). 
(3) Every nontrivial linear combination of 1, 71, ..., T„ has infinite rank. 
(4) For every finite-dimensional subspace MofX the compression of 5(71, ..., T„) 

to M is equal to B(n){M). 

Proof. Since the strong topology is finer than the weak topology, then (1) 
implies (2). Next we assume that some linear combination a0I+oi1T1 + ...+ixnTn = F 
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has finite rank and (a0, a l 5 . . . , a N ) ^ 0 . Let ( S L 5 5 „ ) E 5 ( 7 1 , . . . , Tn). Then there 
is an invertible operator A on X such that Si=A~lTiA for l s / ^ n . Therefore 
<x0I+a,1S1 + ...+ctnSn = A~1 FA and rank(a0/+a1.S'1+...+anlS'n) = rank Since 
the set ( 5 ' € J 9 ( A ' ) : rank 5 S rank F } is weakly closed, it follows that the weak 
closure of 5(71, ..., T„) is contained in the set 

{(5!, ..., Sn)£Bin\X): rank (a 0 /+a 1 5 1 + ...+a„5„) S rank F}, 

and this set is smaller than B(n)(X). Hence (2) implies (3). Now by Theorem 4 we 
conclude that (1), (2), and (3) are equivalent. By Theorem 5, (3) implies (4). Now we 
assume that (4) holds. Let (a0, alt ..., aJ^O. Let M be an arbitrary finite-dimen-
sional subspace of X. Choose (F1, ..., Fn) in B(n)(M) such that a0I+tx1F1 + ... + 
+a„F„=I (the identity on M). By (4), there is an invertible operator A on X such 
that the compression of A_1T,A to M is F, ( l s / s n ) . Then 

rank(ct0I+ot1T1+ ... +ot„T„) = xankA-1(a<sI+a1T1 +... +<x„Tn)A s 

S rank(a0 /+a1 i^ + ... +«„F„) = dim M. 

Since M is arbitrary, we conclude that aiiI+a1T1+...+anTn has infinite rank. This 
shows that (4) implies (3). 
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