x-products of slender modules

JOHN DAUNS and LÁSZLÓ FUCHS

Throughout, modules will be right unital over an arbitrary, but fixed ring R.
Let \varkappa be an infinite cardinal, and $H_{j}(j \in J)$ a set of R-modules. By their x-product $\Pi^{<x}\left\{H_{j} \mid j \in J\right\}$ is meant the submodule of the direct product $H=\Pi\left\{H_{j} \mid j \in J\right\}$ consisting of all the elements $h=\left(h_{j}\right)$ whose support supp $h=\left\{j \in J \mid h_{j} \neq 0\right\}$ has cardinality $<x$. (We shall write supp $K=\bigcup\{\operatorname{supp} h \mid h \in K\}$ for a subset K of H.) An R-module A is called slender if for R-modules $e_{i} R \cong R(i<\omega)$ and for any R-homomorphism

$$
\varphi: \Pi\left\{e_{i} R \mid i<\omega\right\} \rightarrow A
$$

we have $\varphi e_{i}=0$ for almost all i. Slender modules behave in many respects like slender abelian groups; cf. Dimitrić [2]. Slender modules need not be torsion-free, not even over commutative domains [3, p. 77].

In this note, our purpose is to investigate properties of x-products of slender modules over arbitrary rings. We shall concentrate on the problem of homomorphisms η of a product $\Pi\left\{G_{i} \mid i \in I\right\}$ of R-modules G_{i} with non-measurable index set I into the x-product $\Pi^{<x}\left\{H_{j} \mid j \in J\right\}$ of slender modules H_{j}. A generalization of a well-known theorem by Los [3, p. 52] guarantees that, for each $j \in J$, only finitely many ηG_{i} have nonzero projections in H_{j}, but virtually nothing is known about the global behavior of such a homomorphism η.

We study both the kernel and the image of η. Easy examples show that meaningful results on the image of η can only be obtained if the modules G_{i} are not too large: more precisely, if they can be generated by fewer elements than the cofinality cof x of x. We shall prove the following theorem which also generalizes the wellknown result that direct sums of slender modules are slender [3, p. 77].

Theorem. Let I be a non-measurable index set and x an infinite cardinal. Assume $G_{i}(i \in I)$ are R-modules each of which can be generated by strictly less than $\lambda=\operatorname{cof} \chi$

[^0]elements, and $H_{j}(j \in J)$ are slender R-modules. Given an R-homomorphism
\[

$$
\begin{equation*}
\eta: G=\Pi\left\{G_{i} \mid i \in I\right\} \rightarrow H=\Pi^{<x}\left\{H_{j} \mid j \in J\right\} \tag{1}
\end{equation*}
$$

\]

define

$$
\begin{equation*}
X=\left\{i \in I \mid \eta G_{i} \neq 0\right\} \quad \text { and } \quad Y=\bigcup\left\{\operatorname{supp} \eta G_{i} \mid i \in I\right\} \tag{2}
\end{equation*}
$$

Then we have:
(A) $|X|<x$;
(B) $\Pi\left\{G_{i} \mid i \in \Gamma \backslash X\right\} \leqq \operatorname{ker} \eta$;
(C) $|Y|<x$;
(D) $\operatorname{Im} \eta \leqq \Pi\left\{H_{j} \mid j \in Y\right\} \leqq H$.

For x regular, conclusions (A) and (B) are actually proved without requiring the G_{i} to be less than cof \varkappa generated. The proof requires a more sophisticated argument if x is a singular cardinal. We break down the proof into several lemmas and propositions dealing with portions of the Theorem.

For recent work on products of slender modules, and for applications of x products in ring and module theory, see [3], [7], [8] and [1], as well as the literature quoted there.

1. Preliminaries

The symbols x, λ will denote infinite cardinals (or ordinals); x^{+}denotes the successor cardinal of x, and $|X|$ stands for the cardinality of a set X. For an R-module G, gen G means the minimum cardinality of generating sets of G. Here a cardinal x is measurable if there exists a non-principal ultrafilter on x which is closed under countable intersections. For the set theoretical concepts and results needed here, we refer to Jech [5; p. 27-28; p. 52].

By making use of [3, p. 52], the proof of the main theorem of Łos on slenderness ([4; p. 161, Theorem 94.4]) can be modified so as to hold for slender R-modules, rather than for abelian groups.
1.1. J. Łos Theorem. Let I be a non-measurable index set and A a slender R-module. For any R-homomorphism $\varphi: \Pi\left\{G_{i} \mid i \in I\right\} \rightarrow A$ where the G_{i} are arbitrary R-modules we have:
(i) $\varphi G_{i}=0$ for almost all $i \in I$; and
(ii) if $\varphi G_{i}=0$ for all $i \in I$, then $\varphi=0$.

It is straightforward to check that (1.1) continues to hold if the direct product ΠG_{i} is replaced by the χ-product $\Pi^{<x} G_{i}$ with uncountable non-measurable κ.

Using coordinate-wise arguments, we can at once derive the following corollary.

1.2. Corollary. Let

$$
\begin{equation*}
\eta: G=\Pi\left\{G_{i} \mid i \in I\right\} \rightarrow H=\Pi\left\{H_{j} \mid j \in J\right\} \tag{3}
\end{equation*}
$$

be an R-homomorphism where the G_{i} are R-modules, all H_{j} are slender, and the index set I is non-measurable. If $\eta G_{i}=0$ for each $i \in I$, then $\eta=0$.

From now on we assume that the index sets are infinite.
In order to compare homomorphisms into products with those into x-products, we include the following result.
1.3. Proposition. Assume the hypotheses of (1.2). Then the subset $X=$ $=\left\{i \in I \mid \eta G_{i} \neq 0\right\}$ of I satisfies:
(i) $|X| \leqq|J|$, and
(ii) η vanishes on $\Pi\left\{G_{i} \mid i \in I \backslash X\right\}$.

Proof. Let $\varrho_{j}: H \rightarrow H_{j}$ be the j th coordinate projection. By the definition of slenderness, for each $j \in J$, the set

$$
\begin{equation*}
f(j)=\left\{i \in I \mid \varrho_{j} \eta G_{i} \neq 0\right\} \tag{4}
\end{equation*}
$$

is finite. Evidently, $\cup\{f(j) \mid j \in J\}=X$ whence (i) is obvious. Since $\eta G_{i}=0$ for all $i \in I \backslash X$, (ii) follows immediately from (1.2).

To facilitate proofs, we state here a lemma the proof of which is an easy exercise in set theory.
1.4. Lemma. Let I be a set of infinite cardinality x and \bar{x} a cardinal $<x$. Suppose that $\left\{F_{j} \mid j \in J\right\}$ is a set of finite subsets of I such that, for each $i \in I$, the cardinality of $\left\{j \in J \mid i \in F_{j}\right\}$ does not exceed \bar{x}. Assume that $|J|=x$, which holds in particular if $\cup\left\{F_{j} \mid j \in J\right\}=I$. Then there is a subset $S \subset J$ such that
(a) $|S|=x$;
(b) the sets $F_{j}(j \in S)$ are pairwise disjoint.

Note. If x is regular, and in particular, weakly inaccessible, then it suffices to assume $\left|\left\{j \in J \mid i \in F_{j}\right\}\right|<x$ for each $i \in I$ to obtain (a)-(b).

2. Maps into \varkappa-products, regular \varkappa

In this section, we assume x is a regular cardinal. Our first concern is the kernel of homomorphisms of products of modules into the x-products of slender modules. The following theorem gives fairly complete information about the kernel. (The restriction on gen G_{i} is not required for regular cardinals \varkappa.)
2.1. Proposition. Let $G_{i}(i \in I)$ be R-modules, $H_{j}(j \in J)$ slender R-modules, and $|I|$ a non-measurable cardinal. Let (1) be an R-homomorphism where x is a regular cardinal. Then (A) and (B) of Theorem hold.

Proof. As (B) is a consequence of (1.2), only (A) requires a verification.
By way of contradiction, suppose that (A) is false. Without loss of generality, we may then assume that $X=I$. has cardinality \varkappa (in particular, \varkappa is non-measurable) and $G_{i}=g_{i} R$ are nonzero cyclic R-modules.

As in the proof of (1.3), we form the sets $f(j)$ [cf. (4)] which are finite for each $j \in J$. Setting $Y=\cup\left\{\operatorname{supp} \eta g_{i} \mid i \in I\right\}$, we have $I=\bigcup\{f(j) \mid j \in Y\}$ because of $X=I$. The finiteness of the $f(j)$ and $|I|=x$ imply $|Y|=x$. Since $\varrho_{j} \eta g_{i}=0$ for $j \in J \backslash Y$ and every $i \in I$, we may assume $Y=J$ and $f(j) \neq \emptyset$ for each $j \in J$.

The next step in our proof is to select a subset S of J such that the finite subsets $f(j)(j \in S)$ are pairwise disjoint and $|S|=x$. This can be done with the aid of (1.4) (where \bar{x} is the immediate predecessor of x if such an ordinal exists; otherwise no such \bar{x} is needed).

For each $j \in S$, set $C_{j}=\oplus\left\{G_{i} \mid i \in f(j)\right\} \neq 0$. Manifestly, $G^{*}=\Pi\left\{C_{j} \mid j \in S\right\}$ is a summand of G and $H^{*}=\Pi^{<x}\left\{H_{j} \mid j \in S\right\}$ is a summand of H. The restriction of η to G^{*} followed by the projection $H \rightarrow H^{*}$ yields a map $\eta^{*}: G^{*} \rightarrow H^{*}$ such that, for each $j \in S, 0 \neq \eta C_{j} \leqq H_{j}$. For every $j \in S$, pick a $c_{j} \in C_{j}$ satisfying $\eta^{*} c_{j} \neq 0$, and let

$$
c=\left(\ldots, c_{j}, \ldots\right) \in G^{*} \quad(j \in S)
$$

In view of $\varrho_{j} \eta^{*} C_{k}=0$ for all $j \neq k$ in S, the slenderness of H_{j} implies $\varrho_{j} \eta^{*}\left(c-c_{j}\right)=$ $=0$ for every $j \in S$ (recall the non-measurability of x). Consequently, $\varrho_{j} \eta^{*} c=$ $=\varrho_{j} \eta^{*} c_{j} \neq 0$ for all $j \in S$, contradicting the fact that the support of $\eta^{*} c$ must have cardinality $<x$.

We turn our attention to the question as to when the image of η in (1) has to be contained in the x-product of a smaller subset of the H_{j}.

It is readily seen that some sort of restriction on the G_{i} is necessary in order to obtain such a conclusion. In fact, if one of the G_{i} 's is the direct sum $\bigoplus_{j \in J} H_{j}$ and η acts on each H_{j} as the identity map, then the x-product of the H_{j} over the entire index set J is needed to accomodate $\operatorname{Im} \eta$. This example also shows that it won't be of any help to assume the slenderness of the G_{i} 's. Cardinality restrictions on the G_{i} seem to be inevitable.

Accordingly, let us assume gen $G_{i}<x$ for each $i \in I$. If x is a regular cardinal, then $\left|\operatorname{supp} \eta G_{l}\right|<x$. Keeping this in mind, we prove:
2.2. Proposition. Let $G_{i}(i \in I)$ be R-modules with gen $G_{l}<x$ where I is non-measurable. If (1) is an R-homomorphism with H_{j} slender and \propto regular, then both (C) and (D) of Theorem hold true.

Proof. (2.1) shows that η acts non-trivially only on a subproduct $\Pi\left\{G_{i} \mid i \in X\right\}$ where $|X|<x$. By the regularity of x, likewise $Y=\bigcup\left\{\operatorname{supp} \eta G_{l} \mid i \in X\right\}$ has cardinality less than x. Assertion (D) is an obvious consequence of (C).

3. Maps into x-products, singular \varkappa

In this section, x denotes a singular cardinal.
Let us start with a weak version of (2.1). Viewing (3) as a map into the x^{+}product of the H_{j}, we derive:
3.1. Corollary. Under the hypotheses of (2.1), but assuming x is singular, we have:
(i)) $|X| \leqq x$, and
(ii') η vanishes on $\Pi\left\{G_{i} \mid i \in I \backslash X\right\}$.
We shall improve on (3.1) by limiting the sizes of the generating systems of the G_{i}.

The analogue of (2.2) fails if x is singular, even if I is restricted to have cardinality $\lambda=\operatorname{cof} x$ - as is shown by the following example.

Let $\left\{J_{\alpha} \mid \alpha<\lambda\right\}$ be a set of pairwise disjoint subsets of J such that $\left|J_{\alpha}\right|<x$ for all $\alpha<\lambda$ and $\sup \left|J_{\alpha}\right|=\chi$. Let $G_{\alpha}=\oplus\left\{H_{j} \mid j \in J_{\alpha}\right\}, G=\Pi\left\{G_{\alpha} \mid \alpha<\lambda\right\}$ and $\eta: G \rightarrow H=$ $=\Pi^{<x}\left\{H_{j} \mid j \in J\right\}$ be induced by the identity maps on the H_{j}. This η exists (Im η is already in the λ^{+}-product of the H_{j}) and provides a counterexample.

Our best bet is cutting down the sizes of G_{i} to below λ. This enables us to obtain reasonably strong results. The point of departure is the following.
3.2. Lemma. Let x be a singular cardinal, I a non-measurable index set of cardinality $\leqq \lambda=\operatorname{cof} x$, and $H_{j}(j \in J)$ a family of slender modules. If gen $G_{i}<\lambda$ for all the R-modules G_{i}, then for any R-homomorphism (1) conclusions (C) and (D) of Theorem hold true.

Before entering into the proof of (3.2), we prove two auxiliary lemnas. In the next lemma, x can be any infinite cardinal.
3.3. Lemma. Suppose μ is a non-measurable ordinal $<x$ and

$$
\eta: G=\Pi\left\{G_{a} \mid \alpha<\mu\right\} \rightarrow H=\Pi^{<x}\left\{H_{j} \mid j \in J\right\}
$$

is an R-homomorphism where $G_{\alpha}=g_{\alpha} R$ are non-zero cyclic modules and H_{j} are slender. If x_{0} is a cardinal number satisfying

$$
\mu \leqq x_{0}<\left|\operatorname{supp} \eta g_{0}\right|,
$$

then there exist a subset Y of J and an ordinal $\beta<\mu$ such that
(a) $Y \subset \operatorname{supp} \eta g_{0}$;
(b) $|Y|>x_{0}$;
(c) $Y \cap$ supp $\eta g_{\alpha}=\emptyset$ for all $\alpha \geqq \beta$.

Proof. Let ϱ_{j} denote the j th coordinate projection $H \rightarrow H_{j}$. Define a function $\psi: J \rightarrow \mu$ by letting $\psi(j)$ be the smallest ordinal $\gamma<\mu$ such that

$$
\varrho_{j} \eta \Pi\left\{g_{\alpha} R \mid \gamma \leqq \alpha<\mu\right\}=0 .
$$

Owing to the slenderness of H_{j}, such a $\psi(j)$ exists, so ψ is well-defined. For $\alpha<\mu$, we set

$$
\begin{equation*}
Y_{a}=\left\{j € \operatorname{supp} \eta g_{0} \mid \psi(j)=\alpha\right\} . \tag{5}
\end{equation*}
$$

Visibly, the Y_{α} are pairwise disjoint and their union for $\alpha<\mu$ is exactly supp ηg_{0}. Consequently,

$$
x_{0}<\left|\operatorname{supp} \eta g_{0}\right|=\sum_{\alpha<\mu}\left|Y_{\alpha}\right|=\max \left\{\mu, \sup _{\alpha<\mu}\left|Y_{\alpha}\right|\right\} .
$$

Hence $\mu \leqq x_{0}$ implies $\chi_{0}<\sup \left|Y_{a}\right|$ which means that $\left|Y_{\beta}\right|>\chi_{0}$ for a suitable ordinal $\beta<\mu$. This β and $Y=Y_{\beta}$ are as desired.

The next lemma is more technical.
3.4. Lemma. Assume x is a singular cardinal, $\lambda=\operatorname{cof} \varkappa$ is non-measurable, G_{α} are non-zero cyclic and H_{j} are slender. If there are cardinals $\chi_{\alpha}(\alpha<\lambda)$ satisfying
(a) $\chi_{\alpha}<\mid$ supp $\eta g_{a} \mid$ for $\alpha<\lambda$;
(b) $\lambda \leqq x_{0}<x_{1}<\ldots<x_{a}<\ldots \quad(\alpha<\lambda)$;
(c) $\sup x_{\alpha}=\chi$,
then there exist subsets J_{α} of J and ordinals $\mu(\alpha)<\lambda$ for all $\alpha<\lambda$ such that
(i) $\mu(0)<\mu(1)<\ldots<\mu(\alpha)<\ldots$;
(ii) $J_{\alpha} \subset \operatorname{supp} \eta g_{\mu(\alpha)}$;
(iii) $\left|J_{\alpha}\right|>\chi_{\alpha}$ for $\alpha<\lambda$;
(iv) the sets $J_{0}, J_{1}, \ldots, J_{\alpha}, \ldots$ are pairwise disjoint.

Proof. We take advantage of the function $\psi: J \rightarrow \lambda$ defined in the proof of (3.3), and in addition to (i)-(iv) we also require that J_{α} be of the form Y_{β} as in (5). More precisely, we impose an additional condition:
(v) $J_{\alpha}=\left\{j \in \operatorname{supp} \eta g_{\mu(\alpha)} \mid \psi(j)=\beta(\alpha)\right.$ for some $\left.\beta(\alpha)<\lambda\right\}$.

Right away we note that (v) implies
(vi) $\varrho_{j} \eta g_{\delta}=0$ holds for every $j \in J_{0} \cup \ldots \cup J_{\alpha}$ and for every $\delta>\operatorname{supp}\{\mu(\alpha), \beta(0), \ldots$ $\ldots, \beta(\alpha)\}$.

The J_{z} and $\mu(\alpha)$ will be constructed by transfinite induction. To start off, put $\mu(0)=0$. Application of (3.3) yields a subset $Y \subset J$ and an ordinal $\beta(0)<\lambda$ satisfying (a)-(c) of (3.3) as well as (v). Define $J_{0}=Y_{\beta(0)}$. Then for $\alpha=0$, all of (i)-(v) hold.

Let $\gamma<\lambda$, and suppose that $\mu(\alpha)<\lambda$ and $J_{\alpha} \subset J$ have been selected for all $\alpha<\gamma$ satisfying conditions (i)-(v) for indices $<\gamma$. Define $\mu(\gamma)$ to be any ordinal $<\lambda$ exceeding $\mu(\alpha)$ and $\beta(\alpha)$ for all $\alpha<\gamma$; since $\lambda=\operatorname{cof} x$, such a $\mu(\gamma)$ does exist. Apply (3.3) to $g_{\mu(\gamma)}$ playing the role af g_{0} and χ_{γ} the role of χ_{0}, in order to obtain a set $Y=\left\{j \in \operatorname{supp} \eta g_{\mu(\gamma)} \mid \psi(j)=\delta\right\}$ for some $\delta<\lambda$ and an ordinal $\beta(\gamma)$ as stipulated by (3.3) (a)-(c). Setting $J_{\gamma}=Y$ and $\beta(\gamma)=\delta$ (see the proof of (3.3)), conditions (i)-(iii) and (v) will clearly hold for all indices $\leqq \gamma$. To convince ourselves that $J_{\gamma} \cap J_{\alpha}=\emptyset$ for every $\alpha<\gamma$, it suffices to note that (vi) implies $\varrho_{j} \eta e_{\mu(\gamma)}=0$ for every $j \in J_{\alpha}$. This completes the proof of (3.4).

Proof of (3.2). Since gen $G_{i}<\lambda$ implies \mid supp $\eta G_{i} \mid<x$, the assertion follows at once whenever $|I|<\lambda$. So let us assume $|I|=\lambda$ in which case we can think of I as consisting of the ordinals $<\lambda$.

From (1.2) we infer that $Y=\bigcup\left\{\operatorname{supp} \eta G_{\alpha} \mid \alpha<\lambda\right\}$ is the smallest subset of J with the property $\eta G \leqq \Pi^{<x}\left\{H_{j} \mid j \in Y\right\}$. Hence $|Y| \leqq x$ is immediate. By way of contradiction assume that $|Y|=\varkappa$.

Passing to a summand of G, we may assume that the cardinal numbers |supp $\eta G_{\alpha} \mid$ are all different and $>\lambda$. Reindexing, we obtain an ascending chain

$$
\lambda<\left|\operatorname{supp} \eta G_{0}\right|<\left|\operatorname{supp} \eta G_{1}\right|<\ldots<\left|\operatorname{supp} \eta G_{a}\right|<\ldots \quad(\alpha<\lambda)
$$

whose supremum is \varkappa. Since gen $G_{\alpha+1}<\lambda$ and $\left|\operatorname{supp} \eta G_{\alpha+1}\right|>\left|\sup \eta G_{\alpha}\right|$, there must be a generator $g_{\alpha} \in G_{\alpha+1}$ whose image ηg_{α} has support of cardinality strictly $>\left|\operatorname{supp} \eta G_{\alpha}\right|$. Setting $\chi_{\alpha}=\left|\operatorname{supp} \eta G_{\alpha}\right|$, we obtain an ascending chain of cardinals,

$$
\lambda=x_{0}<x_{1}<\ldots<x_{\alpha}<\ldots \quad(\alpha<\lambda)
$$

with $\sup x_{\alpha}=x$, and with $x_{\alpha}<\left|\operatorname{supp} \eta g_{\alpha}\right|$ for all $\alpha<\lambda$.
Restricting η to the submodule $\bar{G}=\Pi\left\{g_{\alpha} R \mid a<\lambda\right\}$, (3.4) yields the existence of subsets $J_{\sigma} \subset J$ and ordinals $\mu(\alpha)<\lambda$ satisfying (i)-(iv) of (3.4). Define an element $\bar{g}=\left(\bar{g}_{\alpha}\right)_{\alpha<\lambda} \in \bar{G}$ as follows. Let $\bar{g}_{\alpha}=g_{\mu(\beta)}$ if $\alpha=\mu(\beta)$ for some $\beta<\lambda$, and let $\bar{g}_{\alpha}=0$ otherwise. From the definition of the $\mu(\beta)$ it is clear that $\varrho_{j} \eta\left(\bar{g}-g_{\mu(\alpha)}\right)=0$ for all $j \in J_{\alpha}$. Hence $\varrho_{j} \eta \bar{g}=\varrho_{j} \eta g_{\mu(\beta)} \neq 0$ for $j \in J_{\alpha}$, and we conclude that

$$
|\operatorname{supp} \eta \bar{g}| \geqq \bigcup\left\{J_{a} \mid \alpha<\lambda\right\}=\sup x_{\alpha}=\dot{x}
$$

This contradiction completes the proof of (3.2).
We still need the following lemma.
3.5. Lemma. Let x be a non-measurable singular cardinal, and 1 an index set of cardinality χ. If G_{i} are R-modules with gen $G_{i}<\lambda=\operatorname{cof} x$, and if (1) is an R homomorphism with H_{j} slender, then there exists a cardinal $\bar{x}<\varkappa$ such that, for each $i \in I$, the set $\operatorname{supp} \eta G_{i}$ has cardinality $\leqq \bar{x}$.

Proof. First observe that gen $G_{i}<\lambda$ and \mid supp $\eta g_{i} \mid<x$ for each $g_{i} \in G_{i}$ imply that $\left|\operatorname{supp} \eta G_{i}\right|<x$. Denying the existence of a \bar{x} of the indicated type means that we can select a subset $\left\{G_{\alpha} \mid \alpha<\lambda\right\}$ of $\left\{G_{i} \mid i \in I\right\}$ such that the cardinalities $x_{\alpha}=$ $=\left|\operatorname{supp} \eta G_{\alpha}\right|$ form an increasing chain (with increasing α) whose supremum is x. The restriction of η to $G^{\prime}=\Pi\left\{G_{\alpha} \mid \alpha<\lambda\right\}$ is a homomorphism satisfying the hypotheses of (3.2). Therefore, we conclude that ηG^{\prime} has a support of cardinality $<x$, in contradiction to $U \mid$ supp $\eta G_{\alpha} \mid=U \varkappa_{\alpha}=x$.

Proof of Theorem. (2.1) and (2.2) take care of the case in which x is a regular cardinal. So assume x is singular.
(A) Without loss of generality, we may assume $|I| \geqq x$; otherwise there is nothing to prove. It suffices to verify (A) for $|I|=x$. By way of contradiction, assume $|X|=x$. We apply (1.4) to the set $\{f(j) \mid j \in J\}$ defined in (2) to obtain a subset $S \subset J$ of cardinality x with $f(j)(j \in S)$ pairwise disjoint; (3.5) assures the existence of a cardinal \bar{x} needed in (1.4). Consider the following element of $G: \bar{g}=\left(g_{i}\right)$ where $g_{i} \in G_{i}$ with $\eta g_{i} \neq 0$ if $i \in \cup\{f(j) \mid j \in S\}$ and $g_{i}=0$ otherwise. An argument similar to the one used at the end of the proof of (2.1) leads us to the conclusion that $\eta \bar{g}$ must have a support of cardinality x - a contradiction.
(B) follows from (A) in view of (1.2).
(C) Because of (3.5), we have $\left|\operatorname{supp} \eta G_{i}\right| \leqq \bar{x}<x$ for each i. This, together with (A), implies $|Y|<x$.
(D) is an immediate consequence of (C).

4. Embedding of μ-products in \varkappa-products

The case when the map η in (1) is a monomorphism deserves particular attention. In the following two corollaries, no restriction on gen G_{i} is needed.
4.1. Corollary. Let $G_{i} \neq 0(i \in I)$ and $H_{j}(j \in J)$ be R-modules, $|I|$ and x non-measurable cardinals. If the H_{j} are slender and if, for some cardinal μ, there is a monomorphism

$$
\eta: G=\Pi^{<\mu}\left\{G_{i} \mid i \in I\right\} \hookrightarrow H=\Pi^{<x}\left\{H_{j} \mid j \in J\right\}
$$

then either $|I|<x$ or $\mu \leqq x$.
Proof. If $|I| \geqq x$ and $\mu>x$, then G contains a submodule which is the product of x cyclic submodules $g_{i} R$ with $\eta g_{i} \neq 0$. This is impossible in view of (A), (B) in Theorem.

The next result is an immediate consequence of the preceding one. It generalizes a result on products and direct sums of slender groups, due to $\mathfrak{Ł o s}$ [6, p. 271].
4.2. Corollary. Let both $G_{i}(i \in I)$ and $H_{j}(j \in J)$ be families of non-zero slender modules. If $|I|,|J|$ are non-measurable cardinals, and if $x \leqq|J|, \mu \leqq|I|$, then $\Pi^{<x}\left\{G_{i} \mid i \in I\right\} \cong \Pi^{<x}\left\{H_{j} \mid j \in J\right\}$ implies $\varkappa=\mu$.

References

[1] J. Dauns, Subdirect products of injectives, Comm. Algebra, 17 (1989), 179-196.
[2] R. Dimitrić, Slender modules over domains, Comm. Algebra, 11 (1983), 1685-1699.
[3] P. Eklof and A. Mekler, Almost Free Modules, Set-theoretic Methods, North-Holland (Amster-dam-New York 1990).
[4] L. Fuchs, Infinite Abelian Groups. Vol. II, Academic Press (New York, 1973).
[5] T. Jech, Set Theory, Academic Press (New York, 1978).
[6]. J. Los, On the complete direct sum of countable abelian groups, Publ. Math. Debrecen, 3 (1954), 269-272.
[7] P. Loustaunau, Large subdirect products of projective modules, Comm. Algebra, 17 (1989), 197-215.
[8] J. O'Neile, A theorem on direct products of slender groups, Rend. Sem. Mat. Univ. Padova, 78 (1987), 261-266.

DEPARTMENT OF MATHEMATICS

TULANE UNIVERSITY
NEW ORLEANS, LA 70118, U.S.A.

[^0]: Received May 27, 1991.

