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Idempotent algebras with transitive automorphism groups 

LÁSZLÓ SZABÓ 

To Professor Béla Csákány on his 60th birthday 

0. Introduction 

As a rule a finite algebra with "large" automorphism group is functionally 
complete. The first general result was found by B. CSÁKÁNY [1], who proved that 
almost every nontrivial homogeneous algebra (i.e. an algebra whose automorphism 
group is the full symmetric group) is functionally complete; up to equivalence there 
are six exceptions. Csákány's theorem was first extended to algebras with triply 
transitive automorphism groups [9] and later to algebras with doubly transitive 
automorphism groups [4]; the exceptions are the affine spaces over finite fields. The 
most general result in this direction is proved in [5] where the structure of functionally 
incomplete algebras with primitive automorphism groups are completely discribed. 

In this paper we investigate finite idempotent algebras with transitive auto-
morphism groups. We show that if an at least three element finite idempotent algebra 
with transitive automorphism group is simple and has no compatible binary central 
relation then it is either functionally complete or affine (Theorem 3.1). Moreover, 
if an at least three element finite idempotent algebra with transitive automorphism 
group is simple and has a nontrivial semi-projection or a majority function among 
its term functions then it is functionally complete (Theorem 3.2). 

1. Preliminaries 

Let A be a fixed universe with \A\ >2. For any positive integer n let 0 ( n ) denote 
oo 

the set of all n-ary operations on A (i.e. maps A"—A) and let 0 = | J 0 ( n ) . An 
n = l 

operation from O is nontrivial if it is not a projection. By a clone we mean a subset 
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of O which is closed under superpositions and contains all projections. A ternary 
operation / on A is a majority function if for all x,y£A we have f(x,x,y) = 
=f(x, y, x)=f(y, x, x)=x; f is a MaVtsev function if f(x, y, y)=f(y, y, x)=x for 
all x,y£A. An n-ary operation t on A is said to be an i-th semi-projection 
(n^3, l s / ^ n ) if for all x1, ..., xn€A we have t(x1, ..., x„)=xi whenever at least 
two elements among x1, ...,xn are equal. 

A subset FQO as well as the algebra (A, F) is primal or complete if the clone 
generated by F (i.e. the set of all term functions of (A, F)) is equal to O; F as well 
as the algebra (A, F) is functionally complete if the clone generated by F together 
with all constant operations (i.e. the set of all algebraic functions of (A, F)) is equal 
to O. 

We are going to formulate Rosenberg's Completeness Theorem [6], [7] which 
is the main tool in proving our results. First, however, we need some further de-
finitions. 

Let n,h^l. An n-ary operation / £ O w is said to preserve the h-ary relation 
g^Ah if Q is a subalgebra of the h-th direct power of the algebra (A;f); in other 
words,/preserves g if for any nXh matrix with entries in A, whose rows belong to 
g, the row of column values of /be long to g. Then the set of operations preserving 
Q forms a clone, which is denoted by Pol g. We say that a relation g is a compatible 
relation of the algebra (A, F) if FQ Pol Q. A binary relation is called nontrivial if 
it is distinct from the identity relation and the full relation. 

An /i-ary relation g on A is called central if g^A* and there exists a non-void 
proper subset C of A such that 

(a) (fix, ..., ak)€g whenever at least one atdC (1 
(b) g is totally symmetric, i.e. (a l5 ..., ah)£g implies (aln, ..., ahx)^g for every 

permutation n of the indices 1, ..., h\ 
(c) Q is totally reflexive, i.e. (at, ..., aH)^Q if a—aj for some iV/ (1 

The set C is called the center of Q. 

Let h^3. A family 7 , ={0 1 , ..., 0m} ( m S l ) of equivalence relations on A 
is called h-regular if each 0t (1 s i ^ m ) has exactly h blocks and 0 T = 0in... H 0 m 

m 
has exactly hm blocks (i.e. the intersection P| B, of arbitrary blocks ¿?, of ©t i = 1 

(/ = 1, ..., m) is nonempty). The relation determined by T is 

kT={(ax, ..., ah)ZAh: alt ..., ah are not pairwise incongruent 

modulo ©i for all i ( l i / S m ) } . 

Note that /¡-regular relations are both totally reflexive and totally symmetric. Now we are in the position to state Rosenberg's Theorem: 
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Theorem A ( I . G . ROSENBERG [6] , [7 ] ) . A finite algebra A = ( A , F) is primal 
if and only if F^Pol g for no relation of any of the following six types: 

(1) a bounded partial order ; 
(2) a binary relation {(a, an)\a£A} where n is a permutation of A with \A\jp 

cycles of the same length p (p is a prime number)-, 
(3) a quaternary relation a2, as, a^ÇA^^+a^as+ai} where (A; +) is 

an elementary abelian p-group (pis a prime number); 
(4) a nontrivial equivalence relation; 
(5) a central relation; 
(6) a relation determined by an h-regular family of equivalence relations. 

Let B be a finite set with |j3| =3, and let / M > l , n S l , M—{l,...,m}, N= 
= {1, ...,«}. An n-ary wreath operation on Bm is an operation w associated to per-
mutations Pi of B (/=1, • ••,m), and maps r : M—N, s: M—M, as follows : For 
xt=(xa, ..., x,m)£Bm, 7 = 1, ..., n set 

W(Xl5 ...,X„) = (Pi(Xr(1)s{1)), .••,/>„,(X(m)s(m)))-

Now an algebra is a wreath algebra if it is isomorphic to an algebra on Bm with wreath 
operations only. 

In [8] I. G. ROSENBERG gave a functional completeness criterion for finite al-
gebras whose operations are all surjective. Among others he proved the following: 

Theorem B ( I . G . ROSENBERG [8]). Let Abe a finite algebra whose operations 
are all surjective. 

(i) If A has a compatible at least binary central relation then it also has a compat-
ible binary central relation. 

(ii) If A has an operation depending on at least two variables, A is simple and has 
a compatible relation determined by an h-regular family of equivalence relations then 
it is a wreath algebra. 

An algebra (A, F) is said to be affine with respect to an elementary abelian group 
(A; + ) if it has a compatible relation of type (3) in Theorem A determined by (A : +). 
To any finite field K and natural number n we associate the following affine algebra : 

AK>„ = (.K"; x-y + z, {rx + (l-r)y: r€^nXB}) 

where KnX„ is the nXn matrix ring over K. 

Theorem C (Â. SZENDREI [10]). Let A be an at least three element simple finite 
idempotent algebra. If A. is affine with respect to an elementary abelian group then it 
is equivalent to AK„for some finite field K and n ̂  1. 
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2. Lemmas 

Lemma 2.1. An idempotent wreath algebra cannot be simple. 

P r o o f . Let B be a finite set with |Z?| ^3 , 1, and consider an n-ary wreath 
operation w on Bm associated to permutationsp t of B (i= 1,..., m), and maps r: M— 
-+N,s: M-*M(M={ 1, . . . , m}, N={\,..., w}). It is easy to check that w is idempotent 
if and only if each pt is the identity permutation on B, ...,m, and s is the identity 
permutation on M, i.e., for xl=(xn, ..., xim)ÇBm, i— 1, ..., n we have 

•••>*n)
 =

 C*r(l)l» •••> xr(m)m)-

Then w preserves the equivalence relations 0j (j= 1, ..., m) defined by 

0j = ..., am), (b1} ..., bm))e(Bmf: = bj}, 

Lemma 2.2. If an at least three element finite algebra with transitive automorph-
ism groups has a compatible bounded partial order then it has a nontrivial compatible 
binary reflexive and symmetric relation. 

P r o o f . Let A=(A, F) be an at least three element finite algebra with transitive 
automorphism group and let g be a compatible bounded partial order of A with 
least element 0 and greatest element 1. Choose an automorphism n of A with In^O, 1. 
Then the relation A—(QÎ] QTI)O(Q f) ore)-1, where QN — {(XK, yn): (x, y)€G}, is a 
compatible binary reflexive and symmetric relation of A. Furthermore, a is non-
trivial, since (0, l n ^ g O g n Q a and 

Lemma 2.3. If an at least three element finite algebra has a nontrivial compatible 
binary reflexive and symmetric relation then it has either a nontrivial congruence rela-
tion, or a compatible at least binary central relation, or a compatible relation deter-
mined by an h-regular family of equivalence relations. 

P r o o f . Let A = ( A , F) be an at least three element finite algebra and let a 
be a nontrivial binary reflexive and symmetric relation on A with (a, b)£<r, a^b. 
Suppose that a is a compatible relation of A, i.e. FQ Pol a. Since a is nontrivial we 
have Pol a ^ O . Therefore, by Theorem A, there is a relation q of one of the types 
(1), . . . , (6) such that Pol aQPol Q. Clearly, Q is a compatible relation of A. We 
have to show that Q is of type (4) or (6) or an at least binary relation of type (5). 
Since Pol Q contains all constant operations, it cannot be of type (2) or a unary 
central relation. Suppose that Q is a bounded partial order with least element 0 
and greatest element 1. Consider the unary operations / and g defined by / (0 ) = 
=a, f(x)=b if XT^O and g(\)=a, g(x)=b if X^l. Then / , £ £ P o l «r^Pol Q. 
Therefore {a, ¿ )=( / (0 ) , / ( l»Çg and (b, a)=(g(0),g(l))£Q, a contradiction. Fi-
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nally suppose that q is of type (3), and let c£A with c^a,b. Consider the unary 
operation h defined by h(a)=A and h(x)=b if x^A. Then /26 Pol Q, and a+ 
+b—c?£a as c^a,b. Therefore, (a,b,c,a+b—c)£Q implies (a,b,b,b) — 
=(h(a), h(b), h(c), li(a+b—c))£g, a contradiction. 

3. Results and proofs 

Theorem 3.1. Let A be an at least three element finite idempotent algebra with 
transitive automorhism group. If A is simple and has no compatible binary central 
relation then it is either functionally complete or is equivalent to AKt„for some finite 
field K and natural number n. 

Proof . Let A be a simple at least three element finite idempotent algebra with 
transitive automorphism group, and assume that A has no compatible binary central 
relation. If A is functionally incomplete then, by Theorem A, there is a relation Q 
of one of the types (1), ..., (6) such that Pol Q contains all algebraic functions of A. 
Since Pol Q contains all constant operations and A is simple, Q cannot be of type 
(2), (4) or a unary central relation. If Q is of type (6) then, by Theorem B, A is a wreath 
algebra and then, by Lemma 2.1, we have that A is not simple contrary to our 
assumption. If Q is an at least binary central relation then, again by Theorem B, A 
has a compatible binary central relation contrary to our assumption. Finally, if Q 
is a bounded partial order then taking into consideration Lemma 2.2 and 2.3, we 
obtain that A has a nontrivial congruence relation or an at least binary central 
relation or a compatible relation of type (6), which is a contradiction. 

Hence Q is of type (3), i.e. A is affine with respect to an elementary abelian group 
and then, by Theorem C, we have that A is equivalent to AK>„ for some finite field 
.Kand «s:] . 

It is well-known (see e.g. [5] and [9]) that every nontrivial idempotent algebra 
has either a majority function or a Mal'tsev function or a nontrivial semi-projection 
or a nontrivial binary idempotent operation among its term functions. _ 

Theorem 3.2. If an at least there element finite idempotent algebra with trans-
itive automorphism group is simple and has a majority function or a nontrivial semi-
projection among its term functions then it is functionally complete. 

Proof . Let A = ( A , F) be an at least three element simple finite idempotent 
algebra with transitive automorphism group that have a majority function or a 
nontrivial semi-projection among its term functions. It is well known (see e.g. [5] 
or [9]) that neither majority functions nor nontrivial semi-projections preserve a 
relation of type (3) and therefore A is not affine. Using Theorem 3.1, we have to 
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show only that A has no compatible binary central relations. Suppose that A has 
a compatible binary central relation g with center C and let c£C. 

First consider the case when A has an n-ary nontrivial semi-projection / among 
its term functions («S3). We can suppose that / is a first semi-projection. We call 
a subset IQA an ideal iff t{a1, ..., a„)£l whenever a^I. Since an intersection of 
ideals is an ideal again, we may speak about an ideal generated by a subset of A. 
For any a£A denote by 1(a) the ideal generated by {a}. Clearly, if I is an ideal and 
rcÇAut A then In is again an ideal, and I(a)n=I(an). Because of the transitivity 
of Aut A the cardinalities of the 1-generated ideals are equal, and greater then one 
since t is not the first projection. So the 1-generated ideals form an Aut A-invariant 
partition of A. Denote by 8 the corresponding equivalence relation. Then 0 is distinct 
from the identity relation and Aut A g Pol 9. 

We show that 9<^g, i.e. for any a,b£A we have (a,b)£g if I(a)=I(b). 
Let a,b£A with I(a)=I(b). Consider the subset Ia={x: (x,a)£g). Then Ia is 
an ideal. Indeed, if x^Ia and x2,..., xnÇA are arbitrary elements, then (xj, a), 
(x2, c), ..., (x„, c)<Ee implies that (t(xu ..., xn), a)=(t(x1, x2, ..., xn), t(a, c, ..., c))£ 
£g, i.e. t(xu ..., *„)€/„• Now, since Ia is an ideal with a£la, we have b£l(b) = 
= / ( a ) g / a and (b, a)Ç_g. Hence OQg. 

Consider the subalgebra a of A2 generated by 9. Then OQoQg and FU 
U Aut A g Pol <7, i.e.,. a is a nontrivial compatible binary reflexive and symmetric 
relation of the algebra Â=(A; FUAut A). Taking into consideration Lemma 2.3, 
we have that Â has either a nontrivial congruence relation or an at least binary 
central relation or a relation of type (6). The first case cannot occur since Â is simple. 
In the third case, according to Theorem B, we obtain that Â and so C is a wreath 
algebra which, by Lemma 2.1, implies that A is not simple, a contradiction. In the 
second case let t be an h-ary central relation of Â, let u be an element in the center 
of T, and let alt ..., ahÇ.A be arbitrary elements. Choose a 7tÇAut A such that im = 
=at. Then (u, a.2n~1, ..., ah7r_1)ÇT implies that (aL, ..., ah)=(un, (a27r_1)7t, ... 
..., (ah7r-1)7r)€T. Hence t is the full relation Ah, which is a contradicton. This com-
pletes the proof in the case when A has a nontrivial semi-projection among its 
term functions. 

Now consider the case when A has a majority term function d. From now on 
we call a subset IQ A an ideal iff d(x, y, z)£l whenever at least two of the arguments 
belong to I. A and the one-element subsets are obviously ideals. Since an intersection 
of ideals is an ideal again, we may speak about an ideal generated by a subset of A. 
For any a^A the set Ia~{x\(x, a)^g} is an ideal. Indeed, if for example x,y£la 

and zÇ A is arbitrary element, then (x, a), (y, a), (z, z)£ g implies that (d(x, y, z), a) = 
=(d(x, y, z), d(a, a, z))€ g, i.e. d(x, y, z)£Ia. Clearly, if I is an ideal and 7:6 Aut A 
then In is again an ideal. 

Define a binary relation 9 by setting (a, b)£9 if and only if there is a minimal 
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ideal (i.e. an ideal properly containing one-element ideals only) containing a and b. 
Then 9 is distinct from the identity relation and A u t A ^ P o l f l . We show that 
OQQ. Indeed, let (a,b)£9. If a=b then (a,b)£g, too. If a^b then put u= 
=d(a, b, c) (c is a central element of g) and let I be the minimal ideal with a, b£l. 
Now a=d(a, b, a), b=d(a, b, b)£lu. Since a and b are distinct, u is distinct from 
one of them, say u^b. By definition udl. We have u, b£lf}Ib, so by minimality 
o f / , it follows that implying that (a,b)£g. Hence 

Consider the subalgebra <r of A2 generated by 0. Then QQoQg and 
FUAut A ^ Pol a, i.e., a is a nontrivial compatible binary reflexive and symmetric 
relation of the algebra A=(A; FUAut A). As we have seen above, this is impossible. 
This completes the proof in the case when A has a majority term function. 

Theorem 3.3. Every simple at least three element finite idempotent algebra 
with a MaVtsev function among its term functions is either functionally complete or is 
equivalent to AKnfor some finite K and natural number n. 

Proof . Let A = ( A , F) be an at least three element simple finite idempotent 
algebra with a Mal'tsev function among its term functions. If A is functionally in-
complete then, by the well-known Gumm—McKenzie Theorem (cf. e.g. in [2] and 
[3]) we have that A is affine. Finally apply Theorem C. 

Problem. Is every at least three element finite simple idempotent algebra with 
transitive automorphism group either functionally complete or equivalent to AK> „ 
for some finite field K and natural number «? 

As we have mentioned, every nontrivial idempotent algebra has either a majority 
function or a Mal'tsev function or a nontrivial semi-projection or a nontrivial binary 
idempotent operation among its term functions. Taking into consideration Theorem 
3.2 and 3.3, the answer is positive if the algebra has either a majority function or a 
Mal'tsev function or a nontrivial semi-projection among its term functions. The 
remaining case is that, when the algebra has a nontrivial binary idempotent function 
and has neither a majority function nor a Mal'tsev function, nor a nontrivial semi-
projection among its term functions. 
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