Central pattern functions

ENDRE VÁRMONOSTORY

To Professor Béla Csákány on his 60th birthday

A finite algebra \mathfrak{A} with base set A is called *functionally complete* if every (finitary) operation on A is an algebraic function of \mathfrak{A} (in GRÄTZER's sense [3]). WERNER [8] proved that every finite algebra $\langle A; t \rangle$ where t is the ternary discriminator function on A is functionally complete. FRIED and PIXLEY [2] showed that (in the case |A|>2) the algebra $\langle A; d \rangle$ with d the dual discriminator function on A is also functionally complete. The ternary discriminator and the dual discriminator are the most familiar examples of *pattern functions*. B. CSÁKÁNY [1] proved that for |A|>2 every finite algebra $\langle A; f \rangle$ where f is a non-trivial pattern function on A is functionally complete. B. Csákány suggested the following generalization of pattern function (see [6]). Consider an *n*-ary relation $\varrho \subseteq (A^n)$ on A. Two k-tuples $\langle x_1, ..., x_k \rangle, \langle y_1, ..., y_k \rangle \in A^k$ are of the same pattern with respect to ϱ if for $i_1, ..., i_n \in \{1, ..., k\}, \langle x_{i_1}, ..., x_{i_n} \rangle \in \varrho$ and $\langle y_{i_1}, ..., y_{i_n} \rangle \in \varrho$ mutually imply each other. An operation $f: A^k \rightarrow A$ is a ϱ -*pattern function* if $f(x_1, ..., x_k)$ only. The ϱ -pattern functions with ϱ the equality relation are the (usual) pattern functions.

The aim of this paper is to prove a functional completeness theorem on ρ pattern functions with ρ central, which is analogous to the theorems mentioned above.

An *n*-ary relation ρ on A is called *central* [5], if $\rho \neq A^n$ and there exists a nonvoid proper subset C of A such that

(1) $\langle a_1, ..., a_n \rangle \in \varrho$ whenever at least one $a_j \in C$ $(1 \le j \le n)$;

(2) $\langle a_1, ..., a_n \rangle \in \varrho$ implies $\langle a_{o(1)}, ..., a_{o(n)} \rangle \in \varrho$ for every permutation o of the indices 1, ..., n;

(3) $\langle a_1, ..., a_n \rangle \in \varrho$ if $a_i = a_j$ for some $i \neq j$ $(1 \le i, j \le n)$. Note that every unary relation C distinct from \emptyset and A is central.

Received September 7, 1990.

Let ε be an equivalence and ϱ an arbitrary *n*-ary relation on *A*. If for $a_1, ..., a_n$ $b_1, ..., b_n \in A$, $(a_1, ..., a_n) \in \varrho$ and $(a_1, b_1) \in \varepsilon$, ..., $(a_n, b_n) \in \varepsilon$ together imply $(b_1, ..., b_n) \in \varrho$, then ε is said to be *compatible* with ϱ . We say that ϱ is *simple*, if no nontrivial equivalence on *A* is compatible with ϱ . An operation *f* on *A* is said to *preserve* ϱ if ϱ is a subalgebra of the *n*th direct power of the algebra $\langle A; f \rangle$.

We will use the following version of ROSENBERG's completeness theorem (see [5]).

A finite algebra $\langle A; f \rangle$ with a single fundamental operation f is functionally complete iff

(a) f is a monotonic with respect to no bounded partial order on A,

(b) f preserves no non-trivial equivalence on A,

(c) f preserves no binary central relation on A,

(d) f is surjective and essentially at least binary,

(e) f preserves no quaternary relation.

 $\theta = \{ \langle a_0, a_1, a_2, a_3 \rangle \in A^4 | a_0 + a_1 = a_2 + a_3 \}$ where $\langle A; + \rangle$ is an elementary abelian *p*-group (*p* is prime number).

Let A be a finite set. For $k \ge 2$ and for arbitrary (k-1)-ary, resp. *l*-ary $(1 \le \le l \le k-1)$ relations τ and θ on A we define the k-ary τ -pattern functions f_k^{τ}, g_k^{τ} resp. the *l*-ary θ -pattern functions h_k^{θ} on A as follows

$$f_{k}^{\tau}(x_{1}, ..., x_{k}) = \begin{cases} x_{k}, & \text{if } (x_{1}, ..., x_{k-1}) \in \tau \\ x_{1} & \text{otherwise,} \end{cases}$$
$$g_{k}^{\tau}(x_{1}, ..., x_{k}) = \begin{cases} x_{1}, & \text{if } (x_{1}, ..., x_{k-1}) \in \tau \\ x_{k} & \text{otherwise,} \end{cases}$$

 $h_k^{\theta}(x_1, \ldots, x_k) = \begin{cases} x_k, & \text{if } (x_{i_1}, \ldots, x_{i_k}) \in \theta & \text{for some } 1 \leq i_1 < \ldots < i_1 \leq k, \\ x_1 & \text{otherwise.} \end{cases}$

If τ and θ are the equality relation on A, then f_3^{τ} is the ternary discriminator, g_3^{τ} is the dual discriminator and h_k^{θ} is a near projection.

Theorem. Let τ and θ be arbitrary central relations on an at least three element finite set A. The algebras $\langle A; f \rangle$ with $f = f_k^{\tau}$ or g_k^{τ} are functionally complete if and only if τ is simple. The algebras $\langle A; h_k^{\theta} \rangle$ are not functionally complete.

Remark 1. If |A|=2, then τ and θ are unary. In this case f_k^{τ} and g_k^{τ} are monotone on $A(=\{0, 1\})$, and h_k^{θ} is a projection; therefore $\langle A; f \rangle$ with $f=f_k^{\tau}, g_k^{\tau}$, or h_k^{θ} is not functionally complete.

For the proof of Theorem 1 we need the following lemma.

Lemma. Let τ be a relation and f an arbitrary τ -pattern function on A. If τ is not simple, then $\langle A; f \rangle$ is not functionally complete.

Proof. If τ is not simple, then there exists an nontrivial equivalence ε on A which is compatible with τ . Clearly, ε is a congruence of $\langle A; f \rangle$. Hence $\langle A; f \rangle$ is not functionally complete.

Remark 2. If an at least binary arbitrary central relation τ on A has at least two central elements, then τ is not simple. In this case Lemma implies that, for an arbitrary τ -pattern function f, the algebra $\langle A; f \rangle$ is not functionally complete.

Proof of Theorem. First we prove that the algebras $\langle A; h_k^{\theta} \rangle$ are not functionally complete. If the centre of θ has at least two elements, this follows from Remark 2. If the centre of θ consists of a single element c, then the equivalence of A with blocks $\{c\}$ and $A \setminus \{c\}$ is an non-trivial congruence of $\langle A; h_k^{\theta} \rangle$. Therefore $\langle A; h_k^{\theta} \rangle$ is not functionally complete.

It remains to show that the algebras $\langle A; f \rangle$ with $f = f_k^{\tau}$ or g_k^{τ} and τ simple are functionally complete. Rosenberg's criterion will be used. Clearly, (d) is true for f_k^{τ} and g_k^{τ} . Furthermore, they depend on all of their variables and $f_k^{\tau}(x_1, ..., x_k)$, $g_k^{\tau}(x_1, ..., x_k) \in \{x_1, ..., x_k\}$ for $x_1, ..., x_k \in A$. Then, by Lemma 1 in [7], (e) also holds for them. Thus it is enough to prove that neither f_k^{τ} nor g_k^{τ} does preserve the relations ϱ in (a), (b), (c). Therefore we have to present a $k \times 2$ matrix with entries in A such that all rows belong to ϱ , but the row of column values does not belong to ϱ .

(a) Let \leq be a bounded partial order on A with least element 0 and greatest element 1 (0,1 \in A). In view of Remark 2, we can suppose that c is a unique central element of τ . We will use the following matrices to show that none of the functions f_k^r , g_k^r does preserve \leq

h	h	t_1	1	0	h	h	h	0	h	11
t_1	1	0	h	<i>t</i> ₁	<i>t</i> ₁	<i>t</i> ₁	1	<i>t</i> ₁	1	$0 t_1$
•	•	t ₂	t ₂	•	•	•	•	•	•	••
•	•	•	•	•	•	•	٠	•	•	• •
•	٠	•	•		•	•	٠	•	•	••
t_{k-2}	1	t_{k-1}	t_{k-2}	t_{k-1}	t_{k-2}	t_{k-2}	1	t_{k-2}	1	$0t_{k-2}$
0	0	Ö	0	1	1	1	h	1 -	1	hĥ -
h	0	$\overline{t_1}$	0	1	h	1	h	1	h	$\frac{1}{h}$

Let h always denote an element of A distinct from 0 and 1. Consider the operation f_k^{τ} , and first suppose c=1. Since h is not a central, there exist $t_1, \ldots, t_{k-2} \in A$ for which $(h, t_1, \ldots, t_{k-2}) \notin \tau$. Then the first matrix shows that f_k^{τ} does not preserve \leq . Next suppose c=h. Since 0 is not central, there exist $t_1, \ldots, t_{k-2} \in A$ for which $(t_1, 0, t_2, \ldots, t_{k-2}) \notin \tau$, and the second matrix applies. Finally, if c=0, then h is not a central, and there exist $t_1, \ldots, t_{k-2} \in A$ with $(h, t_1, \ldots, t_{k-2}) \notin \tau$, and now the third matrix does the job. Now consider the operation g_k^{τ} , and first suppose c=1. Since h is not central, there exist $t_1, ..., t_{k-2} \in A$ with $(h, t_1, ..., t_{k-2}) \notin \tau$. Then the fourth matrix shows that g_k^{τ} does not preserve $\leq .$ If c=h, then 0 is not central, and there exist $t_1, ..., t_{k-2} \in A$ with $(0, t_1, ..., t_{k-2}) \notin \tau$, and the fifth matrix is used. Finally, suppose c=0, then 1 is not central, and there exist $t_1, ..., t_{k-2} \in A$ with $(1, t_1, ..., t_{k-2}) \notin \tau$. In this case using the sixth matrix we also get that g_k^{τ} does not preserve $\leq .$

(b) Let ε be an arbitrary non-trivial equivalence on A. We prove that the operations f_k^{τ} and g_k do not preserve ε . Since τ is simple, there exist elements a_1, \ldots, a_{k-1} , $b_1, \ldots, b_{k-1} (\in A)$ with $(a_1, \ldots, a_{k-1}) \in \tau, (a_1, b_1) \in \varepsilon, \ldots, (a_{k-1}, b_{k-1}) \in \varepsilon, (b_1, \ldots, b_{k-1}) \notin \tau$. Let $(t, b_1) \notin \varepsilon$, then $(a_1, t) \notin \varepsilon$ holds as well, and the matrix

$$\begin{array}{cccc}
a_1 & b_1 \\
\vdots & \vdots \\
a_{k-1} & b_{k-1} \\
t & t \\
t & b_1 \\
a_1 & t
\end{array}$$

shows that none of f_k^{τ} and g_k^{τ} do not preserve ε .

(c) Let ϱ be a binary central relation with centre C_{ϱ} . Let c be a unique central element of τ . To show that f_k^{τ} and g_k^{τ} do not preserve ϱ we use the following matrices

	b	b				d	d
	t_1	С				t_1	1
		÷		d d		-	÷
	t_{k-}	2 C		$t_1 l$		t _k -	-2l
	a	a		сс		С	С
	b	a		$\overline{d c}$		d	с
or			or		or		
	а	b		c.d		Ç	d.

Now we have two cases.

(1) If $c \in C_{\varrho}$, then let $(a, b) \notin \varrho$. We can choose elements t_1, \ldots, t_{k-2} with $(b, t_1, \ldots, t_{k-2}) \notin \tau$. Considering the first matrix we get that f_k^{τ} and g_k^{τ} do not preserve ρ .

(2) If $c \notin C_{\varrho}$, then let d and l such that $(c, d) \notin \varrho$, and $l \notin C_{\varrho}$. For k=3, if $(d, l) \notin \tau$ then let t_1 such that $(d, t_1) \notin \tau$, and if $(d, l) \notin \tau$ then let $t_1 = d$. From the second matrix we get that f_k^{τ} and g_k^{τ} do not preserve ϱ . Finally, if $k \ge 4$, there are elements t_1, \ldots, t_{k-2} with $(d, t_1, \ldots, t_{k-2}) \notin \tau$ and the third matrix works.

Remark 3. Let A be a finite set, $|A| \ge 3$. For an arbitrary relation ρ on A

226

we define the following k-ary ρ -pattern function on A

$$t_{k}^{Q}(x_{1}, x_{2}, ..., x_{k}) = \begin{cases} x_{k}, & \text{if } x_{1} \varrho x_{2} \varrho \dots \varrho x_{k-1} \\ x_{1} & \text{otherwise,} \end{cases}$$
$$s_{k}^{Q}(x_{1}, x_{2}, ..., x_{k}) = \begin{cases} x_{1}, & \text{if } x_{1} \varrho x_{2} \varrho \dots \varrho x_{k-1} \\ x_{k} & \text{otherwise.} \end{cases}$$

We saw in [7] that $\langle A; f \rangle$ with $f = t_k^a$ of $f = s_k^a$ are functionally complete, if $k \ge 3$, and ϱ is an arbitrary permutation on A or $\varrho = \delta \cup \delta^{-1}$ with an arbitrary permutation δ on A. If ϱ is an arbitrary central relation on A, then

and

$$t_k^q(x_1, x_2, ..., x_2, x_3) = f_3^q(x_1, x_2, x_3),$$

$$s_k^q(x_1, x_2, ..., x_2, x_3) = g_3^q(x_1, x_2, x_3)$$

Hence, using the Theorem, the following result follows.

 $\langle A; f \rangle$ with $f = t_k^{\varrho}$ or $f = s_k^{\varrho}$ functionally complete if and only if ϱ is an arbitrary simple central relation.

References

- B. CSÁKÁNY, Homogeneous algebras are functionally complete, Algebra Universalis, 11 (1980), 149-158.
- [2] E. FRIED and A. F. PIXLEY, The dual discriminator function in universal algebra, Acta Sci. Math., 41 (1979), 83-100.
- [3] GEORGE GRÄTZER, Universal Algebra, Van Nostrand (Princeton, 1968).
- [4] A. F. PIXLEY, The ternary discriminator function in universal algebra, Math. Ann., 191 (1979), 167-180.
- [5] I. G. ROSENBERG, Functional completeness of single generated or surjective algebras, *Finite Algebra and Multiple-valued Logic* (Proc. Conf. Szeged, 1979), Coll. Math. Soc. J. Bolyai, vol. 28, North-Holland (Amsterdam, 1981); pp. 635-652.
- [6] E. VÁRMONOSTORY, Relational pattern functions, in: Finite Algebra and Multiple-valued Logic (Proc. Conf. Szeged, 1979), Coll. Math. Soc. J. Bolyai, vol. 28; North-Holland (Amsterdam, 1981); pp. 753-758.
- [7] E. VÁRMONOSTORY, Generalized pattern functions, Algebra Universalis, 29 (1992), 346-353.
- [8] H. WERNER, Discriminator Algebras, Akademie-Verlag (Berlin, 1978).

DEPARTMENT OF MATHEMATICS TEACHER'S TRAINING COLLEGE 6725 SZEGED, HUNGARY