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Estimation of generalized moments of additive functions 
over the set of shifted primes 

K.-H. INDLEKOFER and I. KATAI 

1. Introduction. A function <p: [0, [0, is called subadditive, if it is 
monotonically increasing, <p(x) —00 a s x — a n d the condition 

(1.1) q>(x + y)s ^((pW + cpiy)) for 1 

holds with a suitable constant ^ > 0 . 
It is clear that the functions log (1 +x), xr ( r > 0 ) are subadditive. On the 

other hand (1.1) implies that (p(x)=0(xc) (x—0) with some constant c. 
We are interested in giving necessary and sufficient conditions for an additive 

function / for which 

(1.2) (/>(*) =) P(x) := 2 <P (I f(P +1) - «WD « K x 
p&x 

holds true with a suitable function cc(x). Here, and in what follows p runs over the 
set & of primes. 

For the sake of simplicity we extend the domain of (p to the whole real line 
by <p(—x):=cp(x). Then 

(1.3) <p(x+y) s c2 + c3(q>(x) + (p(y)) 

obviously holds for x, y^R, where c2, c3 are suitable positive constants. 
For an arbitrary additive function / let 

(1.4) A,(x):= 2 f i P ) 

pS* P 
I/(P)I-=I 
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and (Ef), (E*f) denote the conditions: 

(Ef) 2" i s convergent (finite) 
pi» P 

I/(P)I«I 
(E*f) Z !//><-• 

l/(p)|si pi» 
An additive function / is said to be finitely distributed if (Efl), {E*f) hold true. 
Let n(x, k, I) denote the number of the primes q^x for which q=l(mod k). 

Theorem 1. Let <p be subadditive. Assume that f is an additive function, for 
which there exists a real-valued function a(x) such that (1.2) holds. Then f can be 
written as f=Alog+A, where h is finitely distributed, A£R, furthermore 

(1.5)i 2 
P 

and 
(1.6) 2 <p{h{qm))n{x, <T,~ 1) = 0(l ix) . 

I»(«m)|sl 

We have a(x)=a*(x)+0(l) , where 

(1.7) a*(x):=Alog x+Ah(x). 

In contrary, let h be a finitely distributed additive function for which (1.5)i and 
(1.6) hold and let / = l l o g + / i , A£R. Then (1.2) holds. 

R e m a r k s . A. Assume that 

|/l(pm)|Bl p 

holds with a suitable f > l . Then (1.5X and (1.6) are satisfied. 
B. It is not known whether condition (1.6) could be omitted or not. Let P*(n) 

denote the largest prime power divisor of n. Assume that 

(1.8) lim s u p 0 o g ^ ( ^ l ) ) l o g l o g ^ ( ^ l ) _ . 
p log (p + 1 ) 

Then the condition (1.6) cannot be omitted in the Theorem, i.e. there exists such a 
finitely distributed h for which (1.5)a holds, but (1.6) does not hold. 

P r o o f of R e m a r k B. According to (1.8), there exists a sequence />i<p 2<. . . 
of primes, < 02 • • • of prime powers, such that />, +1 =£¡,2,-, and 

. l o g f o + l) 
'¡•= r - i a 
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Let now /tsO be defined on the set of prime powers qm such that h(qm)=0 if 
«"^{(Wies. and <p(h(Qij) = Qi/i2. Then (1.5)L holds, while 

^ • W V « * . * - . - » » » « 0 9 ' - T 5 & -

Thus (1.6) does not hold. 
The theorem and Remark A will be proved in sections 3 and 4. 

2. Lemmata. The main result of the proof of our theorem is a recent deep 
result of A. HILDEBRAND ([1], Theorem 4), which we state now as 

Lemma 1. There exist positive absolute constants <5 and c such that if x^2, 
and f is a realvalued additive function satisfying 

(2.1) m a x # { / 7 ^ x : / ( />+ l)<=[a, a+1]} s (1 -S)n(x), 

then 

(2.2) min 2 4 m i n 0 ' l / ( / > ) - ^ o g p | 2 ) ^ c. 

Remark . Assume that (2.1) holds for an unbounded sequence xv of x. Then, 
for each xv there exists a AV(=A) for which (2.2) holds ture, |Av|^c. Set A be a 
limit point of the sequence {Av}. Then, from (2.2) 

2 ^ m i n ( l , | / 0 0 - A l o g / > | 2 ) < ~ , 
p P 

which implies that h(ri):=f(n)—A log n is finitely distributed. Another important 
tool is the following 

Lemma 2. Let a be a real number satisfying 0 ^ a < 2 . Then we have, for every 
xS2 and every additive f , 

2\f(P + 1) - E{x)\* « * B*(x), 
pMx iOgx 

where 

I W -

p™Si P \pmSx P t 

and the implied constant depends only on a. 
Remark . This analogue of the Turan—Kubilius inequality was established by 

P. D. T. A. ELLIOTT for strongly additive functions (see [2], Lemma 4.18], the gen-
eral case can be proved in the same way. 

The following assertion due to ELLIOTT ([2], Lemma 4.19). 
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Lemma 3. Let m be a non-negative integer, and 5 a real number, 0<(5s l /2 . 
Then there is a number c, depending upon n but not 5, so that the inequality 

(*) 2 P"-1^, Q-iy^5c{-r^—\ 
,<-<<25« U o g x J 

holds for all sufficiently large values of x. Here Q runs over all prime powers. 

Elliott proved this inequality letting Q to run over the set of primes only. ( * ) 
can be proved in the same way. 

Lemma 4. The number of solutions of the equation p + l—aq in prime variables 
cx .— 

p, o < x is less than — uniformly as l S i z S J x . 
1(a) log2 x 

Lemma 5 (Titchmarsh inequality). We have 

cx 
Q%(fc) log*/ fc i f 

For the proof of Lemma 4 and 5 see HALBERSTAM—RICHERT [3] . 

Lemma 6. Let g be a strongly multiplicative function such that 0 ^ g ( p ) ^ c 
holds for every prime p. Then 

2 g(P +1) « n(x) exp ( 2 • 

pgl VpSx P J 

For the proof see [4], Lemma 1. 
3. Proof of the Theorem. Necessity. Assume that (1.2) holds. Then the condi-

tion (2.1) of Lemma 1 is satisfied for every large x, consequently / = A l o g +h, 
where h is a finitely distributed function, L£R. Let a1(x)=a(x)—X log x. Since 
h(n)-«1(x)=f(n)+?Aog — -«(/fl , by (1.3), (1.2), and by 

n 

2 <?Ulog—xt) <Klix, 
p-mx v P~r i / 

we get 
(3.1) 2 < P ( K P + l ) - ^ ( x ) ) ^ h x . 

pt-x 

Let hx be strongly additive defined for primes q such that 

f Kq) if \h(q)\^\, 
h i { q ) ~ lO otherwise, 

and let ht be defined so that h2(n):=h(n)—(n). 
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Since <p(x)<s£\x\C<c1e1*1, and (Eht), (E£) hold, we have 

2 <pQh(P+ «e~Mx) 2 ek^+»+eAM 2 
pSx pSx pSX 

By Lemma 6, the right hand side is bounded by 

<sc (h x) exp I 2 — + 

(li X) exp f 2 « l i x . 

Thus 
(3.2) 2 <P{K(P+1 )~A{x)) « lix, 

PSx 
whence 
(3.3) 2 <P (MP + ~ «»(*)) « u *> 

P — X 

a2(x) = a 1(x)-A(x) 
immediately follows. 

We shall prove that a2(x) is bounded. 
Let y be a large positive number. Let \ hf^ be additive functions, h2(ri)= 

=h<p(n)+h<p(n), and for prime powers qm let 

fh(qm) if <f ^ y 
otherwise. K1)(qm) = {0 

Since is bounded, therefore from (3.3) we have 

(3.4) 2 V № (P+1) - (*))« H 
P S X 

Let Qy denote the set of all prime powers qm^y for which either or 
|A(^f)|Sl holds. By using Lemma 4 and 5 and the Eratosthenian sieve one can get 
easily that there exists at least cx/logx prime p up to x, such that qm\\p+\ implies 
that qm$Qy. For such a prime p we have hf)(p+1)=0. Consequently, (3.4) can 
be held only if a2(x)=0(l). 

Let qm€Qy and Sqm be the set of those primes p^x for which p + \=qmv, 
where v is square free, (v, q)=1, and v does not contain any prime factor 2 
forwhich |/t(7?)|>l. It is clear that hf)(p+\)=h(qm). By using the above argument 
and the prime number theorem for residue classes one get readily that 

$(Sqm) 
(p(qm) logx 

uniformly as # m s log logx , say. Hence, by (3.4), and by a2(x)=0(l), we get 
(1.5)! immediately, and even that a(x)=A log x+^4(x)+0(l). 
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Let Jl denote the set of those integers D, all exact prime-power factors of which 
belong to Qx. Let us wr i t ep+\ in the form p+l=Dv, where v is square-free and 
does not contain any prime factors for which h2(q)?i0, and D^Ji. This represen-
tation is unique. It is clear that h2(p+l)=h(D). Consequently 

(3.5) l i x » 2 <P(*.(/»•+1)) = 2 <P(ht(D))it(x, D, — 1), 
p3x DZM 

and (1.6) holds true. 
The necessity of the conditions is proved. 

Sufficiency. Assume that (1.5)1; (1.6), (1.7) are satisfied, where A is a finitely 
distributed function. We shall prove that (1.2) holds, if f=X log+/i, By using 
the subadditive property of <p, it is enough to prove it for A=0, i.e. i f f = h is finitely 
distributed. We keep the notations hy, h2, Jt. 

It is enough to prove that 

(3.6) 2 9{hi(P +1)~A(x)) « l i x, 
pSx 

and that 
(3.7) 2<p(h(p+ l ) ) « H x . 

pSx 

The first inequality was deduced from Lemma 6 earlier. It remains to prove 
only (3.7). We have 

2 <P (M/> +1)) = 2 <P ( W ) ) «(*. D, -1) = 2 i + 22, 
psx D£M D<i 

where in 2 i we sum over flSx1"', and in over the others. Here 5 is a constant, 
0 < £ < 0 , 1. By Lemma 5, 

DZM 

Let us consider 2z- We split the sum 2<i> where in 2'z we sum over those 
which can be written as D=D1D2, where (D1,X)2) = 1 and D i-=x1 _ , ! 

(/=1,2). Since q>(h2(D))^c(p(h2(D1))+(p(h2(D2)), we can use Lemma 5 again, 

y . i- y ^ <p{h(P2j) 
Z a < < u x Z 77771 r l i x Z uTr\ ' 

If D is considered in 2a> then D has the form D=D1-D2, where Z) 1 >x 1 _ i and 
Z>! is a prime or a prime power, D1=^m . Thus 

2 a « 2 <p(h2(D2))n(x, D2, — l)+ 2 <PQhiqm))n(x,<r,-l). 
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Collecting our inequalities, and taking into account (1.6), we have 

DiM 

Finally we prove that the sum on the right hand side is convergent. 
Indeed, iterating (1.1), we get that 

«"•IID 

where <y(n) is the number of distinct prime divisors of n. Thus we have 

y <p{h(D)) „ y ~ ^Dlqm) 

DTM 1(D) ~ I 1(D) l(Dlqm) ~ 

^( y <p(h2(<n))( y cm(HM 
" K4Ql Kqn) J U f ^ 1 ( H ) ) -

(1.5)! implies the convergence of the first sum. The second sum is convergent as well. 
The sufficiency part is proved. 

4. Proof of Remark A. To estimate 

S = 2 <p(h(qm))n(x, q,-\), 

we apply Lemma 3, namely that 

2 n (x, q™, -1)"+V < cn (li x)"+1 

holds for every integer n £ l . Let n be so large that ax := 1 + y=—-—, 
« + 1 

1 1 
/? be defined from b—-=1. Then, by Holder's inequality, 

Oi p 

4m=-X s / « H 

« ( , 2 r ( 2 («(*, - 1 ) F f f » . 

MMi^Bi 1 > 

By Lemma 3, and by (1.5)r we get S'=0(li x). This finishes the proof. 
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