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Estimation of generalized moments of additive functions
over the set of shifted primes

K.-H. INDLEKOFER and I. KATAI

1. Introduction. A function ¢: [0,)~[0, ) is called subadditive, if it is
monotonically increasing, ¢(x)--- as x-, and the condition

1.1 P(x+y) = c(0(¥)+@(y) for x,y=1

holds with a suitable constant c¢;>0.

It is clear that the functions log (1+x), x (I'>0) are subadditive. On the
other hand (1.1) implies that @(x)=0(x) (x-~0) with some constant c.

‘We are interested in giving necessary and sufficient conditions for an additive
function f for which

(1.2) (P(x) =) P(x):= pé;(p(lf(p-i-l)—a(x)l)« lix

holds true with a suitable function a(x). Here, and in what follows p runs over the
set & of primes.

For the sake of simplicity we extend the domain of ¢ to the whole real line
by ¢(—x):=¢@(x). Then

(1.3 P(x+y) = e+ cy(e(X)+9(»)

obviously holds for x, yéR, where c,, ¢, are suitable positive constants.
For an arbitrary additive function f let

(L4) A= 3 LB

p=x
17 =<1
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and (E,), (E}) denote the conditions:
1(p)

pEP
Ir (p)|<1

(EY) > 1lp <o
[f(P=1
pEP

(Ep) is convergent (finite)

An additive function f'is said to be finitely distributed if (E,), (E}) hold true.
Let n(x, k, /) denote the number of the primes g=x for which g=I/(mod k).

Theorem 1. Let ¢ be subadditive. Assume that f is an additive function, for
which there exists a real-valued function a(x) such that (1.2) holds. Then f can be
written as f=Alog+h, where h is finitely distributed, A€R, furthermore

~ o (™) __
(1.5)1 Ih(p%'lzl D
and . o
(1.6) |h(¢"%|'51 @ (h(gM)n(x, q", — 1) = 0(lix).
We have a(x)=o*(x)+0(1), where
1.7 ®*(x) = Alogx+ Ay(x).

In contrary, let h be a finitely distributed additive function for which (1.5); and
(1.6) hold and let f=J)log+h, AeR. Then (1.2) holds.

Remarks. A. Assume that
ot (k™) __

1.5
(13 I(p™)|=1 p

holds with a suitable I'>1. Then (1.5), and (1.6) are satisfied.
B. It is not known whether condition (1.6) could be omitted or not. Let P*(n)
denote the largest prime power divisor of n. Assume that

(log P*(p+ 1)) loglog P*(p+1) .
log(p+1)

Then the condition (1.6) cannot be omitted in the Theorem, i.e. there exists such a
finitely distributed k for which (1.5), holds, but (1.6) does not hold.

(1.8) lim sup
14

Proof of Remark B. According to (1.8), there exists a sequence p,<p,=...
of primes, Q,<Q,<... of prime powers, such that p;4+1=a,0;, and

pon JoBRED)
i= -2
a;-1
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Let now h=0 be defined on the set of prime powers ¢™ such that A(g™=0 if
"c{OQ}en> and @ (h(Q))=0Qy/. Then (1.5), holds, while

m m __ _Qi_pl+l_ pi+1
pfugnéhrp(h(q N g —D=eM@) = F =77 =i, oay

Thus (1.6) does not hold.
The theorem and Remark A will be proved in sections 3 and 4.

2. Lemmata. The main result of the proof of our theorem is a recent deep
result of A. HILDEBRAND ([1], Theorem 4), which we state now as

Lemma 1. There exist positive absolute constants 6 and ¢ such that if x=2,
and f is a realvalued additive function satisfying

@1 max#{p = x: f(p+ éla,a+ 1]} = (1-5)n(),

then

2.2) lr}?in 2 i min (l, | f(p)—Alogpl®) = e.
Scp=x P

Remark. Assume that (2.1) holds for an unbounded sequence x, of x. Then,
for each x, there exists a A,(=4) for which (2.2) holds ture, [A,|=c. Set A be a
limit point of the sequence {4,}. Then, from (2.2)

|
2 5 min (L 1/(p)—Alogpl) <<=,
p
which implies that h(n):=f(n)—2Alogn is finitely distributed. Another important
tool is the following

Lemma 2. Let o be a real number satisfying 0=a<2. Then we have, for every
x=2 and every additive f,

S f(p+1)— E@)l* < ~—

P=x log X

B(x),
where

m my(2 \1/2
s = 3 L8, - g LX)

pmEx P
and the implied constant depends only on a.

Remark. This analogue of the Turan—Kubilius inequality was established by
P. D. T. A. ELLiotT for strongly additive functions (see [2], Lemma 4.18], the gen-
eral case can be proved in the same way.

The following assertion due to ELLIOTT ([2], Lemma 4.19).
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Lemma 3. Let m be a non-negative integer, and 6 a real number, 0<35=1/2.
Then there is a number c, depending upon n but not 8, so that the inequality

(*) S piatn0-ly = 6c[lozx]

xi-6<Qsx

holds for all sufficiently large values of x. Here Q runs over all prime powers.

Elliott proved this inequality letting Q to run over the set of primes only. (%)
can be proved in the same way.

Lemma 4. The number of solutions of the equation p+1=agq in prime variables

D, q<x is less than uniformly as 1=a=yx.

cx
l(a)log®x
Lemma 5 (Titchmarsh inequality). We have

cx
ok)logxlk

For the proof of Lemma 4 and 5 see HALBERSTAM—RICHERT [3].

n(x, k, )< if lsk<x, x=2

Lemma 6. Let g be a strongly multiplicative function such that 0=g(p)=c
holds for every prime p. Then

;’ gr+ D)< n(x)exp( > g_([_Ju]

pP=EXx p
For the proof see [4], Lemma 1.

3. Proof of the Theorem. Necessity. Assume that (1.2) holds. Then the condi-
tion (2.1) of Lemma 1 is satisfied for every large x, consequently f=Alog +h,
~where h is a finitely distributed function, A€R. Let a,(x)=wa(x)—A4log x. Since

B(n)— oy () =f(r) + 2 10g%—~a(n), by (1.3), (1.2), and by

pé;(p().logpj_l ) <lix,
we get
@3B.D 2 o(h(p+ 1) —ay (%)) <lix.
PEX

Let h, be strongly additive defined for primes ¢ such that

h(@) = {h(q) if |l <1,
=1 otherwise,

and let h, be defined so that hy(n):=h(n)—h,(n).
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Since o(x)<<|x|°<ce!™, and (E,s), (E}) hold, we have

> ¢(h1(P+ 1)—A(x)) e 4™ ¥ em(p+1) 4 pAlx) > e+,

P=EX P=x P=x

By Lemma 6, the right hand side is bounded by

. eh@—1—y(g)
<« (lix)exp [qé; p ] +
(i x) exp [ > e 1+h(9) ) <lix.
q=x q

Thus

(3.2) Z ¢ (h(p+1)—A(x) <lix,
whence =

(3.3) ;’ o (h(p+1)—ay(x)) < lix,

ag(x) = oy (x)—A(x)
immediately follows.
We shall prove that a,(x) is bounded.
Let y be a large positive number. Let A, h{® be additive functions, h,(n)=
=h{P(n)+hP(n), and for prime powers g™ let

h(g™) if "=y
O (™) —
k> (") {O otherwise.

Since A{"(n) is bounded, therefore from (3.3) we have
G4 S o (hP (p+1)—ay(x) < lix.
pP=x

Let Q, denote the set of all prime powers g™"=y for which either m=2 or
|h(g)| =1 holds. By using Lemma 4 and 5 and the Eratosthenian sieve one can get
easily that there exists at least cx/log x prime p up to x, such that ¢™|p+1 implies
that ¢™¢Q,. For such a prime p we have A®(p+1)=0. Consequently, (3.4) can
be held only if a,(x)=0(1).

. Let ¢g™"cQ, and S ,m be the set of those primes p=x for which p+1=4"v,
where v is square free, (v,¢)=1, and v does not contain any prime factor R=2
for which |h(R)|>1. Itis clear that A?(p+1)=h(g™). By using the above argument
and the prime number theorem for residue classes one get readily that

_c __*

o(q™) logx

uniformly as g™=loglog x, say. Hence, by (3.4), and by a,(x)=0(1), we get
(1.5), immediately, and even that a(x)=A2log x+ 4(x)+0(1).

¥ (Sqm) >
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Let # denote the set of those integers D, all exact prime-power factors of which
belong to Q,. Let us write p+1 in the form p+1=Dv, where v is square-free and
does not contain any prime factors for which h,(¢)>=0, and D€#. This represen-
tation is unique. It is clear that h,(p+1)=h(D). Consequently

(35) lixs> 3 o(h(p+1) = 3 ¢(h(D)n(x,D,—1),
pP=x De#

and (1.6) holds true.
The necessity of the conditions is proved.

Sufficiency. Assume that (1.5),, (1.6), (1.7) are satisfied, where h is a finitely
distributed function. We shall prove that (1.2) holds, if f=Alog+h, A€R. By using
the subadditive property of ¢, it is enough to prove it for A=0, i.e. if f=h is finitely
distributed. We keep the notations h,, h,, A.

It is enough to prove that '

3.6) ;’ o(h(p+1)—A(x) <lix,

and that ~ .

G.7) S o(h(p+ 1) <lix.
p=x

The first inequality was deduced from Lemma 6 earlier. It remains to prove
only (3.7). We have

4: “Ex ¢(h(p+1) = Z ¢ (h(D)m(x, D,—1) = 31+ 3,
D<x

where in 3 wesumover D=x'% andin ), over the others. Here § is a constant,
0<d<0, 1. By Lemma 5,

¢ (h(D))

1 .

A

Let us consider ;. We split the sum 3,=>7+ >, where in J; we sum over those
D=>x'% which can be written as D=D,D,, where (D,,D,)=1 and D;<x'—*¢
(i=1,2). Since @(hy(D))<@(hy(Dy))+@(hy(Ds)), we can use Lemma 5 again,

’ . @ (h(Dy)) @ (h(D))
I +1 —= =,
2e=lx 27Dy 2T I
If D is considered in J, then D has the form D=D,-D,, where D, >x1-% and

D, is a prime or a prime power, D;=¢" Thus

Zix Z_¢(h(D))n(x, Dy, —1)+ Z' @ (ha(gM) (%, g%, — 1)

Dy<lx
] qm>xl 2s
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Collecting our inequalities, and taking into account (1.6), we have

. @ (hz(D)) ;
A<l xbé;l—-w- + 0(11 X).

Finally we prove that the sum on the right hand side is convergent.
Indeed, iterating (1.1), we get that

¢ (hy(D)) = . %D @1 g (ha(q™),

where w(n) is the number of distinct prime divisors of n. Thus we have

¢ (ha(D)) => o(h(g™) ) @@l _
pew ID) ~ T gip D) I(DIg™ ~

=z, 2@ 5 7).

(1.5), implies the convergence of the first sum. The second sum is convergent as well.
The sufficiency part is proved.

4. Proof of Remark A. To estimate

S= 3 o(h@)n(x, q,~1),
LN

we apply Lemma 3, namely that

> n(x, g, —1)tg" <, (lix)"t?

x8/4<qm<x

n
holds for every integer n=1. Let n be so large that oy:=1+1/n=r, y= —-—-_H .
n

1 1
B be defined from -;—+-ﬂ;=1. Then, by Hélder’s inequality,
1

[

s= 5 206G

qm>xl/4 qm7

o (h(gm)y \ .
= [lh(q"%‘zl —q’T) (3 (m(x, g — 1) gF)He.

By Lemma 3, and by (1.5); we get S=0(li x). This finishes the proof.

7t(x, qma - l)qym <
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