On a theorem of Kátai-Wirsing

BUI MINH PHONG

1. Introduction. An arithmetic function $f(n)$ is said to be additive if $(m, n)=1$ implies that

$$
f(m n)=f(m)+f(n)
$$

and it is completely additive if the above equality holds for all positive integers m and n. Let \mathscr{A} and \mathscr{A}^{*} denote the set of complex-valued additive and completely additive functions, respectively.

The problem concerning the characterization of $\log n$ as an additive arithmetic function was studied by several authors. The first such characterization is apparently that of P. Erdős [3]. He proved in 1946 that if a real valued additive function f satisfies the condition

$$
f(n+1)-f(n) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

then $f(n)$ is a constant multiple of $\log n$. Later I. KÁtar [4] and E. Wirsing [6] improving this result, proved that a function $f \in \mathscr{A}$ satisfying

$$
\sum_{n \leqq x}|f(n+1)-f(n)|=o(x) \quad \text { as } \quad x \rightarrow \infty
$$

must be of the form $f=U \log$ for some complex constant U.
On the other hand, solving a conjecture of Kátai, P. D. T. A. Elliott [1] showed that if a real function f is additive and satisfies the condition

$$
\begin{equation*}
f(A n+B)-f(a n+b) \rightarrow C \quad \text { as } \quad n \rightarrow \infty \tag{1}
\end{equation*}
$$

for some integers $A>0, B, a>0, b$ with $A b-a B \neq 0$ and for a real constant C, then $f(n)=U \log n$ holds for all positive integers n which are prime to $A a(A b-a B)$. In his proof Elliott relaxed the condition (1) to

$$
\sum_{n \leq x}|f(A n+B)-f(a n+b)|^{2}=o(x)
$$

for the case $A \neq a$.

[^0]Our purpose in this paper is to give a complete characterization of those functions $f, g \in \mathscr{A}$ for which the relation

$$
\begin{equation*}
\sum_{n \leqq x}|g(a n+b)-f(n)-d|=o(x) \tag{2}
\end{equation*}
$$

holds for some fixed positive a, b and for a complex constant d.
We shall prove the following
Theorem 1. Assume that $f, g \in \mathscr{A}$ satisfy (2) for some fixed positive integers a, b and for a complex constant d. Then there are a complex constant U and functions $F \in \mathscr{A}, G \in \mathscr{A}$ such that

$$
\begin{aligned}
& f(n)=U \log n+F(n) \\
& g(n)=U \log n+G(n)
\end{aligned}
$$

and

$$
G(a n+b)-F(n)-d+U \log a=0
$$

hold for all positive integers n.
Theorem 2. Assume that $f \in \mathscr{A}$ satisfies the condition

$$
\begin{equation*}
\sum_{n \leqq x}|f(A n+B)-f(C n)-D|=o(x) \tag{3}
\end{equation*}
$$

for some positive integers A, B, C and for a complex constant D. Then there are a complex constant U and a function $F \in \mathscr{A}$ such that

$$
f(n)=U \log n+F(n)
$$

and

$$
F(n)=F\left[\left(n, B C C_{A}\right)\right]
$$

hold for all positive integers n, where C_{A} denotes the product of all prime divisors of C which are prime to A.

We note that our theorems can be derived from a recent result due to P. D. T. A. Elliott [2], which was obtained with analytic methods. Here we shall prove our results by using elementary methods, which were used in [5].
2. Auxiliary results. In this section we assume that a function $f \in \mathscr{A}$ satisfies (3), i.e.

$$
\sum_{n \leqq x}|f(A n+B)-f(C n)-D|=o(x)
$$

holds for some positive integers A, B, C and for a complex constant D.
Let C_{A} denote the product of all prime divisors of C which are prime to A. For an arbitrary positive integer n, let $E(n)=E_{B}(n)$ be the product of all prime power factors of B composed from the prime divisors of n, i.e. $E(n) \mid B,(E(n), B / E(n))=1$ and every prime divisor of $E(n)$ is a divisor of n.

Lemma 1. For every fixed positive integer k and Q we have

$$
\begin{equation*}
f\left(B C C_{A} Q^{k}\right)=k f\left(B C C_{A} Q\right)-(k-1) f\left(B C C_{A}\right) \tag{4}
\end{equation*}
$$

furthermore

$$
\begin{equation*}
f\left(A C C_{A}^{2} E(C)\right)=2 f\left(C C_{A} E(C)\right)-f(E(C))+D \tag{5}
\end{equation*}
$$

Proof. For each positive integer Q we define the sequence

$$
R=R\left(A C_{A} Q\right)=\left\{R_{k}\right\}_{k=1}^{\infty}
$$

by the initial term $R_{1}=1$ and by the formula

$$
\begin{equation*}
R_{k}=R_{k}\left(A C_{A} Q\right)=1+A C_{A} Q+\ldots+\left(A C_{A} Q\right)^{k-1} \tag{6}
\end{equation*}
$$

for all integers $k \geqq 2$. Moreover, let

$$
\begin{equation*}
T_{k}(n, Q)=\left(A C_{A} Q\right)^{k} E(C Q) n+B R_{k}\left(A C_{A} Q\right) \tag{7}
\end{equation*}
$$

By using (6) and (7), we have

$$
\begin{equation*}
T_{k+1}(n, Q)=A C_{A} Q T_{k}(n, Q)+B \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(C C_{A} Q E(C Q), T_{k}(n, Q) / E(C Q)\right)=1 \tag{9}
\end{equation*}
$$

for all integers $k \geqq 1$. Thus, using (3), (7), (8), (9) and the additivity of f, we have

$$
\sum_{n \leqq x}\left|f\left(T_{1}(n, Q)\right)-f\left(C C_{\Lambda} Q E(C Q) n\right)-D\right|=o(x)
$$

and

$$
\sum_{n \leqq x}\left|f\left(T_{k}(n, Q)\right)-f\left(T_{k-1}(n, Q)\right)-H(Q)\right|=o(x)
$$

for all integers $k \geqq 2$, where

$$
H(Q):=f\left(C C_{A} Q E(C Q)\right)-f(E(C Q))+D
$$

These imply that

$$
\begin{equation*}
\sum_{n \leqq x}\left|f\left(T_{k}(n, Q)\right)-f\left(C C_{A} Q E(C Q) n\right)-(k-1) H(Q)-D\right|=o(x) \tag{10}
\end{equation*}
$$

holds for every integer $k \geqq 1$.
We shall deduce from (10) that

$$
\begin{equation*}
f\left(A^{k-1} C C_{A}^{k} Q^{k} P E(C Q)\right)=(k-1) H(Q)+f\left(C C_{A} Q P E(C Q)\right) \tag{11}
\end{equation*}
$$

holds for every positive integer k, Q and P.
Let k, Q and P be positive integers. Considering

$$
\begin{equation*}
n:=P R_{k}\left(A C_{A} Q\right)\left\{A P C Q R_{k}\left(A C_{A} Q\right) m+1\right\} \tag{12}
\end{equation*}
$$

and taking into account (10), it is easily seen that (11) holds if k, Q and P satisfy the
relation

$$
\begin{equation*}
\left(P, R_{k}\left(A C_{A} Q\right)\right)=\left(P E(C Q)+B, R_{k}\left(A C_{A} Q\right)\right)=1 \tag{13}
\end{equation*}
$$

It is obvious that (13) is satisfied in the following cases:

$$
P=1, Q=2 B ; \quad P=1, Q=2 p B
$$

where p is a prime. Thus, we get from (11) that

$$
f\left(p^{k}\right)=k f(p) \quad \text { if } \quad(p, 2 A B C)=1
$$

This with the additivity of f shows that

$$
\begin{equation*}
f(n m)=f(n)+f(m) \quad \text { if } \quad(n, m, 2 A B C)=1 \tag{14}
\end{equation*}
$$

Thus, by using (10), (12) and (14), we see that (11) also holds if we relax the condition (13) to

$$
\begin{equation*}
\left(P, R_{k}\left(A C_{A} Q\right), 2 B\right)=\left(P E(C Q)+B, R_{k}\left(A C_{A} Q\right), 2\right)=1 \tag{15}
\end{equation*}
$$

Assume that $(2, A B C)=1$ and k is an odd positive integer. In this case one can check that (15) holds for $P=Q=1$ and $P=1, Q=2$. Thus, we get from (11) that

$$
\begin{equation*}
f\left(2^{k}\right)=k f(2) \quad \text { for all odd positive integers } k . \tag{16}
\end{equation*}
$$

On the other hand, (15) also holds for $P=2^{v}, Q=2$ and $k=2$, where $v \geqq 0$ is an integer. From (11) we have

$$
\begin{equation*}
f\left(A C C_{A}^{2} 2^{v+2} E(C)\right)=H(2)+f\left(C C_{A} 2^{v+1} E(C)\right) \tag{17}
\end{equation*}
$$

Thus, we get from (17) that

$$
f\left(2^{k}\right)=k f(2)+(k-1)\left(H(1)+f\left(C C_{A} E(C)\right)-f\left(A C C_{A}^{2} E(C)\right)\right)
$$

holds for every positive integer k, which with (16) shows that

$$
f\left(2^{k}\right)=k f(2) \quad(k=1,2, \ldots)
$$

This with (14) implies that

$$
\begin{equation*}
f(n m)=f(n)+f(m) \quad \text { if } \quad(n, m, A B C)=1 \tag{18}
\end{equation*}
$$

Similarly as above, by using (10), (12) and (18) we also have (11) if k, Q and P satisfy (19)

$$
\left(P, R_{k}\left(A C_{A} Q\right), B\right)=1
$$

Finally, let $P=P_{1} \cdot P_{2}$, where $\left(P_{1}, P_{2}\right)=\left(P_{1}, A C_{A} Q\right)=1$ and every prime divisor of P_{2} is a divisor of $A C_{A} Q$. We have

$$
\left(P_{2}, R_{k}\left(A C_{A} Q\right), B\right)=1
$$

therefore by (11) and (19) it follows that

$$
f\left(A^{k-1} C C_{A}^{k} Q^{k} P_{2} E(C Q)\right)=(k-1) H(Q)+f\left(C C_{A} P_{2} E(C Q)\right)
$$

Since $\left(P_{1}, A C_{A} Q P_{2}\right)=1$, by using the additivity of f, we get

$$
\begin{gathered}
f\left(A^{k-1} C C_{A}^{k} Q^{k} P E(C Q)\right)=f\left(A^{k-1} C C_{A} Q^{k} P_{2} E(C Q)\right)+f\left(P_{1}\right)= \\
=(k-1) H(Q)+f\left(C C_{A} Q P E(C Q)\right)
\end{gathered}
$$

which proves (11).
Applying (11) in the case $Q=1$, we obtain that

$$
f\left(A^{k-1} C C_{A}^{k} P E(C)\right)=(k-1) H(1)+f\left(C C_{A} P E(C)\right)
$$

holds for every positive integer k and P, consequenly

$$
\begin{equation*}
f\left(A^{k-1} C C_{A}^{k} Q^{k} E(C Q)\right)=(k-1) H(1)+f\left(C C_{A} Q^{k} E(C Q)\right) \tag{20}
\end{equation*}
$$

On the other hand, (11) with $P=1$ implies

$$
f\left(A^{k-1} C C_{A}^{k} Q^{k} E(C Q)\right)=(k-1) H(Q)+f\left(C C_{A} Q E(C Q)\right)
$$

which with (20) gives

$$
f\left(C C_{A} Q^{k} E(C Q)\right)=(k-1)(H(Q)-H(1))+f\left(C C_{A} Q E(C Q)\right)
$$

This, using the fact $(E(C Q), B / E(C Q))=1$ and the additivity of f, shows that

$$
f\left(B C C_{A} Q^{k}\right)=k f\left(B C C_{A} Q\right)-(k-1) f\left(B C C_{A}\right)
$$

So, we have proved Lemma 1, because (5) follows from (11) in the case $k=2$ and $P=Q=1$.

Lemma 2. Let A, B be positive integers and D be a complex constant. If $f \in \mathscr{A}^{*}$ satisfies the condition

$$
\begin{equation*}
\sum_{n \leqq x}|f(A n+B)-f(n)-D|=o(x) \quad \text { as } \quad x \rightarrow \infty \tag{21}
\end{equation*}
$$

then there is a complex constant U such that

$$
f(n)=U \log n \quad(n=1,2,3, \ldots)
$$

Proof. We first note that, by using (5) of Lemma 1 and the fact $f \in \mathscr{A}^{*}$, (21) implies

$$
\begin{equation*}
f(A)=D \tag{22}
\end{equation*}
$$

If $A=1$, then our assertion follows from the theorem of I. Kátai-E. Wirsing mentioned in Section 1. In the following we assume that $A \geqq 2$ and

$$
\begin{equation*}
\sum_{n \leqq x}|f(A n+B)-f(A n)|=o(x) \tag{23}
\end{equation*}
$$

Let I_{f} denote those pairs (k, r) of positive integers for which

$$
\sum_{n \leqq x}|f(k n+r)-f(k n)|=o(x)
$$

Since $(A, B) \in I_{f}$ and $f \in \mathscr{A}^{*}$, we have $(A, 1) \in I_{f}$, furthermore if $\left(k_{0}, 1\right) \in I_{f}$, then $(k, 1) \in I_{f}$ for all integers $k \geqq k_{0}$, because

$$
\begin{aligned}
& f((k+1) n+1)-f((k+1) n)=\{f(k n+1)-f(k n)\}- \\
& \quad-\{f[k((k+1) n+1)+1]-f[k((k+1) n+1)]\} .
\end{aligned}
$$

Thus, we have $(k, 1) \in I_{f}$ for every integer $k \geqq A$.
We shall prove that if $(h+1,1) \in I_{f}$ and integers k, r satisfy

$$
\begin{equation*}
0<r<k / h \quad \text { and } \quad(k, r)=1 \tag{24}
\end{equation*}
$$

then $(k, r) \in I_{f}$. We prove this by using induction on r. For $r=1$ our assertion is true, because $1<k / h$ implies $k>h$. Assume that for every integer k, r satisfying (24) and $r<R$ we have $(k, r) \in I_{f}$. Let K be an integer such that

$$
\begin{equation*}
0<R<K / h \quad \text { and } \quad(K, R)=1 \tag{25}
\end{equation*}
$$

Let k and r be positive integers which satisfy

$$
\begin{equation*}
R k=K r+1 \quad \text { and } \quad k<K, r<R . \tag{26}
\end{equation*}
$$

It is easily seen by (25) and (26) that (k, r) $=1$, furthermore

$$
K r<K r+1=R k<K k / h
$$

which implies that $r<k / h$. Thus, k, r satisfy (24), and so $(k, r) \in I_{f}$.
On the other hand, we have

$$
f(K n+R)-f(K n)=\{f[K(k n+r)+1]-f[K(k n+r)]\}+\{f(k n+r)-f(k n)\}
$$

therefore, by using the fact $(K, 1) \in I_{f}$ and $(k, r) \in I_{f}$, we have $(K, R) \in I_{f}$. Thus we have proved (24).

We now deduce from (23) that $(2,1) \in I_{f}$. To see this enough show that

$$
\begin{equation*}
(h+1,1) \in I_{f} \quad \text { with } \quad h+1>2 \quad \text { implies } \quad(h, 1) \in I_{f} . \tag{27}
\end{equation*}
$$

Assume that $(h+1,1) \in I_{f}$ and $h+1>2$. Let

$$
S(x)=\sum_{n \leqq x}|f(h n+1)-f(h n)|
$$

For each integer d with $0 \leqq d \leqq h-1$ we can choose positive integers $K=K(d)$ and $R=R(d)$ such that

$$
\begin{equation*}
(h d+1) K=h^{2} R+1 \tag{28}
\end{equation*}
$$

We have
(29)

$$
\begin{gathered}
S(x)=\sum_{n \leqq x}|f(h n+1)-f(h n)|=\sum_{d=0}^{h-1} \sum_{h m+d \leq x}\left|f\left(h^{2} m+h d+1\right)-f(h(h m+d))\right|= \\
=\sum_{d=0}^{h-1} \sum_{h m+d \leq x} \mid f\left(h^{2}(K m+R)+1\right)-f\left(h^{2}(K m+R)\right)+ \\
+f(K(h m+d)+h R-K d)-f(K(h m+d)) \mid
\end{gathered}
$$

and so $S(x)=o(x)$ if $h R-K d=0$, because $(h+1,1) \in I_{f}$ and $h+1>2$ implies $\left(h^{2}, 1\right) \in I_{f}$. If $h R-K d \neq 0$, then we get from (28) that

$$
0<h R-K d=(K-1) / h<K / h
$$

and

$$
(K, h R-K d)=(K, h R)=1
$$

Thus, $k:=K$ and $r:=h R-K d$ satisfy the condition (24), and so $(K, h R-K d) \in I_{f}$. By using this and the fact $\left(h^{2}, 1\right) \in I_{f}$, we also get from (29) that $S(x)=o(x)$. This shows that $(h, 1) \in I_{f}$, consequently $(2,1) \in I_{f}$.

Assume now that

$$
\begin{equation*}
A(x)=\sum_{n \leqq x}|f(2 n+1)-f(2 n)|=o(x) \tag{30}
\end{equation*}
$$

Let q be a fixed prime. As we have proved above, from (30) we have $(q, r) \in I_{f}$ if $0<r<q$ (see (24)). Let

$$
T(x):=\sum_{n \leqq x} f(n)
$$

Then, we have

$$
\sum_{\substack{n \leq x \\ n \equiv 0 \bmod q}} f(n)=\sum_{m \leqq x / q}\{f(q)+f(m)\}=\left[\frac{x}{q}\right] f(q)+T\left(\frac{x}{q}\right) .
$$

Let r be an integer for which $0<r<q$. Then $(q, r) \in I_{f}$, and so

$$
\sum_{\substack{n \leq x \\ n \equiv r \bmod q}} f(n)=\sum_{q m+r \leq x}\{f(q m+r)-f(q m)\}+\sum_{q m+r \leq x} f(q m)=o(x)+\left[\frac{x}{q}\right] f(q)+T\left(\frac{x}{q}\right)
$$

These imply that

$$
T(x)=q\left[\frac{x}{q}\right] f(q)+q T\left(\frac{x}{q}\right)+o(x)=x f(q)+q T\left(\frac{x}{q}\right)+o(x)
$$

as $x \rightarrow \infty$, from which we get

$$
\frac{f(q)}{\log q}=\lim _{x \rightarrow \infty} \frac{T(x)}{x \log x}=: U
$$

From this and using $f \in \mathscr{A}^{*}$ the proof of Lemma 2 is finished.
3. Proof of Theorem 2. Assume that $f \in \mathscr{A}$ satisfies the condition (3). Then from Lemma 1 we get that

$$
\begin{equation*}
f\left(B C C_{A} Q^{k}\right)=k f\left(B C C_{A} Q\right)-(k-1) f\left(B C C_{A}\right) \tag{31}
\end{equation*}
$$

holds for every positive integer k and Q, where C_{A} denotes the product of all prime divisors of C which are prime to A.

For each prime p let $e=e(p)$ be a non-negative integer for which $p^{e} \| B C C_{A}$. Then for all integers $\beta \geqq e$ we deduce from (31) that

$$
\begin{equation*}
f\left(p^{\beta+1}\right)-f\left(p^{\beta}\right)=f\left(p^{e+1}\right)-f\left(p^{e}\right) . \tag{32}
\end{equation*}
$$

Now we write

$$
f(n)=f_{1}(n)+F(n)
$$

where f_{1} is a completely additive function defined as follows:

$$
\begin{equation*}
f_{1}(p):=f\left(p^{e+1}\right)-f\left(p^{e}\right), \quad e=e(p) \tag{33}
\end{equation*}
$$

Then, from (32) and (33) it follows that

$$
F\left(p^{\beta+1}\right)=F\left(p^{\beta}\right)
$$

which implies

$$
F\left(p^{k}\right)=F\left[\left(p^{k}, B C C_{A}\right)\right] \quad(k=0,1,2, \ldots) .
$$

Thus, we have

$$
\begin{equation*}
F(n)=F\left[\left(n, B C C_{A}\right)\right] \quad(n=1,2,3, \ldots) \tag{34}
\end{equation*}
$$

We shall prove that $f_{1}=U \log$ for some constant U.
We note that by (3) we have

$$
\begin{equation*}
\sum_{n \leqq x}\left|f\left(A B C_{A} n+B\right)-f\left(B C C_{A} n\right)-D\right|=o(x) . \tag{35}
\end{equation*}
$$

By using $f=f_{1}+F$ and (34) we get that

$$
\begin{aligned}
& f\left(A B C_{A} n+B\right)-f\left(B C C_{A} n\right)-D=f_{1}\left(A B C_{A} n+B\right)-f_{1}\left(B C C_{A} n\right)+F\left(A B C_{A} n+B\right)- \\
& \quad-F\left(B C C_{A} n\right)-D=f_{1}\left(A B C_{A} n+B\right)-f_{1}(n)-\left\{f_{1}\left(B C C_{A}\right)-F(B)+F\left(B C C_{A}\right)+D\right\}
\end{aligned}
$$

and so, by (35) and Lemma 2, there is a complex constant U such that $f_{1}=U \log$. This completes the proof of Theorem 2.
4. Proof of Theorem 1. Assume that $f, g \in \mathscr{A}$ satisfy the condition (2), i.e.

$$
\begin{equation*}
\sum_{n \leq x}|g(a n+b)-f(n)-d|=o(x) \tag{36}
\end{equation*}
$$

where a and b are positive integers and d is a complex constant.

For each positive integer N we have
and

$$
(a b N+1, a(a b N+1) n+b)=1
$$

$$
(a b N+1)(a(a b N+1) n+b)=a\left[(a b N+1)^{2} n+b^{2} N\right]+b
$$

for every positive integer n. Thus, by using the additivity of f, we get

$$
\begin{gathered}
f\left[(a b N+1)^{2} n+b^{2} N\right]-f[(a b N+1) n]-g(a b N+1)= \\
=-\left\{g[(a b N+1)(a(a b N+1) n+b)]-f\left[(a b N+1)^{2} n+b^{2} N\right]-d\right\}+ \\
+\{g[a(a b N+1) n+b]-f[(a b N+1) n]-d\},
\end{gathered}
$$

which with (36) implies that

$$
\begin{equation*}
\sum_{n \leq x}\left|f\left[(a b N+1)^{2} n+b^{2} N\right]-f[(a b N+1) n]-g(a b N+1)\right|=o(x) . \tag{37}
\end{equation*}
$$

Applying Lemma 1 with $A=(a b N+1)^{2}, B=b^{2} N$ and $C=(a b N+1)$ it follows from (37) that

$$
\begin{equation*}
f\left[b^{2}(a b N+1) N Q^{k}\right]=k f\left[b^{2}(a b N+1) N Q\right]-(k-1) f\left[b^{2}(a b N+1) N\right] \tag{38}
\end{equation*}
$$

holds for every positive integer k and Q. Since (38) holds for each fixed positive integer N, so (38) also holds for every positive integer N.

For each prime p, let N_{p} be the smallest positive integer for which $p \nmid a b N_{p}+1$. It is obvious that $N_{p} \in\{1,2\}$ for all primes p. We apply (38) with $Q=p$ and $N=N_{p}$ to get

$$
\begin{equation*}
f\left(b^{2} N_{p} p^{k}\right)=k f\left(b^{2} N_{p} p\right)-(k-1) f\left(b^{2} N_{p}\right) . \tag{39}
\end{equation*}
$$

Similiarly, as in the proof of Theorem 2, we can deduce from (39) that there are functions $f_{1} \in \mathscr{A}^{*}$ and $F \in \mathscr{A}$ such that

$$
\begin{equation*}
f=f_{1}+F \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(p^{k}\right)=F\left[\left(p^{k}, b^{2} N_{p}\right)\right] \quad(k=0,1,2 \ldots), \tag{41}
\end{equation*}
$$

where p is a prime number. Since $N_{p} \in\{1,2\}$, one can check from (41) and the fact (b, N_{2}) $=1$ that

$$
\begin{equation*}
F(n)=F\left[\left(n, b^{2}\right)\right]+F\left[\left(n, N_{2}\right)\right] \quad(n=1,2,3, \ldots) . \tag{42}
\end{equation*}
$$

By using (40) and (42), we have

$$
\begin{gather*}
f\left[(a b N+1)^{2} N_{2} m+b^{2} N\right]-f\left[(a b N+1) N_{2} m\right]-g(a b N+1)= \tag{43}\\
=f_{1}\left[(a b N+1)^{2} N_{2} m+b^{2} N\right]-f_{1}(m)-D,
\end{gather*}
$$

where

$$
\begin{aligned}
D & :=g(a b N+1)+f_{1}\left[(a b N+1) N_{2}\right]-F\left[(a b N+1)^{2} N_{2} m+b^{2} N\right]+F\left[(a b N+1) N_{2} m\right]= \\
& =g(a b N+1)+f_{1}\left[(a b N+1) N_{2}\right]-\left\{F\left[\left(m, b^{2}\right)\right]+F\left[\left(N, N_{2}\right)\right]\right\}+\left\{F\left[\left(m, b^{2}\right)\right]+F\left(N_{2}\right)\right\}= \\
& =g(a b N+1)+f_{1}\left((a b N+1) N_{2}\right)+F\left[\left(a b+1, N_{2}\right)\right] .
\end{aligned}
$$

Applying (37) with $n=N_{2} m$, by (43) we have

$$
\sum_{n \leqq x}\left|f_{1}\left[(a b N+1)^{2} N_{2} m+b^{2} N\right]-f_{1}(m)-D\right|=o(x)
$$

which, by using Lemma 2, implies

$$
\begin{equation*}
f_{1}=U \log \quad \text { for some constant } U \tag{44}
\end{equation*}
$$

and

$$
g(a b N+1)+F\left[\left(a b N+1, N_{2}\right)\right]=f_{1}(a b N+1)=U \log (a b N+1)
$$

The last equality holds for every positive integer N, consequently

$$
g(m)+F\left[\left(m, N_{2}\right)\right]=U \log m
$$

holds for all positive integers m which are prime to $a b$. Let

$$
\begin{equation*}
G(m):=g(m)-U \log m \quad(m=1,2,3, \ldots) \tag{45}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
G(m)=0 \quad \text { if } \quad(m, 2 a b)=1 \tag{46}
\end{equation*}
$$

Finally, we shall prove that

$$
G(a n+b)-F(n)-d+U \log a=0 \quad(n=1,2,3, \ldots)
$$

which with (40), (44), (45) gives the proof of Theorem 1.
Since

$$
\begin{gathered}
G(a n+b)-F(n)-d+U \log a= \\
=\{g(a n+b)-f(n)-d\}-\{U \log (a n+b)-U \log n-U \log a\}
\end{gathered}
$$

we obtain from (36) that

$$
\begin{equation*}
\sum_{n \leqq x}|G(a n+b)-F(n)-d+U \log a|=o(x) . \tag{47}
\end{equation*}
$$

Let r be an arbitrary integer for which $0 \leqq r<2 b^{2}$. Then we get from (42) and (47) that

$$
F\left(2 b^{2} m+r\right)=F(r) \quad(m=1,2, \ldots)
$$

and

$$
\begin{equation*}
\sum_{m \leqq x}\left|G\left(2 a b^{2} m+a r+b\right)-F(r)-d+U \log a\right|=o(x) . \tag{48}
\end{equation*}
$$

Let M be a positive integer. By (46), we have $G\left(2 a b^{2} t+1\right)=0(t=1,2, \ldots)$, con-
sequently

$$
\begin{align*}
& \quad G\left(2 a b^{2} M+a r+b\right)-F(r)-d+U \log a= \tag{49}\\
& =G\left(2 a b^{2} M+a r+b\right)+G\left(2 a b^{2} t+1\right)-F(r)-d+U \log a= \\
& =G\left[2 a b^{2}\left(\left(2 a b^{2} M+a r+b\right) t+M\right)+a r+b\right]-F(r)-d+U \log a
\end{align*}
$$

holds for every positive integer t. Thus, we get from (48) and (49) that

$$
\sum_{t \leqq x}\left|G\left(2 a b^{2} M+a r+b\right)-F(r)-d+U \log a\right|=o(x)
$$

which implies

$$
\begin{equation*}
G\left(2 a b^{2} M+a r+b\right)-F(r)-d+U \log a=0 \tag{50}
\end{equation*}
$$

for each positive integer M, i.e. (50) holds for every positive integer M. Since r is an arbitrary integer for which $0 \leqq r<2 b^{2}$, and (50) holds for every positive integer M, we have

$$
G(a n+b)-F(n)-d+U \log a=0 \quad(n=1,2, \ldots) .
$$

This completes the proof of Theorem 1.

References

[1] P. D. T. A. Elliott, Arithmetic Functions and Integer Products, Springer-Verlag (New York, 1985).
[2] P. D. T. A. Elliotr, The values distribution of differences of additive arithmetic functions, Journal of Number Theory, 32 (1989), 339-370.
[3] P. Erdős, On the distribution function of additive functions, Ann. of Math., (2) 47 (1946), 1-20.
[4] I. Kátai, On a problem of P. Erdös, J. Number Theory, 2 (1970), 1-6.
[5] B. M. Phong, A characterization of some arithmetical multiplicative functions, Acta Math. Hungar., to appear.
[6] E. Wirsing, A characterization of $\log n$ as an additive function, Symposia Math., IV (1970), 45-75.

EOTVOOOS LORAND UNIVERSITY
COMPUTER CENTER
BOGDANFY U. 10/B
$\mathrm{H}-1117$ BUDAPEST

[^0]: Received March 13, 1991.

