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On a theorem of Katai-Wirsing

BUI MINH PHONG

1. Introduction. An arithmetic function f(n) is said to be additive if (m, n)=1

implies that

S(mn) = f(m)+f(n)
and it is completely additive if the above equality holds for all positive integers m
and n. Let of and &/* denote the set of complex-valued additive and completely
additive functions, respectively.

The problem concerning the characterization of log n as an additive arithmetic
function was studied by several authors. The first such characterization is apparently
that of P. ErRDGs [3]. He proved in 1946 that if a real valued additive function f
satisfies the condition

fin+1)—f(n) -0 as n-oo,
then f(n) is a constant multiple of log n. Later I. KATA1[4] and E. WIRSING [6] improv-
ing this result, proved that a function f¢of satisfying

S+ D)—f@)] = o) as x -+
must be of the form f=U log for some complex constant U.

On the other hand, solving a conjecture of Kétai, P. D. T. A. ELLIOTT [1]
showed that if a real function fis additive and satisfies the condition

) f(An+B)~f(an+b) ~C as n-—+e

for some integers A=0, B, a=0,b with Ab—aB>0 and for a real constant C,
then f(n)=Ulog n holds for all positive integers n which are prime to Aa(Ab—aB).
In his proof Elliott relaxed the condition (1) to

"g | f(An+B)—f(an+ D) = o(x)
for the case A##a.
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Our purpose in this paper is to give a complete characterization of those func-
tions f, g€/ for which the relation

@ 2 lg(an+b)—f(m)—d| = o(x)

holds for some fixed positive a, b and for a complex constant d.
We shall prove the following

Theorem 1. Assume that f,gcsd satisfy (2) for some fixed positive integers
a, b and for a complex constant d. Then there are a complex constant U and functions
Feod, Gesf such that
f(n) =Ulogn+ F(n)

gn) =Ulogn+G(n)
and
G(an+b)—F(n)—d+Uloga=0
hold for all positive integers n.

Theorem 2. Assume that f¢ o satisfies the condition

©)) 2 |f(4n+ B)—f(Cn)—D| = o(x)

n=x

Jfor some positive integers A, B, C and for a complex constant D. Then there are a
complex constant U and a function Fe of such that

f(n) = Ulogn+F(n)
F(n) = F[(n, BCC )]

and

hold for all positive integers n, where C , denotes the product of all prime divisors of
C which are prime to A.

We note that our theorems can be derived from a recent result due to P. D. T. A.
ELvLioTT [2], which was obtained with analytic methods. Here we shall prove our
results by using elementary methods, which were used in [5].

2. Auxiliary results. In this section we assume that a function f€&f satisfies (3),
ie.

2 |f(dn+B)=f(Cn)— D} = o(x)

holds for some positive integers A, B, C and for a complex constant D.

Let C, denote the product of all prime divisors of C which are prime to 4. For
an arbitrary positive integer n, let E(n)=Ejy(n) be the product of all prime power
factors of B composed from the prime divisors of n, i.e. E(n)|B, (E(n), B/E(n)) 1
_ and every prime divisor of E(n) is a divisor of n.
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Lemma 1. For every fixed positive integer k and Q we have

@ f(BCC4Q) = kf(BCC,Q)—~(k—1) f(BCC,),
furthermore
) J(ACCLE(C)) = 2f(CC . E(C))—f(E(C))+D.

Proof. For each positive integer Q@ we define the sequence
R = R(AC,Q) = {Rk};‘;l
by the initial term R,=1 and by the formula

) R, = R(AC,Q) = 1+A4C,Q+ ... +(4C,Q)*?
for all integers k=2. Moreover, let

Q) Ti(n, Q) = (AC,Q)*E(CQ)n+ BR,(AC ,Q).
By using (6) and (7), we have

(®) Tisa(n, Q) = AC, QT (n, Q)+ B

and

® (CCLQE(CQ), Ti(n, QJE(CQ)) = 1

for all integers k=1. Thus, using (3), (7), (8), (9) and the additivity of f, we have
Z |f(Tu(n, ) ~F(CCLQEC Q) D| = o(x)

and

P |/ T(n, @) ~f(Ti-1(n, @)~ H(Q)| = 0()

for all integers k=2, where

H(Q):= f(CC4QE(CQ)—f(E(CQ))+D.
These imply that _

(10 ng |/ (T, ©))—f(CCLQE(CQ)n)~(k—1) H(Q)— D| = o(x)

holds for every integer k=1.
We shall deduce from (10) that
1) f(A1CCY O PE(CQ)) = (k—1)H(Q)+/(CC ,QPE(CQ))

holds for every positive integer k, Q and P. _
Let k, Q and P be positive integers. Considering

(12) n:= PR,(AC, Q) {APCQR(AC,Q)m+1}
and taking into account (10), it is easily seen that (11) holds if k, Q and P satisfy the

ki
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relation :
(13) (B R(AC.Q)) = (PE(CQ)+ B, Ry(4C,Q)) = 1.
It is obvious that (13) is satisfied in the following cases:

P=1, Q=2B; P=1, Q= 2pB,
where p is a prime. Thus, we get from (11) that

f(PY) = kf(p) if (p,24BC)=1.
This with the additivity of f shows that
(14 f(nm) = f(m)+f(m) if (n,m,24BC) = 1.

Thus, by using (10), (12) and (14), we see that (11) also holds if we relax the condi-
tion (13) to
(15) (P, Ri(AC,0), 2B) = (PE(CQ)+ B, Ry(4C,Q),2) = 1.

Assume that (2, 4ABC)=1 and k is an odd positive integer. In this case one
can check that (15) holds for P=Q=1 and P=1, Q=2. Thus, we get from (11)
that

(16) f(2*) = kf(2) for all odd positive integers k.

On the other hand, (15) also holds for P=2%, Q=2 and k=2, where v=0
is an integer. From (11) we have

17 fACCL 2" +2E(C)) = H(2)+f(CC,2*+*E(C)).
Thus, we get from (17) that
f(2) = kf(Q)+(k—1)(H1)+f(CCLE(C))—f(ACCLE(C)))
holds for every positive integer k, which with (16) shows that
fOY=kf(2) (k=1,2..).
This with (14) implies that

(18) flnm) = f()+7(m) if (n,m, ABC) = 1.
Similarly as above, by using (10), (12) and (18) we also have (11) if k, Q and P satisfy
(19) (B R(AC,0), B) = 1.

Finally, let P=P,.P,, where (P,, P))=(P,, AC,Q)=1 and every prime di-
visor of P, is a divisor of AC,Q. We have

(PZa RR(ACAQ)a B) =1,

ST IS SEE 1 AR
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therefore by (11) and (19) it follows that
f(41CCLO* B E(CQ)) = (k—1) H(Q)+f(CC . P, E(CQ)).
Since (P, AC,QP;)=1, by using the additivity of f, we get
F(A1CCLQ* PE(CQ)) = f(A*1CC4 Q" RE(CQ)+f(B) =

= (k—1) H(Q)+/(CC,QPE(CQ)),
which proves (11).

Applying (11) in the case Q=1, we obtain that
F(4*-1CCY% PE(C)) = (k—1) H(1)+f(CC  PE(C))

holds for every positive integer k and P, consequenly
(20 S(ACCHLQYE(CQ)) = (k—1) H(l)ff(CCA Q*E(CQ)).

On the other hand, (11) with P=1 implies

SAICCLQHE(CQ)) = (k—1) H(Q)+/(CC, QE(CQ)),
which with (20) gives
f(CCLQ*E(CQ)) = (k—1)(H(Q)— H(1))+f(CC,QE(CQ)).
This, using the fact (E(CQ), B/E(CQ))=1 and the additivity of f, shows that
f(BCC, Q") = kf(BCC,Q)—(k—1)f(BCC,).

So, we have proved Lemma 1, because (5) follows from (11) in the case k=2 and
P=Q=1.

Lemma 2. Let A, B be positive integers and D be a complex constant. If fes*
satisfies the condition

1) S |f(4n+B)~f()~D| = o(x) as x —e,

then there is a complex constant U such that
f(m=Ulogn (n=123,..)

Proof. We first note that, by using (5) of Lemma 1 and the fact fes*, (21)
implies
(22) f(4) = D.
If A=1, then our assertion follows from the theorem of I. Katai—E. Wirsing
mentioned in Section 1. In the following we assume that 4=2 and

(23) ’é |f(4n+ B)—f(4n)| = o(x).
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Let I, denote those pairs (k, r) of positive integers for which
3 1f e 9y=f k)l = o).
Since (4, B)¢I, and fcso/*, we have (4, 1)¢I,, furthermore if (ko, DEI,, then
(k, 1)¢I, for all integers k=k,, because
J@A+ D+ 1)=f((e+1)n) = {f(kn+ 1)~ (kn)} —
—{flk(k+)n+ 1)+ 1] = f[k((k+ D)n+1)]}.

Thus, we have (k, 1)€I, for every integer k=4.
We shall prove that if (h+1, 1)€I, and integers k, r satisfy

(24) O<r<kh and (kr) =1,

then (k,r)cl,. We prove this by using induction on r. For r=1 our assertion i$
true, because 1<k/h implies k=h. Assume that for every integer k, r satisfying
(24) and r<R we have (k,r)€l;. Let K be an integer such that

(25) O<R<K/h and (K,R)=1.

Let k and r be positive integers which satisfy

(26) Rk =Kr+1 and k<K, r<R

It is easily seen by (25) and (26) that (k, r)=1, furthermore
Kr < Kr+1 = Rk < Kk/h,

which implies that r<k/h. Thus, k, r satisfy (24), and so (k, r)EIf
On the other hand, we have

f(Kn+ R)—f(Kn) = {f[K(kn+r)+ 1]—f[K(kn+n)l} +{f (kn+r)— f(kn)},

therefore, by using the fact (K, 1)cI, and (k r)EI,, we have (K, R)EI, Thus
we have proved (24).
We now deduce from (23) that (2, 1)€I,. To see this enough show that

@y (h+1,1)€l, with h+1>2 implies (h,1)€l;.
Assume that (h+1, 1)€l, and h+1=>2. Let
S(x) = 52 |f (bn+1)—f (k).

For each integer d with 0=d=h—1 we can choose positive integers K=K(d)
and R=R(d) such that

(28) (hd+1)K = *R+1.
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We have
(29)

S@) = 2 |f(n+D)~f(hn)l

=3 3 |f(rrKm+R)+1)—f(R(Km+ R)+

d=0 hm+d=x

h
d=0 hmid=x

|f (2 m+ hd+ 1) £ (h(hm + d))| =

+f(K(hm+d)+ hR— Kd) — f(K(hm + d))|
and so S(x)=o(x) if hR—Kd=0, because (h+1,1)cI, and h+1>2 implies
(h?, 1)€I,. If hR—Kd=0, then we get from (28) that
0 < hR—Kd = (K—1)/h < K/h
and
(K, hR— Kd) = (K, hR) = 1. _
Thus, k:=K and r:=hR—Kd satisfy the condition (24), and so (KX, hR—Kd)cI,.
By using this and the fact (h%, 1)€1,, we also get from (29) that S(x)=o0(x). This
shows that (k, 1)€I,;, consequently (2, 1)€I,.
Assume now that

(30) Ay = 2 1fQn+1)=f@n) = o(x).

Let ¢ be a fixed prime. As we have proved above, from (30) we have (g, r)€I, if
O0<r<g (see (24)). Let
I(x):= 2 f(n).

n=x

Then, we have

2 1= 3 U@+ =[] ra+7(Z).

n=0modgq

Let r be an integer for which O0<r<g. Then (g, r)€I,;, and so

S =3 {famtn—fam+ 3 fam=ow+[Z]r@+r(E).
n=x am+r=x gmir=x q q

n=rmodg

These imply that
x x x
169 = a[Z| s@+ ar(Z) + o) = @+ a7 (2] 40
as x-<o, from which we get

f@ _ o TG

logg ~ x-=xlogx

From this and using fe&* the proof of Lemma 2 is finished.
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3. Proof of Theorem 2. Assume that f€&/ satisfies the condition (3). Then
from Lemma 1 we get that

@Gy J(BCC 0" = kf(BCC,Q)~(k—1)f(BCC)

holds for every positive integer k and 0, where C, denotes the product of all prime
divisors of C which are prime to A.

For each prime p let e=e(p) be a non-negative integer for which p¢|BCC,.
Then for all integers f=e we deduce from (31) that

Gy FE =0 = F (2" ~f (2°)-
Now we write

f(n) = fi(n) + E(n),

where f; is a completely additive function defined as follows:

(33) LD =) —f(p?), e=e(p).
Then, from (32) and (33) it follows that

F(pP*Y) = F(p%),
F(p*) = F[(p*, BCC)] (k=0,1,2,..).

which implies
Thus, we have
34 F(n) = F[(n,BCC,)] (n=1,2,3,..).

We shall prove that f,=Ulog for some constant U.
We note that by (3) we have

(35) 7 |f(ABC 4n+ B)—f(BCC 4ni)— D| = o(x).

By using f=f;+F and (34) we get that
f(ABC4n+B)—f(BCC n)— D = f,(ABC 4n+ B)— fi(BCC 4n) + F(ABC 4n+ B) —
—F(BCC 4 n)—D = fi(ABC 4n+ B)—f,(n)—{ f1(BCC ,)— F(B) + F(BCC ;) + D}

and so, by (35) and Lemma 2, there is a complex constant U such that f;=U log.
This completes the proof of Theorem 2.

4, Proof of Theorem 1. Assume that f, g€ satisfy the condition (2), i.e.
(36) Z |gan+b)—f(m—d| = o(x),

where a and b are positive integers and d is a complex constant.
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For each positive integer N we have
(abN+1,a(@N+1n+b) =1
and .
(abN +1)(a(abN+ 1)n+b) = a[(abN+1)*n+b*N] +b

for every positive integer n. Thus, by using the additivity of f, we get

fl(@N+1n+b*N)—fl(@bN+1)n]—g(@bN+1) =

= —{g[(@bN+1)(a(@bN +1)n+b)] —fl(abN+1)*n+b*N]—d} +
+{gla(@N+1)n+b]—f[(abN + 1)n]—d},

which with (36) implies that
37 ,.sz,; | f[(abN +1)2n+b2N1—f[(abN + 1) n]— g(abN + 1)| = o(x).

Applying Lemma 1 with A=(abN+1)?, B=b*N and C=(abN+1) it follows
from (37) that

(38)  f[b*(@bN+1)NQ*] = kf[b (abN+ 1) NQ|—(k— 1) f[b*(abN + 1) N]
holds for every positive integer k and Q. Since (38) holds for each fixed positive

integer N, so (38) also holds for every positive integer N.

For each prime p, let N, be the smallest positive integer for which p{fabN,+1.
It is obvious that N,€{1,2} for all primes p. We apply (38) with @=pand N=N,
to get
(39) f@O*N,p*) = kf (N, p)— (k—1) f(5*N,).

Similiarly, as in the prdof of Theorem 2, we can deduce from (39) that there are
functions f,€* and F¢€of such that

(40) f=h+F
and
41) F(p*) = F[(p*, *°N,)] (k=0,1,2..),

where p is a prime number. Since N,€{1, 2}, one can check from (41) and the fact
(b, N;)=1 that

42) F(n) = Fl(n, b®]+F[(n, Ny)] (n=1,2,3,...).

By using (40) and (42), we have

“43) SI(@bN+1)?N,m+b*N]—f[(abN+ 1) Nym]—g(abN+1) =
= f1[(@bN+ 1> Nym+b*N]— fi(m)— D,
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where
D:= g(abN+ 1)+ f,[(abN+ 1) N} — F[(abN +1* N, m+ b®* N1+ F[(abN+ 1) Nym] =
= g(abN+1)+/[(abN+1) No] — {F[(m, b3)] + F[(N, No)I} + {Fl(m, b))+ F(Np)} =
= g(abN+1)+£,((@bN+ 1) N;) + F(ab + 1, Ny)].
Applying (37) with n=N,m, by (43) we have
"SZ’" | /il(@bN+1)2Nym+ bEN}—f,(m) — D| = o(x),

which, by using Lemma 2, implies

44) fi = Ulog for some constant U

and
g(abN+ 1)+ F[(abN + 1, Np)] = fi(abN+1) = Ulog (abN+1).

The last equality holds for every positive integer N, consequently
g(m)+ F[(m, N;)] = Ulogm

holds for all positive integers m which are prime to ab. Let

(45) G(m):=g(m)—Ulogm (m=1,2,3,..).
Then, we have
(46) Gm)=0 if (m,2ab)=1.

Finally, we shall prove that
Glan+b)—-F(n)—d+Uloga=0 (n=1,2,3,..),

which with (40), (44), (45) gives the proof of Theorem 1.
Since
G(an+b)— F(n)—d+Uloga =

= {g(an+b)—f(n)—d} —{Ulog (an+ b)—Ulogn—Ulog a}
we obtain from (36) that

CY)) 2 |G(an+b)—F(n)—d+Ulogal = o(x).
Let r be an arbitrary integer for which 0=r<2b% Then we get from (42) and
(47) that
FQ¥:m+r)y=F(@) (m=1,2,..)
and
(48) > |G(2ab®*m+ar + b)— F(r)—d+Uloga| = o(x).

m=x

Let M be a positive integer. By (46), we have G(2ab?t+1)=0 (t=1,2,...), con-
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sequently
(49) G(Q2ab*M +ar+b)—F(r)—d+Uloga =
= G(ab® M +ar+b)+G(2ab*t+1)—F(r)—d+Uloga =
= G[2ab*((2ab*M +ar+b)t+M)+ar+b] —F(r)—d+Uloga
holds for every positive integer ¢. Thus, we get from (48) and (49) that
2 |GQab*M +ar+b)—F(r)—d+Uloga| = o(x),
t=x
which implies
(50) GQab*M +ar+b)—F(r)—d+Uloga = 0

for each positive integer M, i.e. (50) holds for every positive integer M. Since r
is an arbitrary integer for which 0=r<2b?, and (50) holds for every positive integer
M, we have

G(an+b)—F(n)—d+Uloga=0 (n=12,..).

This completes the proof of Theorem 1.
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