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On a theorem of Kátai-Wirsing 

BUI MINH PHONG 

1. Introduction. An arithmetic function f(n) is said to be additive if (m, «)=1 
implies that 

f(mn) = /(m)+/(w) 

and it is completely additive if the above equality holds for all positive integers m 
and n. Let si and si* denote the set of complex-valued additive and completely 
additive functions, respectively. 

The problem concerning the characterization of log n as an additive arithmetic 
function was studied by several authors. The first such characterization is apparently 
that of P . ERDŐS [3] . He proved in 1 9 4 6 that if a real valued additive function / 
satisfies the condition 

f(n+ 1 ) - / ( « ) - 0 as n - °o, 

then/(«) is a constant multiple of log n. Later I . KÁTAI [4] and E . WIRSING [6] improv-
ing this result, proved that a function fesi satisfying 

2 l/(» + l)-/(»)l = «(*) as x 
FL^X 

must be of the form / = £ / log for some complex constant U. 
On the other hand, solving a conjecture of Kátai, P. D. T. A. ELLIOTT [1] 

showed that if a real function f is additive and satisfies the condition 

(1) f(An+B)-f(an + b) - C as « - oo 

for some integers A>0,B,a>0,b with Ab—aB^O and for a real constant C, 
then f(n)=Ulog n holds for all positive integers n which are prime to Aa(Ab-aB). 
In his proof Elliott relaxed the condition (1) to 

2 \f(An+B)-f(an+b)\2 = o(x) 
BÁJC 

for the case A ¿¿a. 
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Our purpose in this paper is to give a complete characterization of those func-
tions / , gi st for which the relation 

(2) 2 \g(an + b)-f(ri)-d\ = o(x) 
nSx 

holds for some fixed positive a, b and for a complex constant d. 
We shall prove the following 

Theorem 1. Assume that f g i s t satisfy (2) for some fixed positive integers 
a, b and for a complex constant d. Then there are a complex constant U and functions 
Fist, Gist such that 

f{n) = U\ogn + F(n) 

g(n) = Ulogn + G(n) and 
G(an + b)~ F(n) — d+U\oga = 0 

hold for all positive integers n. 
Theorem 2. Assume that fist satisfies the condition 

(3) 2 I f ( A n + B) —f(Cn) -D\ = o(x) 
nsx 

for some positive integers A, B, C and for a complex constant D. Then there are a 
complex constant U and a function Fist such that 

f(n) = Ulogn + F(n) 
and 

F(n) = F[(n,BCCA)] 

hold for all positive integers n, where CA denotes the product of all prime divisors of 
C which are prime to A. 

We note that our theorems can be derived from a recent result due to P. D. T. A. 
ELLIOTT [2 ] , which was obtained with analytic methods. Here we shall prove our 
results by using elementary methods, which were used in [5]. 

2. Auxiliary results. In this section we assume that a function fist satisfies (3), 
i.e. 

2\f(An+B)-f(Cn)-D\ = o(x) nSx 

holds for some positive integers A, B, C and for a complex constant D. 
Let CA denote the product of all prime divisors of C which are prime to A. For 

an arbitrary positive integer n, let E(n)=EB(n) be the product of all prime power 
factors of B composed from the prime divisors of n, i.e. E(ri)\B, (E(n), B/E(n)) = 1 
and every prime divisor of E(n) is a divisor of n. 
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Lemma 1. For every fixed positive integer k and Q we have 

(4) f(BCCA Qk) = kf(BCCA Q) — (k— 1 )f(BCCA), 
furthermore 

(5) f{ACC\ E(C)) = 2f(CCAE(C)) -f(E(C)) + D. 

Proof . For each positive integer Q we define the sequence 

R= R(ACaQ)= {Rk}?=1 

by the initial term = 1 and by the formula 

(6) Rk = Rk(ACAQ) = 1 +ACaQ+... +(ACAQ)k~1 

for all integers fcs2. Moreover, let 

(7) Tk(n, Q ) = (AC
A
 QF E(CQ)n + BR

K
(AC

A
Q). 

By using (6) and (7), we have 
(8) Tk+1(n, Q) = ACa QTk(n, Q) + B 
and 
(9) (CC

A
QE(CQ), Tk(n, Q)1E(CQ)) = 1 

for all integers k ^ 1. Thus, using (3), (7), (8), (9) and the additivity o f / , we have 

2 Q))-f{CCAQE(CQ)n)-D\ = o(x) 
nSx 

and 
2 |f(Tk(n, Q))—f(Tk-i(n, Q))-H{Q)\ = o(x) «Si 

for all integers k ^ 2 , where 

H(Q):=f{CCA QE(CQ)) - f(E(CQ)) + D. 
These imply that 

(10) 2 | / ( № Q))-f{CCAQE(CQ)n)-(k-1 )H(Q)-D\ = o(x) 
n i l 

holds for every integer fcsl. 

We shall deduce from (10) that 

(11) f{A^CC\ QkPE(CQ)) = (k-\)H(Q) +f(CCA QPE(CQ)) 

holds for every positive integer k, Q and P. 
Let k, Q and P be positive integers. Considering 

(12) n:= PRk (ACa Q) {APCQRk(AC AQ)m+ 1} 

and taking into account (10), it is easily seen that (11) holds if k, Q and P satisfy the 

3* 
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relation 
(13) (P, Rk(ACAQ)) = (PE(CQ) + B, Rk(ACAQ)) = 1. 

It is obvious that (13) is satisfied in the following cases: 

P=l,Q = 2B; P=l,Q = 2pB, 

where p is a prime. Thus, we get from (11) that 

f(Pk) = k f ( p ) if (p, 2ABC) = 1. 

This with the additivity o f / shows that 

(14) f(nm)=f(n)+f(m) if (n, m, 2ABC) = 1. 

Thus, by using (10), (12) and (14), we see that (11) also holds if we relax the condi-
tion (13) to 
(15) (P, Rk(ACAQ), 2B) = (PE(CQ) + B, Rk(ACAQ), 2) = 1. 

Assume that (2, ABC)=1 and k is an odd positive integer. In this case one 
can check that (15) holds for P=Q= 1 and P= 1, Q=2. Thus, we get from (11) 
that 
(16) /(2") = kf(2) for all odd positive integers k. 

On the other hand, (15) also holds for P=2V, Q=2 and k=2, where v^O 
is an integer. From (11) we have 

(17) / (ACCa 2 V+ZE(C)) = ff( 2) +/(CCA 2V+1E(C)). 

Thus, we get from (17) that 

f(2k) = kf(2) + (k-\) {H(l) +f(CCA E(C)) —f(ACC\E (C))) 

holds for every positive integer k, which with (16) shows that 

/(2>) = */(2) ( k = 1,2, . . . ) . 

This with (14) implies that 

(18) /(nm) = f(n)+f(m) if («, m, ABC) = 1. 

Similarly as above, by using (10), (12) and (18) we also have (11) if k, Q and P satisfy 

(19) (P,Rk(ACAQ),B)= 1. 

Finally, let P = P 1 - P 2 , where (P
LT
 PJ=(PI, AC

A
Q)=1 and every prime di-

visor of P
2
 is a divisor of A C

A
Q . We have 

(P2,Rk(ACAQ),B)= 1, 
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therefore by (11) and (19) it follows that 

f(A
K

~
1

CC
A
QkP2E(CQ)) - ( f c - 1 ) H(Q) +/(CC

A
 P2E(CQ)). 

Since (Pu ACa QP2) = 1, by using the additivity o f / , we get 

f{Ak~1CCA Qk PE (CQ)) = f(Ak~1CCA Qk P2 E(CQ)) +f(P1) = 

= (k -1) H(Q) +f(CCA QPE(CQ)), 
which proves (11). 

Applying (11) in the case <2=1, we obtain that 

f(Ak~1CCA PE(C)) = (k-l)H(l)+f(CCAPE(C)) 

holds for every positive integer k and P, consequenly 

(20) f(Ak~1CCA QkE(CQ)) = (k—\)H(\) +f{CCA QkE(CQ)). 

On the other hand, (11) with P= 1 implies 

f(Ak~1CCAQkE(CQ)) = (k—\)H(Q) +f{CCA QE(C Q)), 

which with (20) gives 

f(CCAQkE(CQ)) = (k-\)(H(Q)-H(l))+f(CCAQE(CQ)). 

This, using the fact (E(CQ), B/E(CQ))=1 and the additivity o f / , shows that 

f(BCCA Qk) = kf(BCCA Q) — (k— 1 )f(BCCA). 
So, we have proved Lemma 1, because (5) follows from (11) in the case k=2 and 
^ = 6 = 1 -

Lemma 2. Let A, B be positive integers and D be a complex constant. If fast* 
satisfies the condition 

(21) 2 \f(An+B)-/(«)- D\ = o(x) as 
nmx 

then there is a complex constant U such that 

f(n) = Ulogn ( n = 1,2 ,3 , . . . ) . 

P roof . We first note that, by using (5) of Lemma 1 and the fact / (W*, (21) 
implies 
(22) f(A) = D, 

If A=1, then our assertion follows from the theorem of I. Katai—E. Wirsing 
mentioned in Section 1. In the following we assume that A s 2 and 

(23) 2 I/O*" + B) ~f(M\ = o(x). 
n&x 
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Let If denote those pairs (k, r) of positive integers for which 

2 \f(kn + r)—f(kn)\ = o(x). 

Since ( A , B ) £ l f and fisi*, we have (A, l)£lf, furthermore if (k0,l)£lf, then 
(k, 1 )ilf for all integers k^k0, because 

f((k + 1) n +1) —f((k +1) n) = {f(kn +1) -f(kri)} -

~{f[k((k +1)»+1)+1]-f[k((k+ l)n+1)]}. 

Thus, we have (k, 1 )£l f for every integer k ^ A . 
We shall prove that if (h+1, 1)€// and integers k, r satisfy 

(24) 0 < r < kjh and (k, r) = 1, 

then (k, r)af. We prove this by using induction on r. For r=1 our assertion is 
true, because 1 <k/h implies k>h. Assume that for every integer k, r satisfying 
(24) and r<R we have (k,r)£lf. Let AT be an integer such that 

(25) 0 < R^KIh and (K, R) = 1. 

Let k and r be positive integers which satisfy 

(26) Rk = Kr+1 and k < K, r < R. 

It is easily seen by (25) and (26) that (k, /0=1, furthermore 

Kr < Kr+1 = Rk < Kklh, 

which implies that r<k/h. Thus, k, r satisfy (24), and so (k, r)£If. 
On the other hand, we have 

f(Kn+R)-f(Kn) = {f[K(kn + /•) + 1 ]-f[K(kn + /•)]} + {f(kn + r) -f(kri)}, 

therefore, by using the fact (K,l)£lf and (k, r)£lf, we have (K,R)£lf. Thus 
we have proved (24). 

We now deduce from (23) that (2, l)€/y. To see this enough show that 

(27) (h+1, l)£lf with h+1>2 implies (h, \)£If. 

Assume that (h + 1, \)£lf and /z + l > 2 . Let 

S(x)= 2 \f(hn+l)-f(hn)\. 
nsx 

For each integer d with Osd^h — 1 we can choose positive integers K=K(d) 
and R=R(d) such that 
(28) (hd+ 1)K= h2R+l. 
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We have 
(29) 

S(x)= Z I f i h n +1) - / ( M l = 2 Z |Ah2™ + hd+ 1 ) - f ( h ( h m + d))\ = 
nSx d=0 hm+d^x ' 

= 2 Z \f{h\Km + R)+\)-f(h\Km + R)) + d=0 km+dSx 
+f(K(hm + d) + hR- Kd) -f(K(hm + rf))| 

and so S(x)—o(x) if hR—Kd=0, because (A + l, l)£7y and A +1 > 2 implies 
(A2, l)€/y. If hR-Kd^O, then we get from (28) that 

0 < hR-Kd = (K- 1)/A < Klh 
and 

(AT, hR-Kd) = (A', AT?) = 1. 

Thus, and r:=hR-Kd satisfy the condition (24), and so (K,hR-Kd)£lf. 
By using this and the fact (A2, l )€7 / ; we also get from (29) that S(x)=o(x). This 
shows that (A, 1 )€/ / , consequently (2, 1)67/. 

Assume now that 
(30) A(x) = 2 1/(2»+ l ) - / (2«) l = o(x). 

nsx 
Let q be a fixed prime. As we have proved above, from (30) we have (q, r)£lf if 
0 < r < q (see (24)). Let 

T(X)-.= Z M • 

Then, we have 

ni l raSx/a I ? J n = 0mod? 

Let r be an integer for which 0<r<q. Then (q, r)£lf, and so 

2 / 0 0 = 2 {f{qrn+r)-f(qm)}+ Z f{qm) = o(x)+\^f(q) + T[^\. 
nSx qm + r^x qm+r^x L q J \q / riinrmodq 

These imply that 

T(x) = q [|] /(<?) + qT[^) + o(x) = xf{q) + qT (|) + o(x) 
iq 

as from which we get 

/<*> = l im J M L = : u. 
log q i -*~xlogx 

From this and using fast* the proof of Lemma 2 is finished. 
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3. Proof of Theorem 2. Assume that fis/ satisfies the condition (3). Then 
from Lemma 1 we get that 

(31) f(BCCAQk) = kf(BCCAQ)-(k-\)f(BCCA) 

holds for every positive integer k and Q, where CA denotes the product of all prime 
divisors of C which are prime to A. 

For each prime p let e--e(p) be a non-negative integer for which pe\\BCCA. 
Then for all integers fi^e we deduce from (31) that 

(32) f(pfi+1)-f(pp) =f(Pe+1)-f(Pe). 
Now we write 

/(«) =f(n) + F(n), 

where f is a completely additive function defined as follows : 

(33) Mp):=f(pe+1)~f(pe), e = e(p). 

Then, from (32) and (33) it follows that 
F(p"+1) = F(p»), 

which implies 
F(pk) = F[(pk, BCCA)] (* = 0,1,2,...). 

Thus, we have 
(34) F(RI) = F[(n, BCCA)] (n = 1, 2, 3, ...). 

We shall prove that fx—U log for some constant U. 
We note that by (3) we have 

(35) 2\f(ABCAn + B)-f(BCCAn)-D\ = o(x). 
nsx 

By using f=fi+F and (34) we get that 

f(ABC
A
 n + B) - f ( B C C

A
 «)-£)=/! (ABC A n + B ) - f ( B C C

A
 n) + F(ABC

A
 n + B)-

- F(BCCAn)-D = f (ABC
4
 n+B) —fx («) - { f ( B C C

A
) - F(B) + F(BCC

A
) + D) 

and so, by (35) and Lemma 2, there is a complex constant U such that fx = U log. 
This completes the proof of Theorem 2. 

4. Proof of Theorem 1. Assume that f g i s i satisfy the condition (2), i.e. 

(36) 2 \g(an + b)-f(n)-d\ = o(x), 
nâx 

where a and b are positive integers and d is a complex constant. 

• M 



On a theorem of Katai-Wirsing 245 

For each positive integer N we have 

(abN+l,a(abN+l)n + b) = 1 
and 

(abN+ 1 )(a(abN+ 1 )n + b) = a[(abN+ 1 f n + b2N]+b 

for every positive integer n. Thus, by using the additivity o f / , we get 

f[(abN+ If n + b2N] -f[(abN+1) n] - g(abN+ 1) = 

= -{g [(aWV+ \)(a(abN+ 1)« + A)]-f[(abN+ \)2n + b2N]-d} + 

+ {g [a (abN+ 1 )n + b] -f[(abN+ 1) n]-d}, 

which with (36) implies that 

(37) 2 I f [ (abN+ 1 )2n + b*N]-f[(abN+ 1 )n]-g(abN+1)| = o(x). nsx 

Applying Lemma 1 with A=(abN+l)2, B=b2N and C=(abN+1) it follows 
from (37) that 

(38) f[b2(abN+ 1 )NQk] = kf[b2(abN+1 )NQ\-(k- l)f[b2(abN+ l)N] 

holds for every positive integer k and Q. Since (38) holds for each fixed positive 
integer N, so (38) also holds for every positive integer N. 

For each prime p, let Np be the smallest positive integer for which p\abNp + \. 
It is obvious that 1,2} for all primes p. We apply (38) with Q=p and N=NP 

to get 
(39) f(b2NpP

k) = kf(b2Npp) — (k— 1 )f(b2Np). 

Similiarly, as in the proof of Theorem 2, we can deduce from (39) that there are 
functions and F ^ s i such that 

(40) f = f i + F 
and 
(41) F(pk) = F[(pk, 62iVp)] (k = 0, 1, 2 ...), 

where p is a prime number. Since /VP£{1, 2}, one can check from (41) and the fact 
(b,N2)=1 that 

(42) F(n) = F[(n, b2)] + F[(n, N2)] (n = 1, 2, 3, ...). 

By using (40) and (42), we have 

(43) f[(abN+ l)2N2m + b2N]-f[(abN+ 1 )N2m]-g(abN+ 1) = 
= / {(abN+ l)2N2m + b2N] -Mm)- D, 
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where 

D:= g(abN+\)+f1[(abN+ l)N2]-F[(abN+l)2N2m + bzN] + F[(abN+ l)N2m] = 

= g(abN+1) + / i [(abN+1) N2] - {F[(m, A2)] + F[(/V, iV2)]} + {F[(m, b2)] + F(N2)} = 

= g(aMV+ l)+/x 1)/V2) + F[(a& + 1, N2)]. 

Applying (37) with n=N2m, by (43) we have 

2 | / i[(abN+ \fN2m + b*N) - / x ( m ) - D\ = o(x), 
nSx 

which, by using Lemma 2, implies 

(44) fL = C/log for some constant U 
and 

g(ai>W+ 1 ) + F[(abN+ 1, AT2>] = f1(abN+ 1) = U\og(abN+1). 

The last equality holds for every positive integer N, consequently 

g(m) + F[(m, N2)] = C/logm 

holds for all positive integers m which are prime to ab. Let 
(45) G(m) := g(m) — C/log m (m = 1 ,2 ,3 , . . . ) . 
Then, we have 
(46) G(m) = 0 if (m, lab) = 1. 

Finally, we shall prove that 

G(an + b) — F(ri) — d+Uloga = 0 (n = 1 ,2 ,3 , . . . ) , 

which with (40), (44), (45) gives the proof of Theorem 1. 
Since 

G(art + b) — F(ri)—d+ C/log a = 

= {g(an + b) -f(ri)-d}- {Ulog (an + b) - C/log n - C/log a} 

we obtain from (36) that 

(47) 2 IG(an + b)~F(n)-d+ Uloga\ = o(x). USX 

Let r be an arbitrary integer for which 0S/-<262. Then we get from (42) and 
(47) that 

F(2b2m + r) = F(r) (m = 1 ,2 , . . . ) 
and 
(48) 2 \G(2ab*m+ar + b) — F(r) — d+Uloga\ = o(x). 

Let M be a positive integer. By (46), we have G(2ab2t+1)=0 ( /=1, 2, ...), con-



On a theorem of Katai-Wirsing 247 

sequently 
(49) G(2ab2M+ar+b)-F(r)-d+Uloga = 

= G(2ab2M+ar + b) + G(2ab2t+l)-F(r)-d+Uloga = 

= G[2abz ((lab 2M+ar + b)t + M) + ar + b]— F(r) — d+U log a 

holds for every positive integer t. Thus, we get from (48) and (49) that 

2 \G(2ab2M+ar + b)-F(r)-d+U\oga\ = o(x), 
tsx 

which implies 
(50) G(2ab2M+ar+b)-F(r)-d+Uloga = 0 

for each positive integer M, i.e. (50) holds for every positive integer M. Since r 
is an arbitrary integer for which 0Sr<2fe2, and (50) holds for every positive integer 
M, we have 

G(an + b)-F(n)-d+U\oga = 0 (n = 1,2, ...). 

This completes the proof of Theorem 1. 
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