On additive functions with values in a compact Abelian group

BUI MINH PHONG

1. Introduction

Let G be an additively written, metrically compact Abelian topological group, \mathbf{N} be the set of all positive integers. A function $f: \mathbf{N} \rightarrow G$ is called a completely additive, if

$$
f(n m)=f(n)+f(m)
$$

holds for all $n, m \in \mathbf{N}$. Let \mathscr{A}_{G}^{*} denote the class of all completely additive functions $f: \mathbf{N} \rightarrow G$.

Let $A>0$ and $B \neq 0$ be fixed integers. We shall say that an infinite sequence $\left\{x_{v}\right\}_{v=1}^{\infty}$ in G is of property $D[A, B]$ if for any convergent subsequence $\left\{x_{v_{n}}\right\}_{n=1}^{\infty}$ the sequence $\left\{x_{A v_{n}+B}\right\}_{n=1}^{\infty}$ has a limit, too. We say that it is of property $E[A, B]$ if for any convergent subsequence $\left\{x_{A v_{n}+B}\right\}_{n=1}^{\infty}$ the sequence $\left\{x_{v_{n}}\right\}_{n=1}^{\infty}$ is convergent. We shall say that an infinite sequence $\left\{x_{v}\right\}_{v=1}^{\infty}$ in G is of property $\Delta[A, B]$ if the sequence $\left\{x_{A v+B}-x_{v}\right\}_{v=1}^{\infty}$ has a limit.

Let $\mathscr{A}_{G}^{*}(D[A, B]), \mathscr{A}_{G}^{*}(E[A, B])$ and $\mathscr{A}_{G}^{*}(\Delta[A, B])$ be the classes of those $f \in \mathscr{A}_{G}^{*}$ for which $\left\{x_{v}=f(v)\right\}_{v=1}^{\infty}$ is of property $D[A, B], E[A, B]$ and $\Delta[A, B]$, respectively.

It is obvious that

$$
\mathscr{A}_{G}^{*}(\Delta[A, B]) \subseteq \mathscr{A}_{G}^{*}(D[A, B]) \quad \text { and } \quad \mathscr{A}_{G}^{*}(\Delta[A, B]) \subseteq \mathscr{A}_{G}^{*}(E[A, B])
$$

Z. Daróczy and I. Kátai proved in [1] that

$$
\mathscr{A}_{G}^{*}(\Delta[1,1])=\mathscr{A}_{G}^{*}(D[1,1]),
$$

and in [2] they deduced the following assertion: If $f \in \mathscr{A}_{G}^{*}(\Delta[1,1)$, then there exists a continuous homomorphism $\Psi: \mathbf{R}_{x} \rightarrow G, \mathbf{R}_{x}$ denotes the multiplicative group of the positive reals, such that $f(n)=\Psi(n)$ for all $n \in \mathbf{N}$.

For the case $A=2$ and $B=-1$ the complete characterization of $\mathscr{A}_{G}^{*}(D[2,-1])$ and $\mathscr{A}_{G}^{*}(\Delta[2,-1])$ has been given by Z. Daróczy and I. KÁtai [3], [4].

In a recent paper [5] we gave a complete characterization of $\mathscr{A}_{G}^{*}(E[A, B])$ and $\mathscr{A}_{G}^{*}(\Delta[A, B])$. Namely we showed that

$$
\mathscr{A}_{G}^{*}(E[A, B])=\mathscr{A}_{G}^{*}(\Delta[A, B])
$$

and

$$
\mathscr{A}_{G}^{*}(\Delta[A, B])=\mathscr{A}_{G}^{*}(\Delta[1,1]) .
$$

In the other words, if $f \in \mathscr{A}_{G}^{*}(E[A, B])=\mathscr{A}_{G}^{*}(\Delta[A, B])$, then there is a continuous homomorphism $\Psi: \mathbf{R}_{x} \rightarrow G$ such that $f(n)=\Psi(n)$ for all $n \in \mathbf{N}$.

Our main purpose in this paper is to give a complete determination of $\mathscr{A}_{G}^{*}(D[A, B])$. We note that it is enough to characterize those classes $\mathscr{A}_{G}^{*}(D[A, B])$ for which $(A, B)=1$, since

$$
\mathscr{A}_{G}^{*}(D[A d, B d])=\mathscr{A}_{G}^{*}(D[A, B])
$$

holds for each $d \in \mathbf{N}$.
We shall prove the following
Theorem. Let $A>0$ and $B \neq 0$ be fixed integers for which $(A, B)=1$ and let G be a metrically compact Abelian topological group. If $f \in \mathscr{A}_{G}^{*}(D[A, B])$, then there are $U \in \mathscr{A}_{G}^{*}$ and a continuous homomorphims $\Phi: \mathbf{R}_{x} \rightarrow G, \mathbf{R}_{x}$ denotes the multiplicative group of positive reals, such that

$$
\begin{equation*}
f(n)=\Phi(n)+U(n) \quad \forall n \in \mathbf{N} \tag{I}
\end{equation*}
$$

(II)

$$
U(n+A)=U(n) \quad \forall n \in \mathbf{N},(n, A)=1
$$

(III) If X_{1}, Γ denote the set of all limit points of $\{\Phi(n) \mid n \in \mathbf{N}\}$ and $\{U(n) \mid n \in \mathbf{N}\}$, respectively, then

$$
X_{1} \cap \Gamma=\{0\}
$$

and Γ is the smallest closed group generated by

$$
\{U(m) \mid 1 \leqq m<A,(m, A)=1\} \quad \text { and } \quad\{U(p) \mid p \text { is prime, } p \mid A\}
$$

Conversely, let $\Phi: \mathbf{R}_{x} \rightarrow G$ be an arbitrary continuous homomorphism, X_{1} be the smallest compact supgroup generated by $\{\Phi(n) \mid n \in \mathbf{N}\}$. Let $U \in \mathscr{A}_{G}^{*}$ be so chosen that $U(n+A)=U(n)$ for all $n \in \mathbf{N},(n, A)=1$ and the smallest closed group Γ generated by $U(\mathbf{N})$ has the property $X_{1} \cap \Gamma=\{0\}$. Then the function

$$
f(n):=\Phi(n)+U(n)
$$

belongs to $\mathscr{A}_{\mathrm{G}}^{*}(D[A, B])$.

2. Preliminary lemmas

In this section we shall prove some results which will be used in the proof of our theorem.

Lemma 1. We have

$$
\mathscr{A}_{G}^{*}(D[A, B]) \subseteq \mathscr{A}_{G}^{*}(D[A, 1])
$$

for all fixed integers $A>0$ and $B \neq 0$.
Proof. Let $A>0, B \neq 0$ be fixed integers. Assume that

Let

$$
f \in \mathscr{A}_{G}^{*}(D[A, B]) .
$$

$$
n_{1}<\ldots<n_{v}<\ldots \quad\left(n_{v} \in \mathbf{N}\right)
$$

be an infinite sequence for which the sequence $\left\{f\left(n_{v}\right)\right\}_{v=1}^{\infty}$ is convergent. Then, it is obvious that the sequence $\left\{f\left(|B| n_{v}\right)\right\}_{v=1}^{\infty}$ has also a limit, consequently we get from the definition of $\mathscr{A}_{G}^{*}(D[A, B])$ that

$$
\lim _{v \rightarrow \infty} f\left[A n_{v}+\frac{B}{|B|}\right]=\lim _{v \rightarrow \infty} f\left[A|B| n_{v}+B\right]-f(|B|)
$$

exists as well. This implies in the case $B>0$ that $f \in \mathscr{A}_{G}^{*}(D[A, 1])$.
We now assume that $B<0$. In this case we have $f \in \mathscr{A}_{G}^{*}(D[A,-1])$. Since $\left\{f\left(n_{v}\right)\right\}_{v=1}^{\infty}$ is convergent, therefore the sequence $\left\{f\left(A n_{v}^{2}\right)\right\}_{v=1}^{\infty}$ is convergent, too. Thus, by using the fact $f \in \mathscr{A}_{G}^{*}(D[A,-1])$, it follows that the following limit exists:

$$
\lim _{v \rightarrow \infty} f\left(A n_{v}+1\right)=\lim _{v \rightarrow \infty} f\left[\left(A n_{v}\right)^{2}-1\right]-\lim _{v \rightarrow \infty} f\left[A n_{v}-1\right]
$$

This shows that $f \in \mathscr{A}_{G}^{*}(D[A, 1])$.
So we have proved Lemma 1.
In the following we assume that $A>0, B \neq 0$ are fixed integers and G is a metrically compact Abelian topological group. Let

$$
f \in \mathscr{A}_{G}^{*}(D[A, B])
$$

We shall denote by X the set of limit points of $\{f(n) \mid n \in \mathbf{N}\}$, i.e. $g \in X$ if there exists a sequence

$$
n_{1}<\ldots<n_{v}<\ldots \quad\left(n_{v} \in \mathbf{N}\right)
$$

for which $f\left(n_{v}\right) \rightarrow g$. Let $X_{1}(\subseteq X)$ be the set of limit points of $\{f(A n+1) \mid n \in \mathbf{N}\}$. Since \mathbf{N} and the positive integers $m \equiv 1(\bmod A)$ form semingroups, therefore $\{f(n) \mid n \in \mathbf{N}\}$ and $\{f(A n+1) \mid n \in \mathbf{N}\}$ are semigroups as well. Thus, X and X_{1} are closed semigroups in the compact group G, so by a known theorem (see [6], Theorem
(9.16)) they are compact subgroups in G. Since $0 \in X_{1} \subseteq X$ we have $f(n) \in X$ and $f(A n+1) \in X_{1}$ for each $n \in \mathbf{N}$.

Let $g \in X$ and $f\left(n_{v}\right) \rightarrow g$ as $v \rightarrow \infty$. Then, by using Lemma 1 , it follows that the sequence $\left\{f\left(A n_{v}+1\right)\right\}_{v=1}^{\infty}$ is convergent. Let $f\left(A n_{v}+1\right) \rightarrow g^{\prime}\left(\in X_{1}\right)$. It is easily seen that g^{\prime} is determined by g, and so the correspondence

$$
H: g \rightarrow g^{\prime} \quad\left(g \in X, g^{\prime} \in X_{1}\right)
$$

is a function.
Lemma 2. The function $H: X \rightarrow X_{1}$ is continuous and

$$
H(X)=X_{1}
$$

Proof. We can prove Lemma 2 by the same method as was used in [1] (see Lemma 4 and Lemma 5), so we omit the proof.

Lemma 3. We have

$$
\begin{equation*}
H(g+h+f(A))+H(g)=H(g+H(h+H(g))) \tag{2.1}
\end{equation*}
$$

for all $g \in X$ and $h \in X$.
Proof. Let $g \in X$ and $h \in X$ be arbitrary elements. Let

$$
n_{1}<\ldots<n_{v}<\ldots \quad \text { and } \quad m_{1}<\ldots<m_{v}<\ldots \quad\left(n_{v}, m_{v} \in \mathbf{N}\right)
$$

be such sequences for which $f\left(n_{v}\right) \rightarrow g$ and $f\left(m_{v}\right) \rightarrow h$. By using the following relation

$$
\left(A^{2} n_{v} m_{v}+1\right)\left(A n_{v}+1\right)=A n_{v}\left[A m_{v}\left(A n_{v}+1\right)+1\right]+1
$$

and using the definition of H, we get immediately that (2.1) holds. So, we have proved Lemma 3.

Lemma 4. Let

$$
E(f):=\{\varrho \in X \mid H(\varrho)=0\}
$$

Then $E(f) \neq \emptyset$. Furthermore, if $\varrho \in E(f)$, then

$$
\begin{equation*}
H(k \varrho+(k-1) f(A))=0 \tag{2.2}
\end{equation*}
$$

for every integer k. In particular, we have

$$
\begin{equation*}
H(-f(A))=0 \tag{2.3}
\end{equation*}
$$

Proof. Since X_{1} is a group, therefore $0 \in X_{1}$. Thus, it follows from $H(X)=X_{1}$ that there is at least one $\varrho \in X$ for which $H(\varrho)=0$. Then $E(f) \neq \emptyset$. Furthermore, it is easily seen from (2.1) that

$$
\begin{equation*}
H\left(\varrho_{1}+\varrho_{2}+f(A)\right)=0 \quad \text { if } \quad H\left(\varrho_{1}\right)=H\left(\varrho_{2}\right)=0 \tag{2.4}
\end{equation*}
$$

Assume that $\varrho \in E(f)$, i.e. $H(\varrho)=0$. By using (2.4) and induction on k we get immediately that (2.2) holds for every $k \in \mathbf{N}$. Let

$$
V_{\varrho}=\{k(\varrho+f(A)) \mid k \in \mathbf{N}\} .
$$

Since (2.2) holds for every $k \in N$, therefore we have

$$
\begin{equation*}
H(\delta-f(A))=0 \quad \text { for all } \quad \delta \in V_{e} \tag{2.5}
\end{equation*}
$$

Let \bar{V}_{Q} be the smallest closed set containing V_{e}. It is clear that V_{Q} is a semigroup, therefore \bar{V}_{Q} is a closed semigroup in G. Thus, by using a known theorem of [6], we get that \bar{V}_{e} is a compact group. Since H is continuous function and \bar{V}_{e} is the smallest closed set containing V_{Q}, it follows that (2.5) holds for all $\delta \in \bar{V}_{Q}$, consequently (2.2) holds for every integer k. So (2.2) is proved.

Finally, by applying (2.2) with $k=0$, we obtain (2.3).
The proof of Lemma 4 is finished.
Lemma 5. We have

$$
\begin{equation*}
H(g+\tau)=H(g)+\tau \tag{2.6}
\end{equation*}
$$

for all $g \in X$ and $\tau \in X_{1}$.
Proof. We first prove that

$$
\begin{equation*}
H(\tau-f(A))=\tau \quad \text { for all } \quad \tau \in X_{1} \tag{2.7}
\end{equation*}
$$

and (2.8)

$$
H(g-H(g))=0 \quad \text { for all } \quad g \in X
$$

Let $\tau \in X_{1}$. Then, it follows from $H(X)=X_{1}$ that there is one $h \in X$ such that $H(h)=\tau$. We apply (2.1) with $g=-f(A)$ and using (2.3), we have

$$
H(H(h)-f(A))=H(h)
$$

which with $H(h)=\tau$ proves (2.7). It is clear that (2.8) is a consequence of (2.1) and (2.3) in the case $h+H(g)=-f(A)$.

We now prove Lemma 5.
Let $g \in X$ and $\tau \in X_{1}$ be arbitrary elements. By using (2.8), we have
and

$$
H[(g+\tau)-H(g+\tau)]=0
$$

$$
H[g-H(g)]=0
$$

Applying Lemma 4 with $\varrho=g-H(g)$ and $k=-1$, we get that

$$
H[-g+H(g)-2 f(A)]=0 .
$$

Let

$$
\varrho_{1}:=g+\tau-H(g+\tau) \quad \text { and } \varrho_{2}:=-g+H(g)-2 f(A) .
$$

Then $H\left(\varrho_{1}\right)=H\left(\varrho_{2}\right)=0$, and so by (2.4) we have

$$
H[(g+\tau-H(g+\tau))+(-g+H(g)-2 f(A))+f(A)]=0,
$$

i.e.

$$
\begin{equation*}
H[(\tau-H(g+\tau)+H(g))-f(A)]=0 \tag{2.9}
\end{equation*}
$$

Since $\tau \in X_{1}, H(g+\tau) \in X_{1}, H(g) \in X_{1}$ and X_{1} is a group, therefore

$$
\begin{equation*}
\tau-H(g+\tau)+H(g) \in X_{1} . \tag{2.10}
\end{equation*}
$$

Finally, from (2.7), (2.9) and (2.10) we get that

$$
\tau-H(g+\tau)+H(g)=0
$$

which proves (2.6).
So we have proved Lemma 5.
Lemma 6. We have

$$
\begin{equation*}
H(g+h+f(A))=H(g+h)+H(0)=H(g)+H(h) \tag{2.11}
\end{equation*}
$$

for all $g \in X$ and $h \in X$.
Proof. Let $g \in X$ and $h \in X$. Since $H(h+H(g)) \in X_{1}$ and $H(g) \in X_{1}$, by using Lemma 5, we have

$$
H(g+H(h+H(g)))=H(g)+H(h+H(g))=H(g)+H(h)+H(g)
$$

This with (2.1) implies that

$$
\begin{equation*}
H(g+h+f(A))=H(g)+H(h) \tag{2.12}
\end{equation*}
$$

Thus, (2.12) holds for all $g \in X$ and $h \in X$.
On the other hand, we get from (2.12) that

$$
H(g+h+f(A))=H(g+h)+H(0)
$$

This with (2.12) shows that (2.11) holds for all $g \in X$ and $h \in X$. The proof of Lemma 6 is finished.

3. Proof of the theorem

Assume that $A>0$ and $B \neq 0$ are fixed integers for which $(A, B)=1$ and G is a metrically compact Abelian topological group. Let

$$
f \in \mathscr{A}_{\mathbf{G}}^{*}(D[A, B])
$$

As in the Section 2, we denote by X and X_{1} the set of limit points of $\{f(n) \mid \in \mathbf{N}\}$ and $\{f(A n+1) \mid n \in \mathbf{N}\}$, respectively. Let $H: X \rightarrow X_{1}$ be a continuous function which is defined in Section 2, i.e., if $f\left(n_{v}\right) \rightarrow g$, then $f\left(A n_{v}+1\right) \rightarrow H(g)$.

For an arbitrary $n \in \mathbf{N}$, let $S(n)$ be the product of all prime factors of n composed from the prime divisors of $A, R(n)$ be defined by $n=S(n) \cdot R(n)$, i.e. $(A, R(n))=1$ and every prime divisor of $S(n)$ is a divisor of A. Let $\bar{R}(n)$ be the smallest positive integer for which

$$
\bar{R}(n) \equiv R(n) \quad(\bmod A)
$$

It is obvious that $(\bar{R}(n), A)=1$ and $1 \leqq \bar{R}(n)<A$.
Lemma 7. Let
(3.1)

$$
U(n):=f[S(n) \cdot \bar{R}(n)]+H(0)-H(f[S(n) \cdot \bar{R}(n)]) .
$$

Then, we have

$$
\begin{equation*}
H(f(n))-f(n)-H(0)+U(n)=0 \tag{3.2}
\end{equation*}
$$

for all $n \in \mathbf{N}$.
Proof. Let $\bar{H}: X \rightarrow X_{1}$ be the function which is defined by the relation $\bar{H}(g)=$ $=H(g)-H(0)$. Then, it is easily seen from Lemma 5 and Lemma 6 that

$$
\begin{equation*}
\bar{H}(g+h)=\bar{H}(g)+\bar{H}(h) \quad \forall g, h \in X, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{H}(\tau)=\tau \quad \forall \tau \in X_{1} \tag{3.4}
\end{equation*}
$$

For each $n \in \mathbf{N}$, let $c(n)$ be the smallest positive integer for which $R(n) \cdot c(n) \equiv$ $\equiv 1(\bmod \mathrm{~A})$. Then, it is obvious that

$$
f[R(n) \cdot c(n)] \in X_{1} \quad \text { and } \quad f[\bar{R}(n) \cdot c(n)] \in X_{1}
$$

hold for every $n \in \mathbf{N}$. By using (3.3) and (3.4), we deduce that

$$
\bar{H}[f(n)]+\bar{H}[f(c(n))]=\bar{H}[f(n \cdot c(n))]=f[R(n) \cdot c(n)]+\bar{H}[f(S(n))]
$$

and

$$
\bar{H}[f(\bar{R}(n))]+\bar{H}[f(c(n))]=\bar{H}[f(\bar{R}(n) \cdot c(n))]=f(\bar{R}(n) \cdot c(n)) .
$$

These imply that

$$
\bar{H}[f(n)]-\bar{H}[f(\bar{R}(n))]=f(R(n))-f(\bar{R}(n))+\bar{H}[f(S(n))],
$$

consequently

$$
\bar{H}[f(n)]-f(n)+\{f(S(n) \cdot \bar{R}(n))-\bar{H}[f(S(n) \cdot \bar{R}(n))]\}=0 .
$$

This with (3.1) proves (3.2)

Lemma 8. We have

(i) $U \in \mathscr{A}_{G}^{*}$,
(ii) $\mathrm{U}(n+A)=U(n)$ for all $n \in \mathbf{N},(n, A)=1$,
(iii) If $\left\{a_{1}, \ldots, a_{\varphi(A)}\right\}$ is a reduced residue system moduls A, then $U\left(a_{1}\right), \ldots, U\left(a_{\varphi(A)}\right)$ form a group in G.
(iv) Let Γ denote the set of all limit points of $\{U(n) \mid n \in \mathbf{N}\}$. Then Γ is the smallest closed group generated by $U\left(a_{1}\right), \ldots, U\left(a_{\varphi(\mathcal{A})}\right), U\left(p_{1}\right), \ldots, U\left(p_{\omega(A)}\right)$, where $\left\{a_{1}, \ldots, a_{\varphi(A)}\right\}$ is a reduced residue system moduls A and $p_{1}, \ldots, p_{\omega(A)}$ are all distinct prime factors of A. Furthermore, we have

$$
X_{1} \cap \Gamma=\{0\}
$$

Proof. Parts (i) and (ii) follow at once from the definition of U and Lemma 7. The part (iii) is a consequence of (i) and (ii). To prove (iv) we first note that Γ is a closed semigroup in G, and so Γ is a group by Theorem (9.16) of [6]. Hence by (ii) it follows that Γ is the smallest closed group generated by $U\left(a_{1}\right), \ldots, U\left(a_{\varphi(A)}\right), U\left(p_{1}\right), \ldots$ $\ldots, U\left(p_{\omega(A)}\right)$.

Since X_{1}, Γ are subgroups in G, therefore $0 \in X_{1} \cap \Gamma$. Let us assume that $\delta \in$ $\in X_{1} \cap \Gamma$. Then there is a sequence $\left\{n_{v}\right\}_{v=1}^{\infty}$ for which $U\left(n_{v}\right) \rightarrow \delta$. Applying (3.2) with $n=n_{v}$, we have

$$
\begin{equation*}
H\left[f\left(n_{v}\right)\right]-f\left(n_{v}\right)-H(0)+U\left(n_{v}\right)=0 . \tag{3.6}
\end{equation*}
$$

Since G is sequentially compact, therefore the sequence $\left\{f\left(n_{v}\right)\right\}_{v=1}^{\infty}$ contains at least one limit point. Let

$$
f\left(n_{v_{j}}\right) \rightarrow g \quad(\in X) .
$$

Then, by (3.6) and using the fact H is continuous, we get

$$
H(g)-g-H(0)+\delta=0
$$

which with $H(g)-H(0)+\delta \in X_{1}$ implies that $g \in X_{1}$. So, by Lemma 5

$$
\delta=g+H(0)-H(g)=0
$$

Thus, we have proved that $X_{1} \cap \Gamma=\{0\}$. This completes the proof of (iv).
The proof of Lemma 8 is finished.
We now prove the theorem. We first show that

$$
\begin{equation*}
f(A n+1)-H(f(n)) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

Assume the contrary. Let

$$
\begin{equation*}
f\left(A n_{v}+1\right)-H\left(f\left(n_{v}\right)\right) \rightarrow \lambda \neq 0 \quad \text { as } \quad v \rightarrow \infty . \tag{3.8}
\end{equation*}
$$

Since the sequence $\left\{f\left(n_{v}\right)_{v=1}^{\infty}\right.$ contains at least one limit point, we can find a subsequence $\left\{n_{v j}\right\}_{j=1}^{\infty}$ of the sequence $\left\{n_{v}\right\}_{v=1}^{\infty}$ such that $f\left(n_{v_{j}}\right) \rightarrow g(\in X)$ as $j \rightarrow \infty$. Using the continuity of H, by (3.8) we have

$$
H(g)-H(g)=\lambda
$$

which is contradiction. Thus, we have proved (3.7). From (3.2) and (3.7) we get
immediately

$$
\begin{equation*}
f(A n+1)-f(n)-H(0)+U(n) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{3.9}
\end{equation*}
$$

Let

$$
F(n):=f(n)-U(n) \quad(n \in \mathbf{N})
$$

It is obvious by Lemma 8 that $F \in \mathscr{A}_{G}^{*}$ and

$$
F(A n+1)=f(A n+1)-U(A n+1)=f(A n+1)
$$

for all $n \in \mathbf{N}$. This with (3.9) implies

$$
F(A n+1)-F(n)-H(0) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

consequently $F \in \mathscr{A}_{G}^{*}(\Delta[A, 1])$. It was proved in [5] that if $F \in \mathscr{A}_{G}^{*}(\Delta[A, 1])$, then there is a continuous homomorphism $\Phi: \mathbf{R}_{x} \rightarrow G$ such that $F(n)=\Phi(n)$ for all $n \in \mathbf{N}$, where $\mathbf{R}_{\boldsymbol{x}}$ denotes the multiplicative group of positive reals. Thus, we have proved that

$$
\begin{equation*}
f(n)=\Phi(n)+U(n) \tag{3.10}
\end{equation*}
$$

where U satisfies the conditions (i)-(iv) of Lemma 8. By (3.2) and (3.10) we also have

$$
\Phi(n)=H(f(n))-H(0) \text { for all } n \in \mathbf{N}
$$

therefore it follows from (3.5) that the set of all limit points of $\{\Phi(n) \mid n \in \mathbf{N}\}$ is X_{1}. So we have proved the first part of our theorem.
Finally, let $\Phi: \mathrm{R}_{\boldsymbol{x} \rightarrow G}$ be a continuous homomorphism and let $U \in \mathscr{A}_{G}^{*}$ be so chosen that

$$
\begin{equation*}
U(n+A)=U(n) \quad \text { for all } \quad n \in \mathbf{N}, \quad(n, A)=1 \tag{3.11}
\end{equation*}
$$

and

$$
X_{1} \cap \Gamma=\{0\}
$$

where X_{1}, Γ denote the smallest closed groups in G which are generated by $\Phi(\mathbb{N})$ and $U(\mathbf{N})$, respectively.

Let

$$
f(n):=\Phi(n)+U(n) \in_{\mathscr{A}_{G}^{*}}^{*}
$$

Assume that for some subsequence $\left\{n_{v}\right\}_{v=1}^{\infty}$ of positive integers the sequence $\left\{f\left(n_{v}\right)_{v=1}^{\infty}\right.$ converges. Then, by using $\Phi\left(n_{v}\right) \in X_{1}, U\left(n_{v}\right) \in \Gamma$ and $X_{1} \cap \Gamma=\{0\}$, we deduce that the sequences $\left\{\Phi\left(n_{v}\right)\right\}_{v=1}^{\infty}$ and $\left\{U\left(n_{v}\right)\right\}_{v=1}^{\infty}$ are convergent, therefore by (3.11) and $(A, B)=1$ we see that

$$
\begin{aligned}
& \lim _{v \rightarrow \infty} f\left(A n_{v}+B\right)=\lim _{v \rightarrow \infty}\left\{\Phi\left(A n_{v}+B\right)+U\left(A n_{v}+B\right)\right\}= \\
& =\lim _{v \rightarrow \infty} \Phi\left(A n_{v}+B\right)+U(B)=\Phi(A)+U(B)+\lim _{v \rightarrow \infty} \Phi\left(n_{v}\right)
\end{aligned}
$$

exists as well. So we have proved that $f \in \mathscr{A}_{G}^{*}(D[A, B])$.

The proof of our theorem is finished.
Acknowledgements. I am thankful to Professor I. Kátai for the indication of the problem and his help in the preparation of this paper.

References

[1] Z. Daróczy and I. Kátar, On additive number-theoretical functions with values in a compact Abelian group, Aequationes Math., 28 (1985), 288-292.
[2] Z. Daróczy and I. Kátar, On additive arithmetical functions with values in topological groups. I, Publ. Math. Debrecen, 33 (1986), 287-291.
[3] Z. Daróczy and I. KÁtar, Characterization of additive functions with values in the circle group, Publ. Math. Debrecen, 36 (1989), 1-7.
[4] Z. Daróczy and I. Kátai, A supplement to our paper "Characterization of additive functions with values in the circle group", Publ. Math. Debrecen, in print.
[5] B. M. Phong, Characterization of additive functions with values in a compact Abelian group, Publ. Math. Debrecen, 40 (1992), 273-278.
[6] E. Hewirt and K. A. Ross, Abstract harmonic analysis, Springer (Berlin, 1963).
EÖTVÖS LORÁND UNIVERSITY
COMPUTER CENTER
BUDAPEST, H-1117
BOGDÁNFY ÚT 10/B.

