
Acta Sei. Math., 56 (1992), 259—267 

Moufang Lie loops and homogeneous spaces 

PfiTER T. NAGY 

0. Introduction 

The classical model of the Moufang Lie loops is the multiplication on S7 defined 
by Cayley numbers of norm one. This multiplication is in a close relation with the 
spherical geometry of S7, which is a symmetric Riemannian space of constant curva-
ture. This connection has been generalised by O. Loos in [9] to any Moufang loop 
by proving that the modified local multiplication (x, y) —x1/2 • y • x1/2 gives the (local) 
geodesic loop multiplication of a symmetric space (cf. [6]). The analogous corres-
pondance gives a differential geometric machinery for the investigation of analytic 
Bol and Moufang loops (cf. [2], [4], [10]). For group multiplications, one has a 
1-parameter family of modified local loop multiplications xo)y=x°-y-x1~" (<r£R) 
investigated by M. A . AKIVIS [1], that are geodesic loops. 

This paper is devoted to study geodesic loops of reductive homogeneous spaces 
associated with Moufang loops. Such a geodesic loop is gotten from the modified 
multiplication x^y^x"-y -x1-" for each cgR in the case of the groups. For Mouf-
ang loops one obtains geodesic loop of reductive homogeneous space only for 

1 1 2 1 
<7=—, —, and —. For (7=—, the geodesic loop of the symmetric space was in-
vestigated by O. Loos in [9]. 

2 
For < 7 = y > w e S l v e a description of the corresponding reductive space struc-

1 
ture in this paper. An analogues description can be obtained for <r=— using the 

right multiplication instead of the left one. Our method to describe this reductive 
space structure is to represent the original loop multiplication on the Moufang 
loop by a geodesic loop multiplication of an invariant connection on a reductive 
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homogeneous space. Then we deform this latter geodesic loop multiplication as 

xo y=x" • y-xl~" f<x=—1 and prove that this gives the geodesic loop multiplica-
(') \ 3) 

tion of the canonical connection of the reductive homogeneous space. 

1. The local loops x(o)y=xa •y-x1-' (<r£R) on a group 

Let 'S be a connected Lie group and let us consider the action of the group 
on <S given by ((g1,g2),g)€(&X&)X&-»gi-g-g21<£&. The isotropy 

subgroup of this action is the diagonal Jif=A(&X&)={(g,g);g€&}. We denote 
by tn" the transversal subspace in the Lie algebra of JT = 

to the diagonal defined by ma={((rX, (<r-l)X), where 
p^ST/S and <r£R. It is clear that Ad hence the subspace W is a reductive 
complement of in p+p. Let V" denote the canonical connection of the re-
ductive homogeneous space j f / j f given by m". 

T h e o r e m 1.1. The geodesic loop multiplication of the canonical connection 
V® of the reductive homogeneous space J f / ^ f defined by 

e xP2° Te. x ° (exPe 1 y> X,yt<S 
can be expressed in a normal neighbourhood of e ^ as 

e*Pi ° * ° ( e*Pi)_ 1 y = xoy = x?-y- x1'*, v?) 

where exp"x denotes the exponential map at x£@ and x"e x is the parallel translation 
yjS along the geodesic through e and x with respect to the connection V". 

P r o o f . If (aX, (1— G)X)^i" then the orbit of the 1—parameter subgroup 
exp t(oX,(\-o)X) through is 

exp t(aX, (l—c)X)e = (exp taX, exp t(a-1) e = 

= exp taX- e • exp /(1 —o)X = exp tX. 

Using Proposition 2.4 in f7, Chap. X.] we obtain the parallel translation Ta
e x in 

the form t® raptX=^lexp,<rXo^0expf(1_ff)X, where X
x
 and QX denote the left and the 

right multiplication maps on
 <

S, respectively. Since the mapping X
e%ptaX

og
expt(1

_
a)X 

is an affine transformation of the connection V", the geodesies of this connection 
have the form 

¿«pf,xoe«p,(i-»)xexpjy = exp taX- e x p . ? y - e x p / ( l = 

= exp X- exp i (Adeipt((r_1)XF). 
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It follows that the geodesies of the connections V (erÇR) are independent of the 
parameter a. Hence the geodesic loop multiplication of the connection V" satisfies 
the equations 

e xPé*pX°expX0(e xP«py)~1 e x P Y = exp£pXOT* e IpX Y = 

= expjipXcxpaXo3r gcxp(1_a)XY= explxpXo^reXexpXoAd„pla.1)XY. 

Since the group multiplication coincides with the geodesic loop multiplication of 
its left canonical connection V1 we obtain 

exp^pXoT?,eipXo(expe
ff

ipy)-1expy = exp X-expoAd„p(ff_1)Xy = 

= exp aX • exp Y- exp (l—cr)X, 

that proves the theorem. 

2. The left canonical connection of a loop 

Let JS? be a smooth loop with identity element eÇ. 3?. We define the translated 
loop multiplications centered at a£ i f by the formula 

x • y := x • a\y, (aÇJ?) 
a 

where x-y=x^y and x • x\j>=_y. This loop is isotopic to the original loop 
multiplication and has aÇ S£ as identity element. 

Let Xx denote the left multiplication map of the loop ,5? and ^eXx. £TeSâ—!TX<£ 
be its tangent map. 

Def in i t ion 2.1. The left canonical connection V of the loop S£ is defined by 
the parallel vector fields 

X(x):=3TeXxX(e). 

Since these vector fields are globally defined, the connection V is obviously 
flat. 

Propos i t ion 2.2. The left canonical connection of the translated loop multiplica-
tion x^y(aÇSf) on <£ coincides with the left canonical connection^ of the original loop. 

Proof . The assertion follows from the definition, because the left multiplica-
tion map of the translated loop multiplication x -y is XxX~1. 
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P r o p o s i t i o n 2.3. The covariant derivative (VZT)(X, Y) of the torsion tensor 
field T(X, Y) of the connection V is 

(VzT)(Z, Y) = <Z, Y, X)-{Z, X, Y), 

where (X, Y, Z)a is the associator of the translated loop multiplication x • >>. 

Proo f . Wedenoteby r(x) the mapping ^ ¡ i f — 2TJ£. Using the covariant 
constant vector fields X(x)=r(x)Xe and Y(x)=t(x)Ye, the torsion tensor field 
takes the form 

T(X, Y) = V
X
Y - V

Y
X - [ X , Y] = - [X, Y] = - i(x) Y

E
(X(x)) + t ( x ) X

E
(F(x)) = 

= -i(x) Ye (z(x) Xe) + t(x) Xe (z(x) Ye), 

where i(Y) denotes the derivative of the mapping T by the variable x in the di-
rection Y. It follows 

(VZT)(X, Y)e = Z{z-\x)T(X, y)]e = -x(e)T(X, Y)e(Ze) + Z[T(X, Y)]e = 

= - t(e) [-*(*) Ye{T(x)Xe) + i(x)Xe(T(X)7C)](Z)- YC(X^, Ze)-

- t(e)Ye(i(e)Xe(Ze)) + r(e)Xe(Ye, Ze) + i(e)Xe(i(e)Ye(Ze)). 

We consider now a local coordinate system defined on a neighbourhood of the 
identity e on which the loop multiplication is of the form 

x-y = x+y + q(x, y) + r(x, x, y)+s(x, y, y) + {higher order terms}, 

where q is a bilinear, r and s are trilinear maps on the coordinate vector space. Then 
we can write 

NX,Y)
E
 = -q{X,Y) + q{Y,X), 

( V z T ) ( X , Y)e = q(Z, q(X, Y)) - q(Z, q(Y, X)) - r(X, Z, Y) - r(Z, X, Y) -

-q(q(Z, X), F) + r(7, Z, X) + r{X, Z, Y) + q(q(Z, Y), X). 

By the Theorem IX. 6.6. in [5], the commutator and the associator of the loop have 
the forms 

[X,Y] = q{X,Y)-q(Y,X) 
and 

Y, Z) = q(q(X, Y), Z)-q(X, q(Y, Z)) + r(X, Y, Z) + 

+ r(Y, X, Z) — s(X, Y, Z) - s(X, Z, Y), 

respectively. Hence we obtain 

(Vz T)(X, Y)e = <Z, Y, X) - <Z, Z, Y), 

which proves the assertion at For a ^ e we consider in the same way the 
loop multiplication x • y instead of x • y to prove the assertion. 
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3. Alternative family of loops 

Definit ion 3.1. The family of loop multiplications x-y defined on $£ is 
a 

called alternative if the identities 

x-(x-y) = (x-x)-y, x-(y-y) = (x-y)-y, x-(y-x) = (x-y)-x, 
a a a a a a a a a a a a 

are satisfied for all x, y, a£ 3?. 

Propos i t ion 3.2. If the family of loop multiplications x-y defined on i ? is 
a 

alternative then the torsion tensor field of its canonical connection V satisfies 

(Vz T)(X, Y) = J {T(T(X, Y), Z) + T(T{Y, Z), X) + T(T(Z, X), y)}. 

Proof . By the assumption of the alternativity of the loop system the associator is 

(X, r,Z)= j {[[X, Y], Z] + [[Y, Z], X] + [[Z, X], y]} 

(cf. Remark IX. 6.18. in [5]). Since T(X, Y)= -[X, Y], the assertion follows from 
Proposition 1.3. 

1 
Propos i t ion 3.3. The connection V defined by VXY=VXY+ — T(X, Y) is 

O O 
complete. Its torsion and curvature tensor fields T(X, Y), R(X, Y)Z satisfy 

%T= 0, %R = 0, 

i.e. the manifold if with the connection V is a locally reductive homogeneous space. 
o o 

Proof. Since the connections V and V have the same geodesies V is complete. o o o o 
The relations VzT=0, Vz7? = 0 follows by standard calculations from Proposition 
3.2. 

Theorem 3.4. Let be a connected and simply connected manifold equipped 
with an alternative family of loop multiplications x-^y. Then & can be represented as 
a global reductive homogeneous space Z£=($l2te, where the Lie algebras of the Lie 
groups № satisfy and Ad ^mfz-m. If V is the canonical connection o 
of the homogeneous space and T is its torsion tensor field, then the left canonical 
connection V of the family of loop multiplications takes the form 

V*7= VxY-T(X,Y). 

Proof . The assertion follows from the preceding propositions because a comp-
lete, connected and simply connected locally reductive homogeneous space is a global 
one (cf. Chap. X. Theorem 2.8. in [7]). 
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4. Geodesic loops of the left canonical connection 

P r o p o s i t i o n 4.1. Let jSf be a Moufang loop and let V denote its left canonical 
connection. If x(t) is a geodesic through the point a=x(0) with respect to V then 
x(t) is a one-parameter subgroup of the translated multiplication x - y, and the parallel 

a 
translation along x(t) coincides with the map T ( x ( 7 ) ) o T ( a ) _ 1 , where x(x)=STe).x. 
Consequently the loop multiplication can be written in the form 

x-y = expxoT(x)oT(a)-1oexpj1j a 

in a neighbourhood of a. 

P r o o f . Since the Moufang loops are alternative and their isotops are also 
Moufang loops, the family of loop multiplications x - y consists of diassociative a 
loops (cf. Chap. VI. in [3]). The geodesic loop multiplication x ^ = e x p x o T ( x ) o 
oT(a)_1oexpJ1 y of the left canonical connection of the diassociative loops coincides 
with the original multiplication because the geodesies of the left canonical connec-
tion of the diassociative loops are the curves x-exp tY(x^£C, Y^JJg), where 
exp tY is the 1-parameter subgroup of S£ tangent to Y^STeS£. Hence the assertion 
follows from the results in the Section 1. 

P ropos i t i on 4.2. Let xoy denote the local loop multiplication with identity 
element a defined by 

xoy = x2/s • (y • X1/s) 
a a a 

on a Moufang loop JSf. If x(t) is a geodesic with respect to the left canonical connec-
tion V through x(0) = a, then it is a one-parameter subgroup of the loop with multipli-
cation xoy. The parallel translation along the one-parameter subgroup x(t) with 

respect to the connection Vx Y= VXY+— T(X, Y) coincides with the map ¿fa\a(x(t)), 
o « 

where Xa denotes the left multiplication map la(x)y=x°y. Consequently, 

xoy = expxo^ iaoexp"1^ 
a 

in a neighbourhood of a. 

P r o o f . We know, that the loop multiplications x^y(a€£f ) have 1-parameter 
subgroups in each direction that are geodesies of the connection V. Since 
a-exp. tY is a 1-parameter subgroup of the multiplication x-y, it can be written e a 
in the form 

a • expe tY = expa tFeXe(a)Y. 
e 

Similarly, x - 1 - ( exp e tY-x ) is a 1-parameter subgroup of the multiplication x -v , 
e e 0 

- -M 
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hence it can be written in the form expc t^'eXe(x)~1o^"ege(x)Y. Thus we have 

xoexpe tY= x - (x-^-Cexp. /F-x 1 / 3 ) ) = x • (expe tftXe(x1<3)-1o£rege(x1'3)Y) = 

= exp* t3Te Xe (x2/3) oFege (x1/^) y 
and so 

xoy = expx^"cAc(x2/3)o^"egc(x1/3) exp - 1 ^ 
e 

follows. 
We prove now that the mapping ^¡Ae(x2 / 3)o^oe(x1 / 3) is the parallel translation 

e 

of the connection V along the geodesic segment expe tX ( O s / s 1), where expe X=x. 
First, we note that the 1-parameter groups of the multiplications x • v and xov a a 
coincide for all Sf. Let Y(t) denote the vector field 

7 ( 0 = STeXe (expe j tx}oreQe (expc - i tx} Y0 

along exp e iZ, where Y ^ F j e . If x 0 =exp e / 0 Z, j>0=exp e^y 

and X(t0)=yeXe(x0)X then we can write 

2 1 2 1 
= expe(t —10) X • y0 • expe ~^{t — t0)X = expe— tX• y • expe -^tX. 

3 e e j j e e j 

Now 

n o = ^ ^ ( c x p ^ j ( / - / „ ) J r ( r 0 ) ) o ^ ^ ( e x p ^ - j ( i - / 0 ) 2 r ( / 0 ) ) r ( i o ) 

follows, and then 
(V*JO(>o) = A-1 (expIO(/ - 1 0 ) X(t0j) y(/0)},0 = 

= ^ fa^ [exPx0 j 0 - to)X(>o))°y~Xo6Xo (exp^ j(i-10)*(?„)) r(i0)} t • 

We introduce a coordinate system around x0 in which the multiplication x • y is *0 
of the form 

x-y = x+y+q{x,y) + r(x,x,y)+s(x,y,y) + {higher order terms}. 
*0 

Then we obtain that 

(VxY)(t0) = j<?(X(t0), Y(t0)) + j<?(Y(t0), X(t0)) = j r ( X ( t 0 ) , Y(t0)), 

or 

(%Y)(t0) = (V*y)(r„)- j r ( J r ( i 0 ) , Y(t0)) = 0. 
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Thus 3Teie=STe).e |expe — tX^ o 3TeQe |expe — tXJ gives the parallel translation along 
O 

exp„ tX with respect to the connection V, which was to be proved. 

Theorem 4.3. Let i f be a connected Moufang loop with the multiplication 
x • y and is the Lie transformation group generated by the maps le(x) := ),e(x2/3) Qe(x1/S) 

e 
i f ) . Let tf be the isotropy subgroup of <3 at e£ if . The loop can be represented 

as a reductive homogeneous space 'S/^C with the reductive decomposition + 
where p and A are the Lie algebras of and , respectively. The complementary 
subspace m of A in y consists of the tangent vectors of the one parameter subgroups 
{Ae(x(?))} at the identity of '¡S, where the curves {*(/)} are the one parameter subgroups 

o o 
in the loop i f . Let T be the torsion tensor field of the canonical connection V of IS ¡J? 
and let V be the invariant connection of the homogeneous space ^¡^ defined by 

VXY= VxY-T(X,Y). 

Then the multiplication x^y locally coincides with the geodesic loop multiplication ofV. 

Proof . Let i f be a connected Moufang loop. The translated multiplications 
x • y :=x • a\y locally coincide with the geodesic loop multiplications of the canonical 

a 

connection V. Let p: i f — i f be the universal covering of the loop if. The kernel 
p~x(e) is a central abelian discrete subgroup of if, which is naturally isomorphic 
to the fundamental group of i f (cf. Proposition IX. 1.24. in [5]). Since p: 
is a covering homomorphism it is covering homomorphism for the translated multi-
plications x • y\=x • a\y too. Let V denote the covering connection of V defined a 
on the manifold if . It is clear from the construction of the covering loop multiplica-
tion on i f and of the covering connection V that i f is a Moufang loop and the 
translated multiplications x -y on i f locally coincide with the geodesic loop multi-
plications of V. By Proposition 3.3. if is a locally reductive homogeneous space 
with the connection V. Since it is simply connected, it can be represented as a global 
homogeneous space where '¡S is the transvection group (cf. Theorem 
I. 25. in [7]) of i f generated by the affine transformations having the local representa-
tion 

o o 

Xx(y) = expyoS'xJ.x(y)oexpx
1, 

where 

l(y):=W3)ex(y1/s) 

and lx(y) is the left multiplication map of the translated covering loop x - v on JSf. 
a 

o . o 

Since the mappings Ie(z) are isomorphisms between the multiplications le(x)y and 
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o o e o o o o 

Xz(x)y we have Xe(z)Ie(x)y=Xz(Ie(z)x)ke(z)y. With the notation u=Xe(z)x, we 
obtain 

l(u) = i(z)ic(i(zrlu)i(z)-\ 
» O „ 

Thus the transvection group 'S is generated by the maps Ie(z), z£ i f . Consequently, 
O 

the subgroup generated by the maps le{t), i£p~1(e) in <S is central and the homo-
morphism p: i f—if can be extended to a homomorphism k{p).(S — <S so that 
k(p)(Xe(z))=ke(z) and the group '3 is generated by the maps ke(z) :=ke(xm) Qe(x1/a) 
(x£ i f ) and acts transitively on if. 

Since the complementary subspace <m of A in g- correspond to the subspace 
spanned by the tangent vectors of the parallel translated frames in the linear frame 
bundle over if, we obtain from Proposition 4.2. that m consists of the tangent 
vectors of the one parameter subgroups {Ae(x(/))} at the identity of Thus the 
assertion follows from Theorem 3.4. 
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