Basic cohomology classes of compact Sasakian manifolds

HILLEL GAUCHMAN

1. Introduction and preliminaries. It was proved in [G1] that for any compact (2m+1)-dimensional Sasakian manifold M the following inequality is satisfied:

$$(1.1) \int_{M} \left(|S|^{2} - \frac{1}{2} \varrho^{2} + 2\varrho \right) dV + \frac{m-1}{2m \operatorname{Vol}(M)} \left(\int_{M} \varrho \, dV \right)^{2} \ge 2m(2m+1) \operatorname{Vol}(M),$$

where |S|, ϱ , Vol (M), and dV are the length of the Ricci tensor, the scalar curvature, the volume of M, and the Riemannian measure on M, respectively. Inequality (1.1) was applied in [G1] to a study of cohomologically Einstein—Sasakian manifolds. The purpose of this paper is to prove a set of inequalities for basic cohomology classes of compact Sasakian manifolds. The simplest of these inequalities is equivalent to inequality (1.1).

Let M be a (2m+1)-dimensional differentiable manifold (in what follows we assume the all manifolds, maps, differential forms, etc. are of class C^{∞}). Assume that M carries a global differential 1-form η such that $\eta \wedge (d\eta)^m \neq 0$ everywhere on M. Then we say that η defines a contact structure on M. A manifold M furnished with a contact structure η is called a *contact manifold*. It is known, [B], that a contact manifold (M, η) admits a unique global vector field X_0 satisfying $\eta(X_0) = 1$ and $d\eta(X_0, X) = 0$ for any tangent vector field X on M. X_0 is called the *characteristic* vector field of a contact manifold (M, η) . Since vector field X_0 nowhere vanishes, M can be considered as a foliated manifold with 1-dimensional leaves. Let ω be a F-valued differential k-form on a contact manifold (M, η) , where F = R or C. We say that ω is horizontal if $i(X_0)\omega=0$, invariant if $L_{X_0}\omega=0$, and basic if it is horizontal and invariant. Here $i(X_0)$ and L_{X_0} are the inner product by X_0 and the Lie derivative, respectively. Denote by $A_B(M, \eta, F)$ (resp. $A_B^k(M, \eta, F)$) the set of all F-valued basic forms (resp. basic k-forms), and by $C_B(M, \eta, F)$ (resp. $C_B^k(M, \eta, F)$) the set of all F-valued closed basic forms (resp. closed basic k-forms) on M. It is easy to see that $dA_B^{k-1}(M, \eta, \mathbf{F}) \subset C_B^k(M, \eta, \mathbf{F})$. Set $H_B^k(M, \eta, \mathbf{F}) = C_B^k(M, \eta, \mathbf{F})$

Received October 11, 1990.

 $/dA_B^{k-1}(M, \eta, \mathbf{F})$. $H_B^k(M, \eta, \mathbf{F})$ is called the k^{th} basic cohomology group of (M, η) over \mathbf{F} . In what follows we shall usually write $H_B^k(M)$ or $H_B^k(M, \mathbf{F})$ instead of $H_B^k(M, \eta, \mathbf{F})$, and similarly for $A_B^k(M, \eta, \mathbf{F})$ and $C_B^k(M, \eta, \mathbf{F})$. It is easy to see that if $\lambda \in C_B^k(M)$, $\mu \in C_B^k(M)$, then $\lambda \wedge \mu \in C_B^{k+1}(M)$, and if $\lambda \in C_B^k(M)$, $\mu \in dA_B^{k-1}(M)$, then $\lambda \wedge \mu \in dA_B^{k+1}(M)$. Therefore, for any $\alpha \in H_B^k(M)$, $\beta \in H_B^k(M)$, we have a well-defined product $\alpha \cdot \beta \in H_B^{k+1}$. Clearly,

$$H_R^0(M, \mathbb{F}) = \mathbb{F}, \quad H_R^k(M) = \{0\} \quad \text{for} \quad k \ge 2m+1.$$

Generally, $\dim_{\mathbf{F}} H_B^k(M, \mathbf{F})$, k=1, ..., 2m, may be infinite. However, for "good" contact structures (such as K-structures or Sasakian structures) $\dim_{\mathbf{R}} H_B^k(M, \mathbf{R}) = \dim_{\mathbf{C}} H_B^k(M, \mathbf{C}) < \infty$.

A contact manifold (M, η) is called regular, [B], if X_0 is a regular vector field on M, that is every point $x \in M$ has a cubical coordinate neighborhood \mathcal{U} such that the integral curves of X_0 passing through \mathcal{U} pass through the neighborhood only once. It is known, [B], that any compact regular (2m+1)-dimensional contact manifold M is the bundle space of a principle circle bundle $\pi \colon M \to B$ over a 2m-dimensional simplectic manifold B. It is easy to show that in the case of a compact regular contact manifold $H_B^k(M)$ is the pullback of $H^k(B)$, where $H^k(B)$ is the DeRham cohomology group of B.

Let (M, η) be a contact manifold. In what follows we will always use the following notation:

$$\Phi = d\eta.$$

 Φ is a closed basic form. Therefore Φ represents a basic cohomology class. In what follows we will denote this cohomology class by Ω . $\Omega \in H_B^2(M)$ is called the *fundamental basic cohomology class*.

For a compact contact (2m+1)-dimensional manifold (M, η) we now define a linear function $I: A_B(M, \mathbf{F}) \to \mathbf{F}$ from the set of all basic \mathbf{F} -valued forms on M into \mathbf{F} as follows: If $\omega \in A_B^{2k}(M, \mathbf{F})$, k=0, 1, ..., m, then

(1.3)
$$I(\omega) = \frac{1}{2^m m! \operatorname{Vol}(M)} \int_M \eta \wedge \Phi^{m-k} \wedge \omega.$$

If $\omega \in A_B^{2k+1}(M, \mathbb{F})$, k=1, ..., m, then $I(\omega)=0$. We shall denote by the same symbol I a function $I: H_B(M, \mathbb{F}) \to \mathbb{F}$ defined as follows: Let $\alpha \in H_B(M, \mathbb{F})$ and let ω be a closed basic form representing α . Then, by definition,

$$I(\alpha) = I(\omega).$$

We will show in Sec. 2 that $I(\alpha)$ is well-defined by formula (1.4), that is $I(\alpha)$ does not depend on a particular choice of a basic form ω representing α . It is clear from

the definition of I that

(1.5)
$$I(\Phi^k \wedge \omega) = I(\omega), \quad \text{if} \quad \omega \in A_B^{2l} \quad \text{and} \quad l+k \leq m;$$
$$I(\Omega^k \cdot \alpha) = I(\alpha), \quad \text{if} \quad \alpha \in H_B^{2l} \quad \text{and} \quad l+k \leq m.$$

By [S], page 3-4, $\int \eta \wedge \Phi^m = 2^m m! \text{ Vol } (M)$. Therefore

(1.6)
$$I(\Phi^k) = I(\Omega^k) = 1, \quad 0 \le k \le m.$$

Let (M, η) be a contact manifold. An associated contact metric structure, [B], for a contact structure η is a collection (η, X_0, φ, g) , where X_0 is the characteristic vector field, φ is a field of automorphisms of the tangent spaces of M, and g is a Riemannian metric on M such that

$$\varphi^{2}(X) = -X + \eta(X)X_{0},$$

$$\eta(X) = g(X, X_{0}),$$

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

$$\Phi(X, Y) = g(X, \varphi Y),$$

for any tangent vector fields X and Y on M. An associated contact metric structure for a contact structure η always exists, but is not unique, [B]. We say that a contact metric structure (η, X_0, φ, g) on M is normal, [B], if the almost complex structure T on $M \times \mathbb{R}$ defined by $T\left(X, f\frac{d}{dt}\right) = \left(\varphi X - fX_0, \eta(X)\frac{d}{dt}\right)$ is integrable. A differentiable manifold M furnished with a normal contact metric structure (η, X_0, φ, g) is called a Sasakian manifold.

Let $(M, \eta, X_0, \varphi, g)$ be a (2m+1)-dimensional Sasakian manifold. For $x \in M$, set

(1.7)
$$D_x = \{X \in TM_x: \eta(X) = 0\}.$$

 D_x is called the *horizontal subspace* at the point x. By (1.7), φ induces an almost complex structure (once more denoted dy φ) on D_x . Denote by $D_x^{\mathbf{C}}$ the complexification of D_x . Then $D_x^{\mathbf{C}} = D_x^{\mathbf{I},0} \oplus D_x^{\mathbf{0},1}$, where

(1.8)
$$D_x^{1,0} = \{X \in D_x^{\mathbb{C}} : \varphi X = \sqrt{-1} X\}, \\ D_x^{0,1} = \{X \in D_x^{\mathbb{C}} : \varphi X = -\sqrt{-1} X\}.$$

It follows that the set $Hor^{p}(M)$ of all C-valued horizontal p-forms on M may be bigraded as follows;

$$\operatorname{Hor}^p(M) = \sum_{k+l=p} \operatorname{Hor}^{k,l}(M),$$

where $\operatorname{Hor}^{k,l}(M)$ is the set of all horizontal (k+l)-forms on M which can obtain

non-zero values only for sets of vectors $X_1, ..., X_{k+l} \in TM_x^{\mathbb{C}}$ among which k vectors belong to $D_x^{1,0}$ and l vectors belong to $D_x^{0,1}$.

Let $\alpha \in H_B^{k+l}(M, \mathbb{C})$. We say that α is of the type (k, l), if there is a basic form ω representing α , such that $\omega \in \operatorname{Hor}^{k, l}(M)$. We will see in Sec. 2 that for a (2m+1)-dimensional compact Sasakian manifold the notion for $\alpha \in H_B^p(M)$, $(0 \le p \le m)$, to be of the type (k, l) is well defined. That means that if $\omega \in \operatorname{Hor}^{k, l}(M)$ and $\tau \in \operatorname{Hor}^{r, s}(M)$ represent the same basic cohomology class $\alpha \in H_B^p(M, \mathbb{C})$, then k = r and l = s. For $0 \le k + l \le m$, set

(1.9)
$$H_B^{k,l}(M) = \{\alpha \in H_B^{k+l}(M, \mathbb{C}): \alpha \text{ is of the type } (k, l)\}.$$

Then $H_B^{k,l}$ is a subgroup (as an additive group) of $H_B^{k+l}(M, \mathbb{C})$. We will show in Sec. 2 that for a compact Sasakian manifold there is a direct sum decomposition

$$H_B^p(M, \mathbb{C}) = \sum_{k+l=p} H_B^{k,l}(M), \quad 0 \le p \le m.$$

For $0 \le k+l \le m$, set

$$h_B^{k,l}=\dim_{\mathbb{C}}H_B^{k,l}(M).$$

 $h_B^{k,l}$ will be called the basic Hodge number of the type (k, l). By (1.3), $\Phi \in \text{Hor}^{1,1}(M)$. Hence $\Omega^k \in H_B^{k,k}(M)$. By (1.6), $\Omega^k \neq 0$. Therefore

$$h_B^{0,0} = 1, \quad h_B^{k,k} \ge 1, \quad k = 1, ..., \left[\frac{m}{2}\right].$$

Moreover, we will show in Sec. 2 that

$$1 = h_B^{0,0} \le h_B^{1,1} \le \dots \le h_B^{[m/2],[m/2]}.$$

In Sec. 3 we prove the main result of this paper:

Theorem 1.1. Let $(M, \eta, X_0, \varphi, g)$ be a compact (2m+1)-dimensional Sasakian manifold and let k be an integer such that $1 \le k \le \frac{m}{2}$. Assume that $h_B^{k-1,k-1} = 1$. Let $\alpha \in H_B^{k,k}(M)$. Then

$$(1.10) (-1)^{k}[I(\alpha \cdot \bar{\alpha}) - I(\alpha)I(\bar{\alpha})] \ge 0,$$

and the equality holds if and only if $\alpha = t\Omega^k$, $t \in \mathbb{C}$. Here $\bar{\alpha}$ means the complex conjugate of α .

Taking k=1 in Theorem 1.1, we obtain

Corollary 1.2. Let M be a compact Sasakian (2m+1)-dimensional $(m \ge 2)$ manifold and let $\alpha \in H_B^{1,1}(M)$. Then

(1.11)
$$I(\alpha \cdot \bar{\alpha}) - I(\alpha)I(\bar{\alpha}) \leq 0$$

and the equality holds if and only if $\alpha = t\Omega$, where $t \in \mathbb{C}$.

It follows easily from the results of Sec. 2 that if $b_2(M)=0$, where $b_2(M)$ is the second Betti number of M, then $h_B^{1,1}=1$. Hence, taking k=2 in Theorem 1.1, we obtain

Corollary 1.3. Let M be a compact Sasakian (2m+1)-dimensional $(m \ge 4)$ manifold and let $\alpha \in H_B^{2,2}(M)$. If $b_2(M) = 0$, then

$$(1.12) I(\alpha \cdot \bar{\alpha}) - I(\alpha)I(\bar{\alpha}) \ge 0,$$

and the equality holds if and only if $\alpha = t\Omega^2$, where $t \in \mathbb{C}$.

In Sec. 4 for any (2m+1)-dimensional Sasakian manifold and for any k=1, ..., m we introduce a canonical real closed basic form $C_k^{(B)}$ of bidegree (k, k). We will call this form the basic Chern form of a Sasakian manifold. Substituting $C_k^{(B)}$ instead of α in (1.10), we obtain an integral inequality similar to inequality (1.1). In the simplest case, when k=1, we obtain inequality (1.1).

If M is a regular Sasakian manifold, then M is a unit circle bundle over a Kaehler manifold B. It is easy to see that in this case the basic Chern form $C_k^{(B)}$ belongs to a basic cohomology class which is the pull-back of the Chern class $C_k(B)$. It was shown in [G2] that for $B = P^2(C) \times P^3(C)$,

$$I(C_2(B) \cdot C_2(B)) - I(C_3(B)) \cdot I(C_2(B)) < 0.$$

Hence, if a Sasakian manifold M is a unit circle bundle over $B = P^2(\mathbb{C}) \times P^3(\mathbb{C})$, then

$$I(C_2^{(B)}(M) \cdot C_2^{(B)}(M)) - I(C_2^{(B)}(M)) \cdot I(C_2^{(B)}(M)) < 0.$$

Comparing this inequality with inequality (1.12), we see that the condition $b_2(M)=0$ in Corollary 1.3 cannot be omitted. More generally, this example shows that the condition $h_R^{k-1,k-1}=1$ in Theorem 1.1 is essential.

We conclude Sec. 4 by Remark showing how one can define basic Pontrjagin classes $P_k^{(B)} \in H_B^{4k}(M, \mathbb{R})$, k=1, ..., [m/2], on K-contact manifolds.

Finally we note that for Kaehler manifolds a theorem similar to Theorem 1.1 has been proved in [G2].

2. Decomposition theorems. For a compact metric manifold $(M, \eta, X_0, \varphi, g)$ we will denote by \langle , \rangle the local scalar product with respect to the Riemannian metric g, and by $(\lambda, \mu) = \int\limits_{M} \langle \lambda, \mu \rangle \, dV$ the global scalar product, where λ and μ are differential forms of the same degree. As usual, # will be the Hodge "star" operator and δ will be the adjoint of the operator of exterior differentiation, i.e. $(d\lambda, \mu) = (\lambda, \delta\mu)$, where λ and μ are forms of degrees p and p+1, respectively. We also will denote by $e(\eta)\lambda$ the exterior product by η , i.e. $e(\eta)\lambda = \eta \wedge \lambda$. Clearly, $(i(X_0)\lambda, \mu) = (\lambda, e(\eta)\mu)$ for any two differential forms λ and μ of degrees p+1 and p respectively.

Lemma 2.1. Let (M, η) be a compact (2m+1)-dimensional contact manifold. Then the function $I: H_B(M, \mathbb{F}) \to \mathbb{F}$ given by formulas (1.3) and (1.4) is well-defined.

Proof. Let λ and λ_1 be basic closed 2k-forms representing the same basic cohomology class $\alpha \in H_B^{2k}(M)$. Then $\lambda - \lambda_1 = d\mu$ where μ is a basic (2k-1)-form.

We must prove that $\int_{M} \eta \wedge \Phi^{m-k} \wedge \lambda = \int_{M} \eta \wedge \Phi^{m-k} \lambda_{1}$. Therefore we must prove that $\int_{M} \eta \wedge d\omega = 0$, where $\omega = \Phi^{m-k} \wedge \mu$. Clearly, ω is a basic form. Let $(\eta, X_{0}, \varphi, g)$ be a contract metric structure on M associated with contact structure η . By [S], page 3—4,

$$*1 = \frac{1}{2^m m!} \eta \wedge \Phi^m.$$

Hence,

$$\int_{M} \eta \wedge d\omega = (\eta \wedge d\omega, *1) = \frac{1}{2^{m} m!} (e(\eta) d\omega, e(\eta) \Phi^{m}) =$$

$$= \frac{1}{2^{m} m!} (d\omega, i(X_{0}) e(\eta) \Phi^{m}) = \frac{1}{2^{m} m!} (d\omega, \Phi^{m}) = \frac{1}{2^{m} m!} (\omega, \delta \Phi^{m}).$$

By [SH],

(2.2)
$$\delta \Phi^r = 4r(m-r+1)\eta \wedge \Phi^{r-1}.$$

Therefore,

$$\int_{M} \eta \wedge d\omega = \frac{4m}{2^{m}m!} \left(\omega, e(\eta) \Phi^{m-1} \right) = \frac{4m}{2^{m}m!} \left(i(X_0) \omega, \Phi^{m-1} \right) = 0,$$

since $i(X_0)\omega = 0$.

Corollary. For any basic form λ , $I(d\lambda) = 0$.

From now and to the end of this section let $(M, \eta, X_0, \varphi, g)$ be a compact (2m+1)-dimensional Sasakian manifold. Let us denote by d_B and $(,)_B$ the restriction of the exterior differential and of the global scalar product on the space $A_B(M)$ of basic forms on M. Let $\delta_B: A_B(M) \rightarrow A_B(M)$ be the adjoint operator for d_B with respect to $(,)_B$. Then $\Delta_B = \delta_B d_B + d_B \delta_B$ is called the basic Laplacian. The set \mathfrak{H}_B^k of basic harmonic k-forms is the kernel of Δ_B on $A_B^k(M)$. Any Sasakian manifold M can be considered as a foliated manifold with 1-dimensional leaves. By the Main Theorem of [KT] (whose conditions are obviously satisfied for Sasakian manifolds), we have

$$(2.3) A_B^k(M) \cong \Delta_B(A_B^k) \oplus \mathfrak{H}_B^k(M)$$

and $\dim_{\mathbb{C}} \mathfrak{H}_{B}^{k} < \infty$. It follows from (2.3) that

(2.4)
$$A_B^K(M, \mathbb{C}) = \operatorname{im} d_B \oplus \operatorname{im} \delta_B \oplus \mathfrak{H}_B^k(M).$$

As usual we obtain from (2.4) that $H_B^k(M, \mathbb{C}) \cong \mathfrak{H}_B^k(M)$.

Let $TM_x^{\mathbb{C}}$ be the complexified tangent space at the point $x \in M$. Then

$$(2.5) TM_x^{\mathbf{C}} = D_x^{1,0} \oplus D_x^{0,1} \oplus \mathbf{C}X_0,$$

where $D_x^{1,0}$ and $D_x^{0,1}$ are defined by (1.8). It is known, [I], that the pair of complex distributions $(D_x^{1,0}, D_x^{0,1})$ defines a C—R structure on M. Hence each of the distributions $D_x^{1,0}$ and $D_x^{0,1}$ is integrable. Let $\{e_i, e_i, X_0\}$, i=1, ..., m; i=m+1, ..., 2m, be a local field of frames adapted to the decomposition (2.6). That means that at the point x each $e_i \in D_x^{1,0}$ and each $e_i \in D_x^{0,1}$. Let $\{\theta^i, \theta^i, \eta\}$ be the dual basis of C-valued 1-forms on M. Then, by Frobenius' theorem

$$d\theta^i \equiv 0 \pmod{\theta^j}, j = 1, ..., m$$
 and $d\theta^i \equiv 0 \pmod{\theta^j}, j = m+1, ..., 2m$.

Therefore

$$d\theta^{i} = \sum a^{i}_{jk}\theta^{j} \wedge \theta^{k} + \sum a^{i}_{jk}\theta^{j} \wedge \theta^{k} + \sum b^{i}_{j}\eta \wedge \theta^{j},$$

$$d\theta^{i} = \sum a^{i}_{jk}\theta^{j} \wedge \theta^{k} + \sum a^{i}_{jk}\theta^{j} \wedge \theta^{k} + \sum b^{i}_{j}\eta \wedge \theta^{j},$$

where $a_{jk}^i, a_{jk}^i, a_{jk}^l, a_{jk}^l, b_j^i, b_j^l$ are functions. It follows that for any horizontal form $\omega \in \operatorname{Hor}^{k,l}(M)$ of bidegree (k, l)

$$(2.6) d\omega = \omega' + \omega'' + \eta \wedge \omega''',$$

where $\omega' \in \operatorname{Hor}^{k+1,l}(M)$, $\omega'' \in \operatorname{Hor}^{k,l+1}(M)$, $\omega''' \in \operatorname{Hor}^{k,l}(M)$. Assume now that ω is basic. Then $0 = i(X_0) d\omega = \omega'''$. Therefore $d\omega = \omega' + \omega''$. Set $d\omega' = \lambda' + \eta \wedge \mu'$, $d\omega'' = \lambda'' + \eta \wedge \mu''$, where λ' , λ'' , μ' , and μ'' are horizontal. If follows that $0 = d\omega' + d\omega'' = (\lambda' + \lambda''') + \eta(\mu' + \mu'')$. Hence $\mu' + \mu'' = 0$. Since $\mu' \in \operatorname{Hor}^{k+1,l}(M)$ and $\mu'' \in \operatorname{Hor}^{k,l+1}(M)$, we obtain that $\mu' = \mu'' = 0$. Hence $d\omega'$ and $d\omega''$ are horizontal and therefore ω' and ω'' are basic. It follows that if $\omega \in A_B^{k,l}(M)$, where $A_B^{k,l}(M)$ is the set of basic forms on M of bidegree (k,l), then $d\omega = \omega' + \omega''$, where $\omega' \in A_B^{k+1,l}(M)$ and $\omega'' \in A_B^{k+1,l}(M)$. Set $d_B' \omega = \omega'$, $d_B'' \omega = \omega''$. Then we obtain that $d_B = d_B' + d_B''$, where d_B' and d_B'' are differential operators on $A_B(M, \mathbb{C})$ of bidegrees (1,0) and (0,1), respectively. Let $\delta_B' \colon A_B(M, \mathbb{C}) \to A_B(M, \mathbb{C})$ and $\delta_B'' \colon A_B(M, \mathbb{C}) \to A_B(M, \mathbb{C})$ be the adjoint operators for d_B' and d_B'' , respectively, with respect to the global scalar product (1,1), (1,1)

Lemma 2.2. Let ω be a basic p-form, $0 \le p \le m$. Then

$$\Delta_B\omega=2\Delta_B'\omega=2\Delta_B''\omega.$$

Proof. This lemma is analogous to Theorem 3.7 of [W], Chapter V. A proof Lemma 2.2 can be obtained by repeating the arguments of the proof of the above mentioned theorem from [W], and we omit it.

Denote dy $\Pi_{k,l}$ the natural projection from $A_B(M, \mathbb{C})$ to $A_B^{k,l}(M)$. By Lemma 2.2,

$$\Delta_B \Pi_{k,l} = \Pi_{k,l} \Delta_B, \quad 0 \le k+l \le m.$$

For any differential form ω on M, set $L\omega = \Phi \wedge \omega$, where $\Phi = d\eta$. If ω is basic, then $L\omega$ is also basic. Therefore L induces the map $L_B: A_B(M) \to A_B(M)$. Denote by Λ the adjoint operator of L with respect to (,), and by Λ_B the adjoint operator of L_B with respect to (,)_B. Clearly L_B and Λ_B are operators of bidegrees (1, 1) and (-1, -1), respectively.

Lemma 2.3.

- (i) If ω is basic, then $\Pi_{k,l}\omega$ is also basic.
- (ii) If ω is a basic harmonic p-form and $0 \le p \le m$, then $\Pi_{k,l}\omega$ is also basic harmonic.
 - (iii) If ω is a harmonic p-form and $0 \le p \le m$, then $\Pi_{k,l}\omega$ is also harmonic.

Remark. By [T1] and [Y], any harmonic p-form, $0 \le p \le m$, is basic harmonic. Therefore the operator $\Pi_{k,l}$ is well-defined on the set of harmonic p-forms, $0 \le p \le m$.

Proof. (i) Let $\omega \in A_B^p(M, \mathbb{C})$. Then $\omega = \omega_{0,p} + \omega_{1,p-1} + ... + \omega_{p,0}$, where $\omega_{k,l} = \Pi_{k,l}\omega$. By (2.6), $d\omega_{k,l} = \lambda + \eta \wedge \mu_{k,l}$, where λ is horizontal and $\mu_{k,l}$ is horizontal of bidegree (k, l). Since ω is basic,

$$0 = i(X_0) d\omega = i(X_0)(d\omega_{0,p} + \ldots + d\omega_{p,0}) = \mu_{0,p} + \mu_{1,p-1} + \ldots + \mu_{p,0},$$

Hence each $\mu_{k,l}=0$. Therefore $i(X_0)d\omega_{k,l}=i(X_0)\lambda=0$. Thus, $\omega_{k,l}=\Pi_{k,l}\omega$ is basic.

- (ii) Let ω be a basic harmonic *p*-form, $0 \le p \le m$. By (2.7), $\Delta_B(\Pi_{k,l}\omega) = \Pi_{k,l}(\Delta_B\omega) = 0$. This proves (ii).
- (iii) Let λ and μ be two basic forms on M. For Sasakian manifolds, formula (3.8) from [KT] gives

(2.8)
$$(\Delta \lambda, \mu) = ((\Delta_B + LA)\lambda, \mu).$$

Let ω be a harmonic p-form, $0 \le p \le m$. Then ω and therefore $\Pi_{k,l}\omega$ are basic. Hence, by (2.7) and (2.8),

$$(\Delta(\Pi_{k,l}\omega), \Pi_{k,l}\omega) = (\Delta_B\Pi_{k,l}\omega + L\Lambda\Pi_{k,l}\omega, \Pi_{k,l}\omega) =$$

$$= (\Pi_{k,l}\Delta_B\omega + L\Pi_{k-1,l-1}\Lambda\omega, \Pi_{k,l}\omega).$$

Since any harmonic p-form, $0 \le p \le m$, is basic harmonic, we have $\Delta_B \omega = 0$. By [T1], any harmonic p-form, $0 \le p \le m$, is effective, i.e. $\Delta \omega = 0$. Therefore $(\Delta(\Pi_{k,l}\omega), \Pi_{k,l}\omega) = 0$. It follows that $(d(\Pi_{k,l}\omega), d(\Pi_{k,l}\omega)) + (\delta(\Pi_{k,l}\omega), \delta(\Pi_{k,l})) = 0$. Thus, $d(\Pi_{k,l}\omega) = \delta(\Pi_{k,l}\omega) = 0$. Therefore, $\Pi_{k,l}\omega$ is harmonic. This proves (iii).

Let ω be a closed basic form of bidegree (k, l), $0 \le k + l \le m$. Then, by (2.3), $\omega = \psi + \Delta_B \lambda$, where ψ is basic harmonic and λ is basic. By (2.7), $\omega = \Pi_{k,l} \omega =$

 $=\Pi_{k,l}\psi + \Delta_B(\Pi_{k,l}\lambda)$. Since ψ is uniquely defined by ω and since, by Lemma 2.3, $\Pi_{k,l}\psi$ is basic harmonic, $\psi = \Pi_{k,l}\psi$. Therefore ψ is of bidegree (k, l). Thus, we obtain that if a basic cohomology class $\alpha \in H_B^{k+l}(M, \mathbb{C})$, $0 \le k+l \le m$, contains a closed basic form of bidegree (k, l), its basic harmonic form is also of bidegree (k, l). Therefore, the cohomology group $H_B^{k,l}(M)$, defined by (1.9), is well-defined. By Lemma 2.3, we have a direct sum decomposition

(2.9)
$$H_R^p(M, \mathbb{C}) = H_R^{0,p}(M) \oplus H_R^{1,p-1}(M) \oplus \dots \oplus H_R^{p,0}(M), \quad 0 \le p \le m.$$

Similarly, let $H^p(M, \mathbb{C})$, $0 \le p \le m$, be the p^{th} DeRham cohomology group, and let $H^{k,l}(M)$ be the set of all elements of H^p which are represented by a harmonic p-form of bidegree (k, l). Then

$$(2.10) H^{p}(M, \mathbb{C}) = H^{0, p}(M) \oplus H^{1, p-1}(M) \oplus \dots \oplus H^{p, 0}(M), \quad 0 \leq p \leq m.$$

Let $0 \le p \le m$, $0 \le k \le l \le m$. Set

$$b_p = \dim_{\mathbb{C}} H^p(M, \mathbb{C}), \quad b_p^{(B)} = \dim_{\mathbb{C}} H_B^p(M, \mathbb{C}),$$

 $h^{k,l} = \dim_{\mathbb{C}} H^{k,l}(M, \mathbb{C}), \quad h_B^{k,l} = \dim_{\mathbb{C}} H_B^{k,l}(M, \mathbb{C}).$

Here b_p are usual Betti numbers. We will call $b_p^{(B)}$, $h^{k,l}$ and $h_B^{k,l}$ the basic Betti numbers, the Hodge numbers, and the basic Hodge numbers, respectively. By (2.9) and (2.10),

(2.11)
$$b_{p} = h^{0,p} + h^{1,p-1} + \dots + h^{p,0}, \quad 0 \le p \le m; \\ b_{p}^{(B)} = h_{B}^{0,p} + h_{R}^{1,p-1} + \dots + h_{R}^{p,0}, \quad 0 \le p \le m.$$

Denote by C a linear operator C: Hor (M) +Hor (M) such that $C\omega = (\sqrt{-1})^{k-1}\omega$ if ω is of bidegree (k, l), where Hor (M) is the set of all horizontal forms on M. Let * denote the Hodge "star" operator. Remind that ω is called effective, if $\Lambda\omega = 0$.

Lemma 2.4. Let ω be a horizontal and effective p-form, $0 \le p \le m$, and let $0 \le r \le m-p$. Then

$$*(L^{r}\omega) = (-1)^{p(p-1)/2} \frac{r!}{2^{m-p-2r}(m-p-r)!} e(\eta) L^{m-p-r}C\omega.$$

Proof. This lemma is similar to Theorem 1.6 from [W], Chapter 5. The proof of Lemma 2.4 is just a repetition of the proof of the above mentioned theorem from [W], and we omit it.

We now prove a decomposition theorem for closed basic forms.

Theorem 2.5. Let M be a compact (2m+1)-dimensional Sasakian manifold and let ω be a closed basic p-form on M. Then

(i) ω can be decomposed as

(2.12)
$$\omega = \sum_{i=(n-m)^{+}}^{[p/2]} L^{i} \psi_{i} + d\lambda,$$

where $(p-m)^+ = \max\{0, p-m\}$, ψ_i is a harmonic (p-2i)-form, any λ is basic. In addition, harmonic forms ψ_i , $i=(p-m)^+$, ..., [p/2], are uniquely defined by ω .

(ii) If ω is of bidegree (k, l), then for each i, ψ_i is of bidegree (k-i, l-i).

Proof. (i) We first consider the case $0 \le p \le m$. By (2.4), $\omega = \psi + d\lambda$, where ψ is a basic harmonic p-form uniquely defined by ω , and λ is basic. Since ψ is basic harmonic, $d_B\psi = 0$ and $\delta_B\psi = 0$. For Sasakian manifolds formula 3.3 from [KT] takes the form $\delta\psi = \delta_B\psi + e(\eta)\Lambda\psi$. Therefore

(2.13)
$$d\psi = 0, \quad \delta\psi = e(\eta) \Lambda\psi.$$

Differential forms on Sasakian manifolds satisfying (2.13) were introduced in [0] and were called there *C-harmonic forms*. By the decomposition theorem for C-harmonic forms of degree p, $0 \le p \le m$, [T2],

$$\psi = \sum_{i=0}^{[p/2]} L^i \psi_i,$$

where ψ_i are harmonic (p-2i)-forms uniquely defined by ψ . This proves (i) in the case $0 \le p \le m$.

Let now $m+1 \le p \le 2m$. Once more, $\omega = \psi + d\lambda$, where ψ is a basic harmonic form uniquely defined by ω , and λ is basic. Following [KT], for any basic q-form μ we set

$$\bar{*} \mu = (-1)^q i(X_0) * \mu.$$

Then $\overline{*} \cdot \overline{*} \mu = (-1)^q \mu$. By Lemma 2.4, for any horizontal and effective q-form μ , $0 \le q \le m$, and for any r, $0 \le r \le m - q$,

(2.14)
$$\overline{*}(L^r\mu) = (-1)^{q(q+1)/2} \frac{r!}{2^{m-q-2r}(m-q-r)!} L^{m-q-r}C\mu.$$

Set $\tilde{\psi} = \overline{*}\psi$. By [KT], $\overline{*}\Delta_B = \Delta_B \overline{*}$. Therefore $\tilde{\psi}$ is basic harmonic. Since $\tilde{\psi}$ is of degree 2m - p < m, we have a decomposition

$$\tilde{\psi} = \sum_{j=0}^{\left[(2m-p)/2\right]} L^j \tilde{\psi}_j,$$

where $\tilde{\psi}_j$ are harmonic of degree (2m-p-2j). By (2.24),

$$\psi = (-1)^{2m-p} \overline{*} \tilde{\psi} = \sum_{j=0}^{[(2m-p)/2]} \overline{*} (L^{j} \tilde{\psi}_{j}) =$$

$$= \sum_{j=0}^{[(2m-p)/2]} (-1)^{p(p+1)/2-m+j} \frac{j!}{2^{p-m}(p-m+j)!} L^{p-m+j} C \tilde{\psi}_{j}.$$

Set i=p-m+j,

$$\psi_i = (-1)^{p(p-1)/2+i} \frac{(i-p+m)!}{2^{p-m}i!} C \tilde{\psi}_{i-p+m}.$$

Then

$$\psi = \sum_{i=p-m}^{\lfloor p/2 \rfloor} L^i \psi_i,$$

where we used the identity $p-m+\left[\frac{2m-p}{2}\right]=\left[\frac{p}{2}\right]$. The degree of $\tilde{\psi}_{i-p+m}$ is (p-2i). Therefore deg $\tilde{\psi}_{i-p+m} \leq m$ for $i=p-m,\ldots,[p/2]$. It follows by Lemma 2.3, that $\Pi_{k,l}\tilde{\psi}_{i-p+m}$ is harmonic. Since

$$C\tilde{\psi}_{i-p+m} = \sum_{k+l=p-2i} (\sqrt{-1})^{k-l} \Pi_{k,l} \tilde{\psi}_{i-p+m},$$

we obtain that ψ_i is harmonic of degree (p-2i). By (2.15), $\overline{*}\psi = \sum_{i=p-n}^{\lfloor p/2\rfloor} \overline{*}(L^i\psi_i)$. Using Lemma 2.4, we easily obtain from the last equality that ψ_i , i=p-m, ..., $\lfloor p/2 \rfloor$, are uniquely defined by ψ . This completes the proof of (i).

(ii) To prove (ii), assume that ω is of bidegree (k, l). Then, by (2.3), $\omega = \psi + \Delta_R \mu$, where ψ is basic harmonic and μ is basic. Then

$$\omega = \sum_{i=(p-m)^+}^{[p/2]} L^i \psi_i + \Delta_B \mu,$$

where ψ_i is harmonic of degree (p-2i). It follows that

$$\omega = \Pi_{k,l}\omega = \sum_{i=(p-m)^+}^{[p/2]} \Pi_{k,l}L^i\psi_i + \Pi_{k,l}\Delta_B\mu = \sum_{i=(p-m)^+}^{[p/2]} L^i(\Pi_{k-i,l-i}\psi_i) + \Pi_{k,l}\Delta_B\mu.$$

If $p=k+l \le m$, then, by 2.7, $\Pi_{k,l} \Delta_B \mu = \Delta_B \Pi_{k,l} \mu$. Let $p=k+l \ge m+1$. By [KT] $\Delta_B \xi = (-1)^p * \Delta_B * \mu$. Therefore, since $\deg(* \mu) \le m$,

$$\Pi_{k,l}\Delta_B\mu = (-1)^p\Pi_{k,l}\overline{*}\Delta_B\overline{*}\mu = (-1)^p\overline{*}\Pi_{m-l,m-k}\Delta_B\overline{*}\mu =$$

$$= (-1)^p\overline{*}\Delta_B\Pi_{m-l,m-k}\overline{*}\mu = (-1)^p\overline{*}\Delta_B\overline{*}\Pi_{k,l}\mu = \Delta_B\Pi_{k,l}\mu.$$

Thus, for any p, $0 \le p \le 2m$,

$$\omega = \sum_{i=(p-m)^+}^{[p/2]} L^i(\Pi_{k-i,l-i}\psi_i) + \Delta_B(\Pi_{k,l}\mu).$$

By Lemma 2.3, $\Pi_{k-i,l-i}\psi_i$ is harmonic and $\Pi_{k,l}\mu$ is basic. By uniqueness of decomposition (2.12), $\psi_i = \Pi_{k-i,l-i}\psi_i$. Hence ψ_i is of bidegree (k-i,l-i). This proves (ii).

In course of the proof of Theorem 2.5 we saw that the notion of a basic harmonic form is the same as the notion of a C-harmonic form. Therefore we can use results of [0] and [T2] on C-harmonic forms. If ω is C-harmonic, then $L\omega$ is also

C-harmonic. Thus we obtain homomorphisms

$$L: H_{B}^{p-2}(M) \to H_{B}^{p}(M), \quad p \leq m,$$

$$L: H_{B}^{k-1,l-1}(M) \to H_{B}^{k,l}(M), \quad k+l \leq m.$$

and

These homomorphisms are one-to-one. In addition,

(2.16)
$$H_{B}^{p}(M) = LH_{B}^{p-2}(M) \oplus H^{p}(M), \quad p \leq m, \\ H_{B}^{k,l}(M) = LH_{B}^{k-1,l-1}(M) \oplus H^{k,l}(M), \quad k+l \leq m.$$

It follows that

(2.17)
$$b_{p} = b_{p}^{(B)} - b_{p-2}^{(B)}, \quad p \leq m,$$

$$h^{k,l} = h_{B}^{k,l} - h_{B}^{k-1,l-1}, \quad k+l \leq m,$$

where we set $b_{-2}^{(B)} = b_{-1}^{(B)} = h_B^{k-1} = h_B^{-1, l} = 0$. It follows from (2.17) that

(2.18)
$$b_{p-2}^{(B)} \leq b_{p}^{(B)}, \quad p \leq m, \\ h_{R}^{k-1,l-1} \leq h_{R}^{k,l}, \quad k+l \leq m.$$

In particular, we have

$$(2.19) 1 = h_R^{0,0} \le h_R^{1,1} \le \dots \le h_R^{\lfloor m/2 \rfloor, \lfloor m/2 \rfloor}.$$

Note that the mapping * induces the isomorphisms

(2.20)
$$H_B^p(M) \cong H_B^{2m-p}(M), \quad 0 \le p \le 2m,$$

$$H_B^{k,l}(M) \cong H_B^{m-l,m-k}(M), \quad 0 \le k, l \le m.$$

In addition, the complex conjugation induces the isomorphism

$$(2.21) H_{R}^{k,l}(M) \cong H_{R}^{l,k}(M), \quad 0 \le k, l \le m.$$

Therefore we have

(2.22)
$$b_p^{(B)} = b_{2m-p}^{(B)}, \quad 0 \le p \le 2m, \\ h_B^{k,l} = h_B^{t,k} = h_B^{m-k,m-l} = h_B^{m-l,m-k}, \quad 0 \le k, l \le m.$$

3. Inequalities for basic cohomology classes. In this section we continue to assume that $(M, \eta, X_0, \varphi, g)$ is a (2m+1)-dimensional compact Sasakian manifold.

Lemma 3.1. Let ω any τ be harmonic forms of degrees 2i and 2j, respectlively. Assume that $0 \le i \le m/2$, $0 \le j \le m/2$, and $i \ne j$. Then $I(\omega \land \tau) = 0$, where I is defined by formula (1.3). In particular, if u is a harmonic form of degree 2i, where $0 < i \le m/2$, then I(u) = 0.

Proof. Let u be a harmonic p-form, $0 \le p \le m$. Then, by [T1], u is effective (i.e. Au = 0), and therefore, by [T2],

$$\Lambda^{r}L^{r+s}u = 2^{2r}(s+1)...(s-r)(m-p-s-r+1)...(m-p-s)L^{s}u.$$

Take r=m+1 and s=m-p+1 in this formula. Since r+s>m, we obtain that $L^{r+s}u=0$. Therefore,

$$(3.1) L^{m-p+1}u = 0,$$

where u is a harmonic p-form, $0 \le p \le m$. By (3.1) we obtain that if i > j, then

$$\Phi^{m-i-j} \wedge \omega \wedge \xi = (L^{m-2i+(i-j)}\omega) \wedge \tau = 0.$$

Similarly, if i < j, then

$$\Phi^{m-i-j} \wedge \omega \wedge \zeta = \omega \wedge (L^{m-2j+(j-i)}\tau) = 0.$$

It follows that

$$I(\omega \wedge \tau) = \frac{1}{2^m m! \operatorname{Vol}(M)} \int_M \eta \wedge \Phi^{m-i-j} \wedge \omega \wedge \tau = 0.$$

Let ω and τ be closed basic C-valued forms of bidegree (k, k), where $0 \le k \le m/2$. By Theorem 2.5, we have

$$\omega = \sum_{i=0}^k L^i \omega_i + d\lambda, \quad \tau = \sum_{i=0}^k L^i \tau_i + d\mu,$$

where ω_i and τ_i are harmonic forms of bidegree (k-i, k-i), and λ and μ are basic forms.

Lemma 3.2.

$$I(\omega \wedge \tau) - I(\omega)I(\tau) = \frac{1}{2^{2k}m!} \frac{1}{\text{Vol}(M)} \sum_{i=0}^{k-1} (-1)^{k-i} 2^{2i} (m-2k+2i)! (\omega_i, \bar{\tau}_i).$$
Proof.

$$I(\omega \wedge \tau) = I((\sum_{i=0}^k L^i \omega_i + d\lambda) \wedge (\sum_{j=0}^k L^i \tau_j + d\mu)) = \sum_{i,j=0}^k I(L^{i+j} \omega_i \wedge \tau_j) + I(d\nu),$$

where

$$v = \lambda \wedge (\sum_{j=0}^{k} L^{i} \tau_{j}) + (\sum_{i=0}^{k} L^{i} \omega_{i}) \wedge \mu + \lambda \wedge d\mu$$

is a basic form of degree 4k-1. By Corollary to Lemma 2.1, I(dv)=0. By (1.5) and by Lemma 3.1, $I(L^{i+j}\omega_i\wedge\omega_i)=I(\omega_i\wedge\omega_i)=0$, if $i\neq j$. Therefore

(3.2)
$$I(\omega \wedge \tau) = I(\omega_k \wedge \tau_k) + \sum_{i=0}^{k-1} I(\omega_i \wedge \tau_i).$$

Since $\deg \omega_k = \deg \tau_k = 0$, we obtain that $I(\omega_k \wedge \tau_k) = \omega_k \tau_k I(1) = \omega_k \tau_k$. By Lemma 3.1, $I(\omega) = I(\sum_{i=0}^k L^i \omega_i + d\lambda) = \sum_{i=0}^k I(\omega_i) = I(\omega_k) = \omega_k$. Similarly, $I(\tau) = \tau_k$. Therefore,

by (3.2),

$$I(\omega \wedge \tau) - I(\omega)I(\tau) = \sum_{i=0}^{k-1} I(\omega_i \wedge \tau_i) = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2k+2i} \wedge \omega_i \wedge \tau_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \nabla \omega_i + \frac{1}{2^m m! \operatorname{Vol}(M)} \nabla \omega_i + \frac{1}{2^m m! \operatorname{Vol}(M)} \nabla \omega_i = \frac{1}{2^m m! \operatorname{Vol}(M)} \nabla \omega_i + \frac{1}{2^m m! \operatorname{Vol}($$

$$= \frac{1}{2^{m} m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} (\eta \wedge \omega_{i}, *(L^{m-2k+2i} \bar{\tau}_{i})).$$

By Lemma 2.4,

$$*(L^{m-2k+2i}\bar{\tau}_i)=(-1)^{k-i}2^{m-2k+2i}(m-2k+2i)!\,\eta\wedge\bar{\tau}_i.$$

Hence

$$I(\omega \wedge \tau) - I(\omega)I(\tau) = \frac{1}{2^{2k}m! \operatorname{Vol}(M)} \sum_{i=0}^{k-1} (-1)^{k-i} 2^{2i} (m-2k+2i)! (\omega_i, \bar{\tau}_i).$$

This proves the lemma.

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Let ω be a closed basic C-valued form of bidegree (k, k), representing $\alpha \in H_B^{k,k}(M)$. By Theorem 2.5, $\omega = \sum_{i=0}^k L^i \omega_i + d\lambda$, where ω_i is a harmonic form of bidegree (k-i, k-i), and λ is a basic form. Since $h_B^{k-1,k-1} = 1$, we have by (2.19), that $h_B^{k-i,k-i} = 1$ for $i=1, \ldots, k$. Hence, by (2.17), $h^{k-i,k-i} = 0$ for $i=1, \ldots, k-1$. Therefore there is no harmonic forms of bidegree (k-i, k-i) for $i=1, \ldots, k-1$. By Lemma 3.2, we obtain that

$$(-1)^{k}[I(\omega \wedge \overline{\omega}) - I(\omega)I(\overline{\omega})] = \frac{1}{m! \operatorname{Vol}(M)} (m-2k)!(\omega_{0}, \omega_{0}) \geq 0.$$

The equality holds if and only if $\omega_0 = 0$. In this case $\omega = t\Phi^k + d\lambda$, where $t = \omega_k$. Therefore the equality holds if and only if $\alpha = t\Omega^k$. This proves the theorem.

4. Basic Chern forms. Let $(M, \eta, X_0, \varphi, g)$ be a compact (2m+1)-dimensional Sasakian manifold and let ∇ be the Riemannian connection on (M, g). A linear connection on M given by the formula, [Ta]:

(4.1)
$$\overline{\nabla}_X Y = \nabla_X Y + \eta(X) \varphi Y + \eta(Y) \varphi X + \Phi(X, Y) X_0$$

will be called the canonical connection on M. The following properties of the canonical connection are easily verified by direct computation:

(4.2)
$$\overline{\nabla}_X \eta = 0, \quad \overline{\nabla}_X X_0 = 0, \quad \overline{\nabla}_X \varphi = 0$$

for any tangent vector X on M;

$$i(X_0)\tilde{\Theta}=0, \quad i(X_0)\tilde{T}=0,$$

where $\tilde{\Theta}$ and \tilde{T} are the curvature form and the torsion form of $\overline{\nabla}$, respectively;

(4.4)
$$\tilde{R}(X,Y)Z = R(X,Y)Z + 2\Phi(X,Y)\varphi Z + [\Phi(X,Z) - \eta(X)\eta(Z)]\varphi Y - [\Phi(Y,Z) - \eta(Y)\eta(Z)]\varphi X + [g(X,Z)\eta(Y) - g(Y,Z)\eta(X)]X_0,$$

where R and \tilde{R} are curvature tensors of ∇ and $\tilde{\nabla}$, respectively;

(4.5)
$$\tilde{R}(\varphi X, \varphi Y) = \tilde{R}(X, Y).$$

Consider M as a base of a vector bundle F with the fibre $D_x = \{X \in TM_x : \eta(X) = 0\}$ at the point $x \in M$. The map $\phi|_x : D_x \to D_x$ defines a complex structure on D_x . Hence F may be considered as a complex vector bundle over M. By (4.2), the canonical connection $\tilde{\nabla}$ induces a complex linear connection in the complex bundle F, which we will denote again by $\tilde{\nabla}$. Let $C_k^{(B)}$ be the k^{th} Chern form of $\tilde{\nabla}$, [C]. $C_k^{(B)}$, $k=1,\ldots,m$, are defined by the formula

(4.6)
$$\det \left[tI + \frac{\sqrt{-1}}{2\pi} \, \tilde{\Theta} \right] = t^m + \sum_{k=1}^m C_k^{(B)} t^{m-k}.$$

 $C_k^{(B)}$ is closed. By (4.3), $\tilde{\Theta}$ is horizontal. Therefore $C_k^{(B)}$ is horizontal. Hence $C_k^{(B)}$ is basic. Because of (4.5), $C_k^{(B)}$ is real and of bidegree (k, k). Thus, for any $k = 1, \ldots, m$, $C_k^{(B)}$ is a canonically defined real closed basic 2k-form of bidegree (k, k). We will call $C_k^{(B)}$ the kth basic Chern form of a Sasakian manifold. Substituting $C_k^{(B)}$ in (1.10) we obtain that in the case $h_B^{k-1,k-1} = 1$ the following integral inequality is satisfied

$$(4.7) (-1)^{k} [I(C_{k}^{(B)} \cdot C_{k}^{(B)}) - I(C_{k}^{(B)}) I(C_{k}^{(B)})] \ge 0.$$

Using (4.4), we obtain by direct computation that in the case k=1 inequality (4.7) is the same as inequality (1.1).

Remark. Let (M, η) be a contact manifold. An associated contact metric structure (η, X_0, φ, g) is called an associated K-metric structure, [B], if X_0 is a Killing vector field with respect to g. If a contact manifold (M, η) admits an associated K-metric structure, (M, η) is called a K-contact manifold. We will show now how one can define basic Pontrjagin cohomology classes on a K-contact manifold.

Let (M, η) be a (2m+1)-dimensional contact manifold. A linear connection $\tilde{\nabla}$ on M will be called *basic* if

$$\tilde{\nabla}_X \eta = 0, \quad \tilde{\nabla}_X X_0 = 0, \quad i(X_0) \tilde{\Theta} = 0, \quad i(X_0) \tilde{T} = 0,$$

where $\tilde{\Theta}$ and \tilde{T} are the curvature form and the torsion form of $\tilde{\nabla}$, respectively.

Assume that (M, η) admits a basic linear connection $\tilde{\nabla}$. Consider M as the base space of a real vector bundle with the 2m-dimensional fibre $D_x = \{X \in TM_x : \eta(X) = 0\}$ at the point $x \in M$. By (4.8), $\tilde{\nabla}$ can be considered as a connection in this vector

bundle. Put

$$\det\left[tI-\frac{1}{2\pi}\Theta\right]=t^m+\sum_{k=1}^m E_k(\widetilde{\Theta})t^{m-k}.$$

Then $E_{2k}(\tilde{\Theta})$ is a closed and horizontal (since $\tilde{\Theta}$ is horizontal) 4k-form, [C], p. 118. Hence $E_{2k}(\tilde{\Theta})$ is basic and therefore defines an element $p_k^{(B)} \in H_B^{4k}(M, \mathbb{R})$. We will show that $p_k^{(B)}$ does not depend on a choice of a basic linear connection. Indeed, let $\tilde{\nabla}'$ be another basic linear connection and let $\tilde{\Theta}'$ and T' be its curvature and torsion forms, respectively. Set $\alpha = \tilde{\nabla}' - \nabla$, $\tilde{\nabla}^t = \tilde{\nabla} + t\alpha$. Let $\tilde{\Theta}'$ be the curvature form of $\tilde{\nabla}^t$. Then α is a linear form on M of the type ad GL $(2m, \mathbb{R})$, and by (4.8) and (4.9),

$$\alpha(X_0)X = \tilde{\nabla}'_{X_0}X - \tilde{\nabla}_{X_0}X = \tilde{\nabla}_X X_0 + [X_0, X] + \tilde{T}'(X_0, X) - \tilde{\nabla}_X X_0 - [X_0, X] - \tilde{T}(X_0, X) = 0.$$

Hence α is horizontal. By [C], p. 42, $\tilde{\Theta}^t = \tilde{\Theta} + tD\alpha - t^2\alpha \wedge \alpha$. Taking t=1, we obtain $D\alpha = \tilde{\Theta}' - \tilde{\Theta} + \alpha \wedge \alpha$. Therefore $\tilde{\Theta} = (1-t)\tilde{\Theta} + t\tilde{\Theta}' + t(1-t)\alpha \wedge \alpha$. It follows that $\tilde{\Theta}^t$ is horizontal for all t. By [C], p. 115, $E_{2k}(\tilde{\Theta}') - E_{2k}(\tilde{\Theta}) = d\varrho$, where $\varrho = \int_0^1 \Psi(t)dt$ and where $\psi(t)$ is a polynomial function of α and $\tilde{\Theta}^t$. It follows that ϱ is horizontal. In addition,

$$L_{X_0}\varrho = [i(X_0)d + di(X_0)]\varrho = i(X_0)d\varrho = i(X_0)[E_{2k}(\tilde{\Theta}') - E_{2k}(\tilde{\Theta})] = 0.$$

Hence ϱ is basic. Thus, $E_{2k}(\tilde{\Theta}')$ and $E_{2k}(\tilde{\Theta})$ are homologous within basic forms. Therefore $E_{2k}(\tilde{\Theta}')$ and $E_{2k}(\tilde{\Theta})$ define the same element $p_k^{(B)} \in H_B^{4k}(M, \mathbb{R})$. If (M, η) is a contact manifold which admits a basic linear connection, then $p_k^{(B)}$, $k=1, \ldots, [m/2]$, will be called basic Pontrjagin classes of (M, η) .

Let now (M, η) be a K-contact manifold. Let (η, X_0, φ, g) be an associated K-metric structure and ∇ be the Riemannian connection on M with respect to g. Direct calculation shows that the connection

$$\tilde{\nabla}_X Y = \nabla_X Y + \eta(X) \varphi Y + \eta(Y) \varphi X + \Phi(X, Y) X_0$$

is a basic connection on (M, g). Hence the basic Pontrjagin classes $p_k^{(B)} \in H_B^{4k}(M, \mathbb{R})$, k=1, ..., [m/2], are well-defined on each K-contact manifold (M, η) .

References

- [B] D. E. Blar, Contact Manifolds in Riemannian Geometry, Springer-Verlag (Berlin, Heidelberg, New York, 1976).
- [C] S. CHERN, Complex Manifolds without Potential Theory, Second Edition, Springer-Verlag (New York, Heidelberg, Berlin, 1979).

- [G1] H. GAUCHMAN, An integral inequality for normal contact Riemannian manifolds and its applications, Geometriae Dedicata 23 (1987), 53—58.
- [G2] H. GAUCHMAN, Inequalities for cohomology classes of Kaehler manifolds, Geometriae Dedicata, 31 (1989), 261—266.
- [I] S. IANUS, Sulle varietá di Cauchy—Riemann, Rend dell Accademia di Scienze Fisiche e Matematiche, Napoli, XXXIX (1972), 191—195.
- [KT] F. W. KAMBER and PH. TONDEUR, DeRham—Hodge theory for Riemannian foliations, Math. Ann., 277 (1987), 415—431.
- [O] Y. Ogawa, On C-harmonic forms in a compact Sasakian space, Tôhoku Math. J., 19 (1967), 267—296.
- [S] S. SASAKI, Almost Contact Manifolds, Part 1, Lectures Notes, Mathematical Institute, Tôhoku Univ., 1968.
- [SH] S. SASAKI and Y. HATAKEYAMA, On differentiable manifolds with contact metric structure, J. Math. Soc. Japan, 14 (1962), 249—271.
- [T1] S. TACHIBANA, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J., 17 (1965), 271—284.
- [T2] S. TACHIBANA, On a decomposition of C-harmonic forms in a compact Sasakian space, Tôhoku Math. J., 19 (1967), 198—212.
- [Ta] N. TANAKA, On non-degenerate real hypersurfaces, graded Lie algebras, and Cartan connections, Japanese J. Math., 2 (1976), 131—190.
- [W] R. O. Wells, Differential Analysis on Complex Manifolds, Prentice Hall, (Englewood Cliffs, N. J., 1973).
- [Y] K. YANO, On harmonic and Killing vector fields, Ann. of Math., 55 (1952), 38-45.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLIONIS URBANA, IL 61801 and

DEPARTMENT OF MATHEMATICS EASTERN ILLIONIS UNIVERSITY CHARLESTON, IL 61902 USA