Basic cohomology classes of compact Sasakian manifolds

HILLEL GAUCHMAN

1. Introduction and preliminaries. It was proved in [G1] that for any compact ($2 m+1$)-dimensional Sasakian manifold M the following inequality is satisfied:

$$
\begin{equation*}
\int_{M}\left(|S|^{2}-\frac{1}{2} \varrho^{2}+2 \varrho\right) d V+\frac{m-1}{2 m \operatorname{Vol}(M)}\left(\int_{M} \varrho d V\right)^{2} \geqq 2 m(2 m+1) \operatorname{Vol}(M), \tag{1.1}
\end{equation*}
$$

where $|S|, \varrho, \operatorname{Vol}(M)$, and $d V$ are the length of the Ricci tensor, the scalar curvature, the volume of M, and the Riemannian measure on M, respectively. Inequality (1.1) was applied in [G1] to a study of cohomologically Einstein-Sasakian manifolds. The purpose of this paper is to prove a set of inequalities for basic cohomology classes of compact Sasakian manifolds. The simplest of these inequalities is equivalent to inequality (1.1).

Let M be a $(2 m+1)$-dimensional differentiable manifold (in what follows we assume the all manifolds, maps, differential forms, etc. are of class C^{∞}). Assume that M carries a global differential 1 -form η such that $\eta \wedge(d \eta)^{m} \neq 0$ everywhere on M. Then we say that η defines a contact structure on M. A manifold M furnished with a contact structure η is called a contact manifold. It is known, [B], that a contact manifold (M, η) admits a unique global vector field X_{0} satisfying $\eta\left(X_{0}\right)=1$ and $d \eta\left(X_{0}, X\right)=0$ for any tangent vector field X on $M . X_{0}$ is called the characteristic vector field of a contact manifold (M, η). Since vector field X_{0} nowhere vanishes, M can be considered as a foliated manifold with 1-dimensional leaves. Let ω be a \mathbf{F}-valued differential k-form on a contact manifold (M, η), where $\mathbf{F}=\mathbf{R}$ or \mathbf{C}. We say that ω is horizontal if $i\left(X_{0}\right) \omega=0$, invariant if $L_{X_{0}} \omega=0$, and basic if it is horizontal and invariant. Here $i\left(X_{0}\right)$ and $L_{X_{0}}$ are the inner product by X_{0} and the Lie derivative, respectively. Denote by $A_{B}(M, \eta, F)\left(\operatorname{resp} . A_{B}^{k}(M, \eta, F)\right)$ the set of all \mathbf{F}-valued basic forms (resp. basic k-forms), and by $C_{B}(M, \eta, F)\left(r e s p . C_{B}^{k}(M, \eta, F)\right)$ the set of all \mathbf{F}-valued closed basic forms (resp. closed basic k-forms) on M. It is easy to see that $d A_{B}^{k-1}(M, \eta, \mathbf{F}) \subset C_{B}^{k}(M, \eta, \mathbf{F})$. Set $H_{B}^{k}(M, \eta, \mathbf{F})=C_{B}^{k}(M, \eta, \mathbf{F}) /$
$/ d A_{B}^{k-1}(M, \eta, \mathbf{F}) . H_{B}^{k}(M, \eta, \mathbf{F})$ is called the $k^{\text {th }}$ basic cohomology group of (M, η) over \mathbf{F}. In what follows we shall usually write $H_{B}^{k}(M)$ or $H_{B}^{k}(M, F)$ instead of $H_{B}^{k}(M, \eta, \mathbf{F})$, and similarly for $A_{B}^{k}(M, \eta, \mathbf{F})$ and $C_{B}^{k}(M, \eta, \mathbf{F})$. It is easy to see that if $\lambda \in C_{B}^{k}(M), \mu \in C_{B}^{l}(M)$, then $\lambda \wedge \mu \in C_{B}^{k+l}(M)$, and if $\lambda \in C_{B}^{k}(M), \mu \in d A_{B}^{l-1}(M)$, then $\lambda \wedge \mu \in d A_{B}^{k+1-1}(M)$. Therefore, for any $\alpha \in H_{B}^{k}(M), \beta \in H_{B}^{l}(M)$, we have a well-defined product $\alpha \cdot \beta \in H_{B}^{k+l}$. Clearly,

$$
H_{B}^{0}(M, \mathbf{F})=\mathbf{F}, \quad H_{B}^{k}(M)=\{0\} \quad \text { for } \quad k \geqq 2 m+1
$$

Generally, $\operatorname{dim}_{\mathbf{F}} H_{B}^{k}(M, \mathbf{F}), k=1, \ldots, 2 m$, may be infinite. However, for "good" contact structures (such as K-structures or Sasakian structures) $\operatorname{dim}_{\mathbf{R}} H_{B}^{k}(M, \mathbf{R})=$ $=\operatorname{dim}_{\mathbf{C}} H_{B}^{k}(M, \mathbf{C})<\infty$.

A contact manifold (M, η) is called regular, [B], if X_{0} is a regular vector field on M, that is every point $x \in M$ has a cubical coordinate neighborhood \mathscr{U} such that the integral curves of X_{0} passing through \mathscr{U} pass through the neighborhood only once. It is known, [B , that any compact regular ($2 m+1$)-dimensional contact manifold M is the bundle space of a principle circle bundle $\pi: M \rightarrow B$ over a $2 m$ dimensional simplectic manifold B. It is easy to show that in the case of a compact regular contact manifold $H_{B}^{k}(M)$ is the pullback of $H^{k}(B)$, where $H^{k}(B)$ is the DeRham cohomology group of B.

Let (M, η) be a contact manifold. In what follows we will always use the following notation:

$$
\begin{equation*}
\Phi=d \eta \tag{1.2}
\end{equation*}
$$

Φ is a closed basic form. Therefore Φ represents a basic cohomology class. In what follows we will denote this cohomology class by $\Omega . \Omega \in H_{B}^{2}(M)$ is called the fundamental basic cohomology class.

For a compact contact ($2 m+1$)-dimensional manifold (M, η) we now define a linear function $I: A_{B}(M, F) \rightarrow \mathbf{F}$ from the set of all basic \mathbf{F}-valued forms on M into \mathbf{F} as follows: If $\omega \in A_{B}^{2 k}(M, F), k=0,1, \ldots, m$, then

$$
\begin{equation*}
I(\omega)=\frac{1}{2^{m} m!\operatorname{Vol}(M)} \int_{M} \eta \wedge \Phi^{m-k} \wedge \omega \tag{1.3}
\end{equation*}
$$

If $\omega \in A_{B}^{2 k+1}(M, \mathbf{F}), k=1, \ldots, m$, then $I(\omega)=0$. We shall denote by the same symbol I a function $I: H_{B}(M, \mathbf{F}) \rightarrow \mathbf{F}$ defined as follows: Let $\alpha \in H_{B}(M, \mathbf{F})$ and let ω be a closed basic form representing α. Then, by definition,

$$
\begin{equation*}
I(\alpha)=I(\omega) \tag{1.4}
\end{equation*}
$$

We will show in Sec. 2 that $I(\alpha)$ is well-defined by formula (1.4), that is $I(\alpha)$ does not depend on a particular choice of a basic form ω representing α. It is clear from
the definition of I that

$$
\begin{align*}
I\left(\Phi^{k} \wedge \omega\right) & =I(\omega), \\
I\left(\Omega^{k} \cdot \alpha\right) & \text { if } \omega \in A_{B}^{2 l} \quad \text { and } \quad l+k \leqq m ; \tag{1.5}\\
& \text { if } \quad \alpha \in H_{B}^{2 l} \quad \text { and } \quad l+k \leqq m .
\end{align*}
$$

By [S], page 3-4, $\int \eta \wedge \Phi^{m}=2^{m} m!\operatorname{Vol}(M)$. Therefore

$$
\begin{equation*}
I\left(\Phi^{k}\right)=I\left(\Omega^{k}\right)=1, \quad 0 \leqq k \leqq m \tag{1.6}
\end{equation*}
$$

Let (M, η) be a contact manifold. An associated contact metric structure, [B], for a contact structure η is a collection (η, X_{0}, φ, g), where X_{0} is the characteristic vector field, φ is a field of automorphisms of the tangent spaces of M, and g is a Riemannian metric on M such that

$$
\begin{gathered}
\varphi^{2}(X)=-X+\eta(X) X_{0}, \\
\eta(X)=g\left(X, X_{0}\right), \\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \\
\Phi(X, Y)=g(X, \varphi Y),
\end{gathered}
$$

for any tangent vector fields X and Y on M. An associated contact metric structure for a contact structure η always exists, but is not unique, [B]. We say that a contact metric structure (η, X_{0}, φ, g) on M is normal, [B], if the almost complex structure T on $M \times \mathbf{R}$ defined by $T\left(X, f \frac{d}{d t}\right)=\left(\varphi X-f X_{0}, \eta(X) \frac{d}{d t}\right)$ is integrable. A differentiable manifold M furnished with a normal contact metric structure (η, X_{0}, φ, g) is called a Sasakian manifold.

Let $\left(M, \eta, X_{0}, \varphi, g\right)$ be a $(2 m+1)$-dimensional Sasakian manifold. For $x \in M$, set

$$
\begin{equation*}
D_{x}=\left\{X \in T M_{x}: \eta(X)=0\right\} \tag{1.7}
\end{equation*}
$$

D_{x} is called the horizontal subspace at the point x. By (1.7), φ induces an almost complex structure (once more denoted dy φ) on D_{x}. Denote by $D_{x}^{\mathbf{C}}$ the complexification of D_{x}. Then $D_{x}^{\mathbf{C}}=D_{x}^{1,0} \oplus D_{x}^{0,1}$, where

$$
\begin{align*}
D_{x}^{1,0} & =\left\{X \in D_{x}^{\mathrm{C}}: \varphi X=\sqrt{-1} X\right\} \tag{1.8}\\
D_{x}^{0,1} & =\left\{X \in D_{x}^{\mathrm{C}}: \varphi X=-\sqrt{-1} X\right\}
\end{align*}
$$

It follows that the set $\operatorname{Hor}^{p}(M)$ of all \mathbf{C}-valued horizontal p-forms on M may be bigraded as follows;

$$
\operatorname{Hor}^{p}(M)=\sum_{k+l=p} \operatorname{Hor}^{k, l}(M)
$$

where $\operatorname{Hor}^{k, l}(M)$ is the set of all horizontal $(k+l)$-forms on M which can obtain
non-zero values only for sets of vectors $X_{1}, \ldots, X_{k+1} \in T M_{x}^{C}$ among which k vectors belong to $D_{x}^{1,0}$ and l vectors belong to $D_{x}^{0,1}$.

Let $\alpha \in H_{B}^{k+l}(M, \mathrm{C})$. We say that α is of the type (k, l), if there is a basic form ω representing α, such that $\omega \in \operatorname{Hor}^{k, 1}(M)$. We will see in Sec. 2 that for a ($2 m+1$)dimensional compact Sasakian manifold the notion for $\alpha \in H_{B}^{p}(M),(0 \leqq p \leqq m)$, to be of the type (k, l) is well defined. That means that if $\omega \in \operatorname{Hor}^{k, 1}(M)$ and $\tau \in \operatorname{Hor}^{r, s}(M)$ represent the same basic cohomology class $\alpha \in H_{B}^{p}(M, C)$, then $\dot{k}=r$ and $l=s$. For $0 \leqq k+l \leqq m$, set

$$
\begin{equation*}
H_{B}^{k, l}(M)=\left\{\alpha \in H_{B}^{k+l}(M, \mathbf{C}): \alpha \text { is of the type }(k, l)\right\} \tag{1.9}
\end{equation*}
$$

Then $H_{B}^{k, l}$ is a subgroup (as an additive group) of $H_{B}^{k+l}(M, \mathrm{C})$. We will show in Sec. 2 that for a compact Sasakian manifold there is a direct sum decomposition

$$
H_{B}^{\prime}(M, \mathbf{C})=\sum_{k+l=p} H_{B}^{k, l}(M), \quad 0 \leqq p \leqq m
$$

For $0 \leqq k+l \leqq m$, set

$$
h_{B}^{k, l}=\operatorname{dim}_{C} H_{B}^{k, l}(M)
$$

$h_{B}^{k, l}$ will be called the basic Hodge number of the type (k, l). By (1.3), $\Phi \in \operatorname{Hor}^{1,1}(M)$. Hence $\Omega^{k} \in H_{B}^{k, k}(M)$. By (1.6), $\Omega^{k} \neq 0$. Therefore

$$
h_{B}^{0,0}=1, \quad h_{B}^{k, k} \geqq 1, \quad k=1, \ldots,\left[\frac{m}{2}\right]
$$

Moreover, we will show in Sec. 2 that

$$
1=h_{B}^{0,0} \leqq h_{B}^{1,1} \leqq \ldots \leqq h_{B}^{[m / 2] \cdot[m / 2]}
$$

In Sec. 3 we prove the main result of this paper:
Theorem 1.1. Let $\left(M, \eta, X_{v}, \varphi, g\right)$ be a compact $(2 m+1)$-dimensional Sasakian manifold and let k be an integer such that $1 \leqq k \leqq \frac{m}{2}$. Assume that $h_{B}^{k-1, k-1}=1$. Let $\alpha \in H_{B}^{k, k}(M)$. Then

$$
\begin{equation*}
(-1)^{k}[I(\alpha \cdot \bar{\alpha})-I(\alpha) I(\bar{\alpha})] \geqq 0 \tag{1.10}
\end{equation*}
$$

and the equality holds if and only if $\alpha=t \Omega^{k}, t \in \mathbf{C}$. Here $\bar{\alpha}$ means the complex conjugate of α.

Taking $k=1$ in Theorem 1.1, we obtain
Corollary 1.2. Let M be a compact Sasakian ($2 m+1$)-dimensional ($m \geqq 2$) manifold and let $\alpha \in H_{B}^{1,1}(M)$. Then

$$
\begin{equation*}
I(\alpha \cdot \bar{\alpha})-I(\alpha) I(\bar{\alpha}) \leqq 0 \tag{1.11}
\end{equation*}
$$

and the equality holds if and only if $\alpha=t \Omega$, where $t \in \mathbf{C}$.

It follows easily from the results of Sec. 2 that if $b_{2}(M)=0$, where $b_{2}(M)$ is the second Betti number of M, then $h_{B}^{1,1}=1$. Hence, taking $k=2$ in Theorem 1:1, we obtain

Corollary 1.3. Let M be a compact Sasakian ($2 m+1$)-dimensional ($m \geqq 4$) manifold and let $\alpha \in H_{B}^{2,2}(M)$. If $b_{2}(M)=0$, then

$$
\begin{equation*}
I(\alpha \cdot \bar{\alpha})-I(\alpha) I(\bar{\alpha}) \geqq 0, \tag{1.12}
\end{equation*}
$$

and the equality holds if and only if $\alpha=t \Omega^{2}$, where $t \in \mathbf{C}$.
In Sec. 4 for any $(2 m+1)$-dimensional Sasakian manifold and for any $k=$ $=1, \ldots, m$ we introduce a canonical real closed basic form $C_{k}^{(B)}$ of bidegree (k, k). We will call this form the basic Chern form of a Sasakian manifold. Substituting $C_{k}^{(B)}$ instead of α in (1.10), we obtain an integral inequality similar to inequality (1.1). In the simplest case, when $k=1$, we obtain inequality (1.1).

If M is a regular Sasakian manifold, then M is a unit circle bundle over a Kaehler manifold B. It is easy to see that in this case the basic Chern form $C_{k}^{(B)}$ belongs to a basic cohomology class which is the pull-back of the Chern class $C_{k}(B)$. It was shown in [G2] that for $B=P^{2}(\mathbf{C}) \times P^{3}(\mathrm{C})$,

$$
I\left(C_{2}(B) \cdot C_{2}(B)\right)-I\left(C_{3}(B)\right) \cdot I\left(C_{2}(B)\right)<0
$$

Hence, if a Sasakian manifold M is a unit circle bundle over $B=P^{2}(\mathbf{C}) \times P^{3}(\mathbf{C})$, then

$$
I\left(C_{2}^{(B)}(M) \cdot C_{2}^{(B)}(M)\right)-I\left(C_{2}^{(B)}(M)\right) \cdot I\left(C_{2}^{(B)}(M)\right)<0 .
$$

Comparing this inequality with inequality (1.12), we see that the condition $b_{2}(M)=0$ in Corollary 1.3 cannot be omitted. More generally, this example shows that the condition $h_{B}^{k-1, k-1}=1$ in Theorem 1.1 is essential.

We conclude Sec. 4 by Remark showing how one can define basic Pontrjagin classes $P_{k}^{(B)} \in H_{B}^{4 k}(M, \mathbf{R}), k=1, \ldots,[m / 2]$, on K-contact manifolds.

Finally we note that for Kaehler manifolds a theorem similar to Theorem 1.1 has been proved in [G2].
2. Decomposition theorems. For a compact metric manifold ($M, \eta, X_{0}, \varphi, g$) we will denote by \langle,$\rangle the local scalar product with respect to the Riemannian metric$ g, and by $(\lambda, \mu)=\int_{M}\langle\lambda, \mu\rangle d V$ the global scalar product, where λ and μ are differential forms of the same degree. As usual, * will be the Hodge "star" operator and δ will be the adjoint of the operator of exterior differentiation, i.e. $(d \lambda, \mu)=(\lambda, \delta \mu)$, where λ and μ are forms of degrees p and $p+1$, respectively. We also will denote by $e(\eta) \lambda$ the exterior product by η, i.e. $e(\eta) \lambda=\eta \wedge \lambda$. Clearly, $\left(i\left(X_{0}\right) \lambda, \mu\right)=(\lambda, e(\eta) \mu)$ for any two differential forms λ and μ of degrees $p+1$ and p respectively.

Lemma 2.1. Let (M, η) be a compact $(2 m+1)$-dimensional contact manifold. Then the function $I: H_{B}(M, \mathbf{F}) \rightarrow \mathbf{F}$ given by formulas (1.3) and (1.4) is well-defined.

Proof. Let λ and λ_{1} be basic closed $2 k$-forms representing the same basic cohomology class $\alpha \in H_{B}^{2 k}(M)$. Then $\lambda-\lambda_{1}=d \mu$ where μ is a basic ($2 k-1$)-form.

We must prove that $\int_{M} \eta \wedge \Phi^{m-k} \wedge \lambda=\int_{M} \eta \wedge \Phi^{m-k} \lambda_{1}$. Therefore we must prove that $\int_{M} \eta \wedge d \omega=0$, where $\omega=\Phi^{m-k} \wedge \mu$. Clearly, ω is a basic form. Let (η, X_{0}, φ, g) be a contract metric structure on M associated with contact structure η. By [S], page 3-4,

$$
\begin{equation*}
* 1=\frac{1}{2^{m} m!} \eta \wedge \Phi^{m} \tag{2.1}
\end{equation*}
$$

Hence,

$$
\begin{gathered}
\int_{M} \eta \wedge d \omega=(\eta \wedge d \omega, * 1)=\frac{1}{2^{m} m!}\left(e(\eta) d \omega, e(\eta) \Phi^{m}\right)= \\
=\frac{1}{2^{m} m!}\left(d \omega, i\left(X_{0}\right) e(\eta) \Phi^{m}\right)=\frac{1}{2^{m} m!}\left(d \omega, \Phi^{m}\right)=\frac{1}{2^{m} m!}\left(\omega, \delta \Phi^{m}\right) .
\end{gathered}
$$

By [SH],

$$
\begin{equation*}
\delta \Phi^{r}=4 r(m-r+1) \eta \wedge \Phi^{r-1} \tag{2.2}
\end{equation*}
$$

Therefore,

$$
\int_{M} \eta \wedge d \omega=\frac{4 m}{2^{m} m!}\left(\omega, e(\eta) \Phi^{m-1}\right)=\frac{4 m}{2^{m} m!}\left(i\left(X_{0}\right) \omega, \Phi^{m-1}\right)=0
$$

since $i\left(X_{0}\right) \omega=0$.
Corollary. For any basic form $\lambda, I(d \lambda)=0$.
From now and to the end of this section let ($M, \eta, X_{0}, \varphi, g$) be a compact $(2 m+1)$-dimensional Sasakian manifold. Let us denote by d_{B} and (, $)_{B}$ the restriction of the exterior differential and of the global scalar product on the space $A_{B}(M)$ of basic forms on M. Let $\delta_{B}: A_{B}(M) \rightarrow A_{B}(M)$ be the adjoint operator for d_{B} with respect to $(,)_{B}$. Then $\Delta_{B}=\delta_{B} d_{B}+d_{B} \delta_{B}$ is called the basic Laplacian. The set \mathfrak{H}_{B}^{k} of basic harmonic k-forms is the kernel of Δ_{B} on $A_{B}^{k}(M)$. Any Sasakian manifold M can be considered as a foliated manifold with 1 -dimensional leaves. By the Main Theorem of [KT] (whose conditions are obviously satisfied for Sasakian manifolds), we have

$$
\begin{equation*}
A_{B}^{k}(M) \cong \Delta_{B}\left(A_{B}^{k}\right) \oplus \mathfrak{S}_{B}^{k}(M) \tag{2.3}
\end{equation*}
$$

and $\operatorname{dim}_{C} \mathfrak{S}_{B}^{k}<\infty$. It follows from (2.3) that

$$
\begin{equation*}
A_{B}^{K}(M, \mathrm{C})=\operatorname{im} d_{B} \oplus \operatorname{im} \delta_{B} \oplus \mathfrak{S}_{B}^{k}(M) . \tag{2.4}
\end{equation*}
$$

As usual we obtain from (2.4) that $H_{B}^{k}(M, \mathbf{C}) \cong \mathfrak{S}_{B}^{k}(M)$.

Let $T M_{x}^{\mathrm{C}}$ be the complexified tangent space at the point $x \in M$. Then

$$
\begin{equation*}
T M_{x}^{\mathbf{C}}=D_{x}^{1,0} \oplus D_{x}^{0,1} \oplus \mathbf{C} X_{0} \tag{2.5}
\end{equation*}
$$

where $D_{x}^{1,0}$ and $D_{x}^{0,1}$ are defined by (1.8). It is known, [I], that the pair of complex distributions ($D_{x}^{1,0}, D_{x}^{0,1}$) defines a C-R structure on M. Hence each of the distributions $D_{x}^{1,0}$ and $D_{x}^{0,1}$ is integrable. Let $\left\{e_{i}, e_{i}, X_{0}\right\}, i=1, \ldots, m ; i=m+1, \ldots, 2 m$, be a local field of frames adapted to the decomposition (2.6). That means that at the point x each $e_{i} \in D_{x}^{1,0}$ and each $e_{i} \in D_{x}^{0,1}$. Let $\left\{\theta^{i}, \theta^{i}, \eta\right\}$ be the dual basis of \mathbf{C}-valued 1forms on M. Then, by Frobenius' theorem

$$
d \theta^{i} \equiv 0\left(\bmod \theta^{j}, j=1, \ldots, m\right) \quad \text { and } \quad d \theta^{i} \equiv 0\left(\bmod \theta^{j}, j=m+1, \ldots, 2 m\right) .
$$

Therefore

$$
\begin{aligned}
& d \theta^{i}=\sum a_{j k}^{i} \theta^{i} \wedge \theta^{k}+\sum a_{j k}^{i} \theta^{j} \wedge \theta^{k}+\sum b_{j}^{i} \eta \wedge \theta^{j}, \\
& d \theta^{i}=\sum a_{j k}^{j} \theta^{J} \wedge \theta^{k}+\sum a_{j k}^{l} \theta^{j} \wedge \theta^{k}+\sum b_{j}^{l} \eta \wedge \theta^{J},
\end{aligned}
$$

where $a_{j k}^{i}, a_{j k}^{i}, a_{j k}^{i}, a_{j k}^{l}, b_{j}^{i}, b_{j}^{i}$ are functions. It follows that for any horizontal form $\omega \in \operatorname{Hor}^{k, l}(M)$ of bidegree (k, l)

$$
\begin{equation*}
d \omega=\omega^{\prime}+\omega^{\prime \prime}+\eta \wedge \omega^{\prime \prime \prime} \tag{2.6}
\end{equation*}
$$

where $\omega^{\prime} \in \operatorname{Hor}^{k+1, l}(M), \omega^{\prime \prime} \in \operatorname{Hor}^{k, l+1}(M), \omega^{\prime \prime \prime} \in \operatorname{Hor}^{k, l}(M)$. Assume now that ω is basic. Then $0=i\left(X_{0}\right) d \omega=\omega^{\prime \prime \prime}$. Therefore $d \omega=\omega^{\prime}+\omega^{\prime \prime}$. Set $d \omega^{\prime}=\lambda^{\prime}+\eta \wedge \mu^{\prime}$, $d \omega^{\prime \prime}=\lambda^{\prime \prime}+\eta \wedge \mu^{\prime \prime}$, where $\lambda^{\prime}, \lambda^{\prime \prime}, \mu^{\prime}$, and $\mu^{\prime \prime}$ are horizontal. If follows that $0=d \omega^{\prime}+$ $+d \omega^{\prime \prime}=\left(\lambda^{\prime}+\lambda^{\prime \prime}\right)+\eta\left(\mu^{\prime}+\mu^{\prime \prime}\right)$. Hence $\mu^{\prime}+\mu^{\prime \prime}=0$. Since $\mu^{\prime} \in \operatorname{Hor}^{k+1, l}(M)$ and $\mu^{\prime \prime} \in$ $\in \operatorname{Hor}^{k, 1+1}(M)$, we obtain that $\mu^{\prime}=\mu^{\prime \prime}=0$. Hence $d \omega^{\prime}$ and $d \omega^{\prime \prime}$ are horizontal and therefore ω^{\prime} and $\omega^{\prime \prime}$ are basic. It follows that if $\omega \in A_{B}^{k, l}(M)$, where $A_{B}^{k, l}(M)$ is the set. of basic forms on M of bidegree (k, l), then $d \omega=\omega^{\prime}+\omega^{\prime \prime}$, where $\omega^{\prime} \in A_{B}^{k+1, l}(M)$ and $\omega^{\prime \prime} \in A_{B}^{k+1, l}(M)$. Set $d_{B}^{\prime} \omega=\omega^{\prime}, d_{B}^{\prime \prime} \omega=\omega^{\prime \prime}$. Then we obtain that $d_{B}=d_{B}^{\prime}+d_{B}^{\prime \prime}$, where d_{B}^{\prime} and $d_{B}^{\prime \prime}$ are differential operators on $A_{B}(M, \mathrm{C})$ of bidegrees $(1,0)$ and $(0,1)$, respectively. Let $\delta_{B}^{\prime}: A_{B}(M, \mathbf{C}) \rightarrow A_{B}(M, \mathbf{C})$ and $\delta_{B}^{\prime \prime}: A_{B}(M, \mathbf{C}) \rightarrow A_{B}(M, \mathbf{C})$ be the adjoint operators for d_{B}^{\prime} and $d_{B}^{\prime \prime}$, respectively, with respect to the global scalar product $(,)_{B}$. Then δ_{B}^{\prime} and $\delta_{B}^{\prime \prime}$ are of bidegree $(-1,0)$ and $(0,-1)$, respectively, and $\delta_{B}=\delta_{B}^{\prime}+\delta_{B}^{\prime \prime}$. Set $\Delta_{B}^{\prime}=\delta_{B}^{\prime} d_{B}^{\prime}+d_{B}^{\prime} \delta_{B}^{\prime}, \Delta_{B}^{\prime \prime}=\delta_{B}^{\prime \prime} d_{B}^{\prime \prime}+d_{B}^{\prime \prime} \delta_{B}^{\prime \prime}$.

Lemma 2.2. Let ω be a basic p-form, $0 \leqq p \leqq m$. Then

$$
\Delta_{B} \omega=2 \Delta_{B}^{\prime} \omega=2 \Delta_{B}^{\prime \prime} \omega .
$$

Proof. This lemma is analogous to Theorem 3.7 of [W], Chapter V. A proof Lemma 2.2 can be obtained by repeating the arguments of the proof of the above mentioned theorem from [W], and we omit it.

Denote dy $\Pi_{k, i}$ the natural projection from $A_{B}(M, C)$ to $A_{B}^{k, 1}(M)$. By Lemma 2.2,

$$
\begin{equation*}
\Delta_{B} \Pi_{k, l}=\Pi_{k, l} \Delta_{B}, \quad 0 \leqq k+l \leqq m . \tag{2.7}
\end{equation*}
$$

For any differential form ω on M, set $L \omega=\Phi \wedge \omega$, where $\Phi=d \eta$. If ω is basic, then $L \omega$ is also basic. Therefore L induces the map $L_{B}: A_{B}(M) \rightarrow A_{B}(M)$. Denote by Λ the adjoint operator of L with respect to (,), and by Λ_{B} the adjoint operator of L_{B} with respect to (, $)_{B}$. Clearly L_{B} and Λ_{B} are operators of bidegrees (1,1) and ($-1,-1$), respectively.

Lemma 2.3.

(i) If ω is basic, then $\Pi_{k, i} \omega$ is also basic.
(ii) If ω is a basic harmonic p-form and $0 \leqq p \leqq m$, then $\Pi_{k, l} \omega$ is also basic harmonic.
(iii) If ω is a harmonic p-form and $0 \leqq p \leqq m$, then $\Pi_{k, l} \omega$ is also harmonic.

Remark. By [T1] and [Y], any harmonic p-form, $0 \leqq p \leqq m$, is basic harmonic. Therefore the operator $\Pi_{k, l}$ is well-defined on the set of harmonic p-forms, $0 \leqq p \leqq m$.

Proof. (i) Let $\omega \in A_{B}^{p}(M, \mathbf{C})$. Then $\omega=\omega_{0, p}+\omega_{1, p-1}+\ldots+\omega_{p, 0}$, where $\omega_{k, l}=\Pi_{k, l} \omega$. By (2.6), $d \omega_{k, l}=\lambda+\eta \wedge \mu_{k, l}$, where λ is horizontal and $\mu_{k, l}$ is horizontal of bidegree (k, l). Since ω is basic,

$$
0=i\left(X_{0}\right) d \omega=i\left(X_{0}\right)\left(d \omega_{0, p}+\ldots+d \omega_{p, 0}\right)=\mu_{0, p}+\mu_{1, p-1}+\ldots+\mu_{p, 0}
$$

Hence each $\mu_{k, l}=0$. Therefore $i\left(X_{0}\right) d \omega_{k, l}=i\left(X_{0}\right) \lambda=0$. Thus, $\omega_{k, l}=\Pi_{k, l} \omega$ is basic.
(ii) Let ω be a basic harmonic p-form, $0 \leqq p \leqq m$. By (2.7), $\Delta_{B}\left(\Pi_{k, l} \omega\right)=$ $=\Pi_{k, l}\left(\Delta_{B} \omega\right)=0$. This proves (ii).
(iii) Let λ and μ be two basic forms on M. For Sasakian manifolds, formula (3.8) from [KT] gives

$$
\begin{equation*}
(\Delta \lambda, \mu)=\left(\left(\Delta_{B}+L A\right) \lambda, \mu\right) \tag{2.8}
\end{equation*}
$$

Let ω be a harmonic p-form, $0 \leqq p \leqq m$. Then ω and therefore $\Pi_{k, l} \omega$ are basic. Hence, by (2.7) and (2.8),

$$
\begin{gathered}
\left(\Delta\left(\Pi_{k, l} \omega\right), \Pi_{k, l} \omega\right)=\left(\Delta_{B} \Pi_{k, l} \omega+L \Lambda \Pi_{k, l} \omega, \Pi_{k, l} \omega\right)= \\
=\left(\Pi_{k, l} \Delta_{B} \omega+L \Pi_{k-1,:-1} \Lambda \omega, \Pi_{k, l} \omega\right)
\end{gathered}
$$

Since any harmonic p-form, $0 \leqq p \leqq m$, is basic harmonic, we have $\Delta_{B} \omega=0$. By [Tl], any harmonic p-form, $0 \leqq p \leqq m$, is effective, i.e. $\Lambda \omega=0$. Therefore $\left(\Delta\left(\Pi_{k, l} \omega\right), \Pi_{k, l} \omega\right)=0$. It follows that $\left(d\left(\Pi_{k, l} \omega\right), d\left(\Pi_{k, l} \omega\right)\right)+\left(\delta\left(\Pi_{k, l} \omega\right), \delta\left(\Pi_{k, l}\right)\right)=0$. Thus, $d\left(\Pi_{k, l} \omega\right)=\delta\left(\Pi_{k, l} \omega\right)=0$. Therefore, $\Pi_{k, l} \omega$ is harmonic. This proves (iii).

Let ω be a closed basic form of bidegree (k, l), $0 \leqq k+l \leqq m$. Then, by (2.3), $\omega=\psi+\Delta_{B} \lambda$, where ψ is basic harmonic and λ is basic. By (2.7), $\omega=\Pi_{k, l} \omega=$
$=\Pi_{k, l} \psi+\Delta_{B}\left(\Pi_{k, l} \lambda\right)$. Since ψ is uniquely defined by ω and since, by Lemma 2.3, $\Pi_{k, l} \psi$ is basic harmonic, $\psi=\Pi_{k, l} \psi$. Therefore ψ is of bidegree (k, l). Thus, we obtain that if a basic cohomology class $\alpha \in H_{B}^{k+l}(M, \mathbf{C}), 0 \leqq k+l \leqq m$, contains a closed basic form of bidegree (k, l), its basic harmonic form is also of bidegree (k, l). Therefore, the cohomology group $H_{B}^{k, l}(M)$, defined by (1.9), is well-defined. By Lemma 2.3, we have a direct sum decomposition

$$
\begin{equation*}
H_{B}^{p}(M, \mathbf{C})=H_{B}^{0, p}(M) \oplus H_{B}^{1, p-1}(M) \oplus \ldots \oplus H_{B}^{p, 0}(M), \quad 0 \leqq p \leqq m . \tag{2.9}
\end{equation*}
$$

Similarly, let $H^{P}(M, \mathbf{C}), 0 \leqq p \leqq m$, be the $p^{\text {th }}$ DeRham cohomology group, and let $H^{k, l}(M)$ be the set of all elements of H^{p} which are represented by a harmonic p-form of bidegree (k, l). Then

$$
\begin{equation*}
H^{p}(M, \mathbf{C})=H^{0, p}(M) \oplus H^{1, p-1}(M) \oplus \ldots \oplus H^{p, 0}(M), \quad 0 \leqq p \leqq m \tag{2.10}
\end{equation*}
$$

Let $0 \leqq p \leqq m, 0 \leqq k \leqq l \leqq m$. Set

$$
\begin{aligned}
b_{p} & =\operatorname{dim}_{\mathbf{C}} H^{p}(M, \mathbf{C}), \quad b_{p}^{(B)}=\operatorname{dim}_{\mathbf{C}} H_{B}^{p}(M, \mathbf{C}) \\
h^{k, t} & =\operatorname{dim}_{\mathbf{C}} H^{k, l}(M, \mathbf{C}), \quad h_{B}^{k, l}=\operatorname{dim}_{\mathbf{C}} H_{B}^{k, l}(M, \mathbf{C}) .
\end{aligned}
$$

Here b_{p} are usual Betti numbers. We will call $b_{p}^{(B)}, h^{k, l}$ and $h_{B}^{k, l}$ the basic Betti numbers, the Hodge numbers, and the basic Hodge numbers, respectively. By (2.9) and (2.10),

$$
\begin{gather*}
b_{p}=h^{0, p}+h^{1, p-1}+\ldots+h^{p, 0}, \quad 0 \leqq p \leqq m \\
b_{p}^{(B)}=h_{B}^{0, p}+h_{B}^{1, p-1}+\ldots+h_{B}^{p, 0}, \quad 0 \leqq p \leqq m . \tag{2.11}
\end{gather*}
$$

Denote by C a linear operator C : $\operatorname{Hor}(M) \rightarrow$ Hor (M) such that $C \omega=(\sqrt{-1})^{k-l} \omega$ if ω is of bidegree (k, l), where $\operatorname{Hor}(M)$ is the set of all horizontal forms on M. Let $*$ denote the Hodge "star" operator. Remind that ω is called effective, if $\Lambda \omega=0$.

Lemma 2.4. Let ω be a horizontal and effective p-form, $0 \leqq p \leqq m$, and let $0 \leqq r \leqq m-p$. Then

$$
*\left(L^{r} \omega\right)=(-1)^{p(p-1) / 2} \frac{r!}{2^{m-p-2 r}(m-p-r)!} e(\eta) L^{m-p-r} C \omega .
$$

Proof. This lemma is similar to Theorem 1.6 from [W], Chapter 5. The proof of Lemma 2.4 is just a repetition of the proof of the above mentioned theorem from [W], and we omit it.

We now prove a decomposition theorem for closed basic forms.
Theorem 2.5. Let M be a compact $(2 m+1)$-dimensional Sasakian manifold and let ω be a closed basic p-form on M. Then
(i) ω can be decomposed as

$$
\begin{equation*}
\omega=\sum_{i=(p-m)^{+}}^{[p / 2]} L^{i} \psi_{i}+d \lambda \tag{2.12}
\end{equation*}
$$

where $(p-m)^{+}=\max \{0, p-m\}, \psi_{i}$ is a harmonic $(p-2 i)$-form, any λ is basic. In addition, harmonic forms $\psi_{i}, i=(p-m)^{+}, \ldots,[p / 2]$, are uniquely defined by ω.
(ii) If ω is of bidegree (k, l), then for each i, ψ_{i} is of bidegree $(k-i, l-i)$.

Proof. (i) We first consider the case $0 \leqq p \leqq m$. By (2.4), $\omega=\psi+d \lambda$, where ψ is a basic harmonic p-form uniquely defined by ω, and λ is basic. Since ψ is basic harmonic, $d_{B} \psi=0$ and $\delta_{B} \psi=0$. For Sasakian manifolds formula 3.3 from [KT] takes the form $\delta \psi=\delta_{B} \psi+e(\eta) \Lambda \psi$. Therefore

$$
\begin{equation*}
d \psi=0, \quad \delta \psi=e(\eta) \Lambda \psi \tag{2.13}
\end{equation*}
$$

Differential forms on Sasakian manifolds satisfying (2.13) were introduced in [0] and were called there C-harmonic forms. By the decomposition theorem for C harmonic forms of degree $p, 0 \leqq p \leqq m$, [T2],

$$
\psi=\sum_{i=0}^{[p / 2]} L^{i} \psi_{i}
$$

where ψ_{i} are harmonic ($p-2 i$)-forms uniquely defined by ψ. This proves (i) in the case $0 \leqq p \leqq m$.

Let now $m+1 \leqq p \leqq 2 m$. Once more, $\omega=\psi+d \lambda$, where ψ is a basic harmonic form uniquely defined by ω, and λ is basic. Following [KT], for any basic \boldsymbol{q}-form μ we set

$$
\bar{*} \mu=(-1)^{q} i\left(X_{0}\right) * \mu .
$$

Then $\vec{*}^{*} \mu=(-1)^{q} \mu$. By Lemma 2.4, for any horizontal and effective q-form μ, $0 \leqq q \leqq m$, and for any $r, 0 \leqq r \leqq m-q$,

$$
\begin{equation*}
\bar{*}^{\prime}\left(L^{r} \mu\right)=(-1)^{q(q+1) / 2} \frac{r!}{2^{m-q-2 r}(m-q-r)!} L^{m-q-r} C \mu \tag{2.14}
\end{equation*}
$$

Set $\tilde{\psi}=\boldsymbol{*} \psi$. By [KT], $\bar{*} \Delta_{B}=\Delta_{B} \boldsymbol{*}$. Therefore $\tilde{\psi}$ is basic harmohic. Since $\tilde{\psi}$ is of degree $2 m-p<m$, we have a decomposition

$$
\tilde{\psi}=\sum_{j=0}^{[(2 m-p) / 2]} L^{j} \tilde{\psi}_{j}
$$

where $\tilde{\psi}_{j}$ are harmonic of degree ($2 m-p-2 j$). By (2.24),

$$
\begin{gathered}
\psi=(-1)^{2 m-p} \bar{*} \tilde{\psi}=\sum_{j=0}^{[(2 m-p) / 2]} \bar{w}^{j}\left(L^{j} \tilde{\psi}_{j}\right)= \\
=\sum_{j=0}^{[(2 m-p) / 2]}(-1)^{p(p+1) / 2-m+j} \frac{j!}{2^{p-m}(p-m+j)!} L^{p-m+j} C \tilde{\psi}_{j}
\end{gathered}
$$

Set $i=p-m+j$,

$$
\psi_{i}=(-1)^{p(p-1) / 2+i} \frac{(i-p+m)!}{2^{p-m} i!} C \tilde{\psi}_{i-p+m}
$$

Then

$$
\begin{equation*}
\psi=\sum_{i=p-m}^{[p / 2]} L^{i} \psi_{i}, \tag{2.15}
\end{equation*}
$$

where we used the identity $p-m+\left[\frac{2 m-p}{2}\right]=\left[\frac{p}{2}\right]$. The degree of $\tilde{\psi}_{i-p+m}$ is ($p-2 i$). Therefore $\operatorname{deg} \tilde{\psi}_{i-p+m} \leqq m$ for $i=p-m, \ldots,[p / 2]$. It follows by Lemma 2.3, that $\Pi_{k, 1} \Psi_{i-p+m}$ is harmonic. Since

$$
C \tilde{\psi}_{i-p+m}=\sum_{k+l=p-2 i}(\sqrt{-1})^{k-l} \Pi_{k, l} \tilde{\psi}_{i-p+m}
$$

we obtain that ψ_{i} is harmonic of degree $(p-2 i)$. By (2.15), $\bar{*}^{*} \psi=\sum_{i=p-n}^{[p / 2]} \bar{*}^{*}\left(L^{i} \psi_{i}\right)$. Using Lemma 2.4 , we easily obtain from the last equality that $\psi_{i}, i=p-m, \ldots,[p / 2]$, are uniquely defined by ψ. This completes the proof of (i).
(ii) To prove (ii), assume that ω is of bidegree (k, l). Then, by (2.3), $\omega=\psi+$ $+\Delta_{B} \mu$, where ψ is basic harmonic and μ is basic. Then

$$
\omega=\sum_{i=(p-m)^{+}}^{[p / 2]} L^{i} \psi_{i}+\Delta_{B} \mu
$$

where ψ_{i} is harmonic of degree $(p-2 i)$. It follows that

$$
\omega=\Pi_{k, l} \omega=\sum_{i=(p-m)^{+}}^{[p / 2]} \Pi_{k, l} L^{i} \psi_{i}+\Pi_{k, l} \Delta_{B} \mu=\sum_{i=(p-m)^{+}}^{[p / 2]} L^{i}\left(\Pi_{k-i, l-i} \psi_{i}\right)+\Pi_{k, l} \Delta_{B} \mu .
$$

If $p=k+l \leqq m$, then, by 2.7, $\Pi_{k, l} \Delta_{B} \mu=\Delta_{B} \Pi_{k, l} \mu$. Let $p=k+l \geqq m+1$. By [KT] $\Delta_{B} \xi^{\prime}=(-1)^{D^{*}} \Delta_{B} \bar{*} \mu$. Therefore, since $\operatorname{deg}(\bar{*} \mu) \leqq m$,

$$
\begin{aligned}
& \Pi_{k, l} \Delta_{B} \mu=(-1)^{p} \Pi_{k, l} \bar{*}^{*} \Delta_{B} \bar{*} \mu=(-1)^{p} \bar{*} \Pi_{m-l, m-k} \Delta_{B} \bar{*} \mu= \\
& =(-1)^{p} \bar{*} \Delta_{B} \Pi_{m-i, m-k} \bar{*} \mu=(-1)^{p} \bar{*} \Delta_{B} \bar{*} \Pi_{k, l} u=\Delta_{B} \Pi_{k, l} \mu .
\end{aligned}
$$

Thus, for any $p, 0 \leqq p \leqq 2 m$,

$$
\omega=\sum_{i=(p-m)^{+}}^{[p / 2]} L^{i}\left(\Pi_{k-i, l-i} \psi_{i}\right)+\Delta_{B}\left(\Pi_{k, l} \mu\right)
$$

By Lemma 2.3, $\Pi_{k-i, l-i} \psi_{i}$ is harmonic and $\Pi_{k, l} \mu$ is basic. By uniqueness of decomposition (2.12), $\psi_{i}=\Pi_{k-i, l-i} \psi_{i}$. Hence ψ_{i} is of bidegree ($k-i, l-i$). This proves (ii).

In course of the proof of Theorem 2.5 we saw that the notion of a basic harmonic form is the same as the notion of a C-harmonic form. Therefore we can use results of [0] and [T2] on C-harmonic forms. If ω is C-harmonic, then $L \omega$ is also
C-harmonic. Thus we obtain homomorphisms

$$
L: H_{B}^{p-2}(M) \rightarrow H_{B}^{P}(M), \quad p \leqq m
$$

and

$$
L: H_{B}^{k-1, l-1}(M) \rightarrow H_{B}^{k, l}(M), \quad k+l \leqq m
$$

These homomorphisms are one-to-one. In addition,

$$
\begin{gather*}
H_{B}^{p}(M)=L H_{B}^{p-2}(M) \oplus H^{p}(M), \quad p \leqq m \tag{2.16}\\
H_{B}^{k, l}(M)=L H_{B}^{k-1, l-1}(M) \oplus H^{k, l}(M), \quad k+l \leqq m .
\end{gather*}
$$

It follows that

$$
\begin{gather*}
b_{p}=b_{p}^{(B)}-b_{p-2}^{(B)}, \quad p \leqq m \tag{2.17}\\
h^{k, l}=h_{B}^{k, l}-h_{B}^{k-1, l-1}, \quad k+l \leqq m
\end{gather*}
$$

where we set $b_{-2}^{(B)}=b_{-1}^{(B)}=h_{B}^{k,-1}=h_{B}^{-1, l}=0$. It follows from (2.17) that

$$
\begin{align*}
& b_{p-2}^{(B)} \leqq b_{p}^{(B)}, \quad p \leqq m, \\
& h_{B}^{k-1, l-1} \leqq h_{B}^{k, l}, \quad k+l \leqq m . \tag{2.18}
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
1=h_{B}^{0,0} \leqq h_{B}^{1,1} \leqq \ldots \leqq h_{B}^{[m / 2],[m / 2]} \tag{2.19}
\end{equation*}
$$

Note that the mapping $\bar{*}^{\text {induces }}$ the isomorphisms

$$
\begin{gather*}
H_{B}^{P}(M) \cong H_{B}^{2 m-p}(M), \quad 0 \leqq p \leqq 2 m \\
H_{B}^{k, l}(M) \cong H_{B}^{m-l, m-k}(M), \quad 0 \leqq k, l \leqq m \tag{2.20}
\end{gather*}
$$

In addition, the complex conjugation induces the isomorphism

$$
\begin{equation*}
H_{B}^{k, l}(M) \cong H_{B}^{l, k}(M), \quad 0 \leqq k, l \leqq m . \tag{2.21}
\end{equation*}
$$

Therefore we have

$$
\begin{gather*}
b_{p}^{(B)}=b_{2 m-p}^{(B)}, \quad 0 \leqq p \leqq 2 m \tag{2.22}\\
h_{B}^{k, t}=h_{B}^{l, k}=h_{B}^{m-k, m-l}=h_{B}^{m-l, m-k}, \quad 0 \leqq k, l \leqq m .
\end{gather*}
$$

3. Inequalities for basic cohomology classes. In this section we continue to assume that ($M, \eta, X_{0}, \varphi, g$) is a ($2 m+1$)-dimensional compact Sasakian manifold.

Lemma 3.1. Let ω any τ be harmonic forms of degrees $2 i$ and $2 j$, respectlively. Assume that $0 \leqq i \leqq m / 2,0 \leqq j \leqq m / 2$; and $i \neq j$. Then $I(\omega \wedge \tau)=0$, where I is defined by formula (1.3). In particular, if u is a harmonic form of degree $2 i$, where $0<i \leqq m / 2$, then $I(u)=0$.

Proof. Let u be a harmonic p-form, $0 \leqq p \leqq m$. Then, by [T1], u is effective (i.e. $\Lambda u=0$), and therefore, by [T2],

$$
\lambda^{r} L^{r+s} u=2^{2 r}(s+1) \ldots(s-r)(m-p-s-r+1) \ldots(m-p-s) L^{s} u
$$

Take $r=m+1$ and $s=m-p+1$ in this formula. Since $r+s>m$, we obtain that $L^{r+s} u=0$. Therefore,

$$
\begin{equation*}
L^{m-p+1} u=0 \tag{3.1}
\end{equation*}
$$

where u is a harmonic p-form, $0 \leqq p \leqq m$. By (3.1) we obtain that if $i>j$, then

$$
\Phi^{m-i-j} \wedge \omega \wedge \xi=\left(L^{m-2 i+(i-j)} \omega\right) \wedge \tau=0
$$

Similarly, if $i<j$, then

$$
\Phi^{m-i-j} \wedge \omega \wedge \xi=\omega \wedge\left(L^{m-2 J+(j-i)} \tau\right)=0
$$

It follows that

$$
I(\omega \wedge \tau)=\frac{1}{2^{m} m!\operatorname{Vol}(M)} \int_{M} \eta \wedge \Phi^{m-i-j} \wedge \omega \wedge \tau=0
$$

Let ω and τ be closed basic C-valued forms of bidegree (k, k), where $0 \leqq k \leqq$ $\leqq m / 2$. By Theorem 2.5, we have

$$
\omega=\sum_{i=0}^{k} L^{i} \omega_{i}+d \lambda, \quad \tau=\sum_{i=0}^{k} L^{i} \tau_{i}+d \mu
$$

where ω_{i} and τ_{i} are harmonic forms of bidegree $(k-i, k-i$), and λ and μ are basic forms.

Lemma 3.2.

$$
I(\omega \wedge \tau)-I(\omega) I(\tau)=\frac{1}{2^{2 k} m!\operatorname{Vol}(M)} \sum_{i=0}^{k-1}(-1)^{k-i} 2^{2 i}(m-2 k+2 i)!\left(\omega_{i}, \bar{\tau}_{i}\right)
$$

Proof.

$$
I(\omega \wedge \tau)=I\left(\left(\sum_{i=0}^{k} L^{i} \omega_{i}+d \lambda\right) \wedge\left(\sum_{j=0}^{k} L^{i} \tau_{j}+d \mu\right)\right)=\sum_{i, j=0}^{k} I\left(L^{i+j} \omega_{i} \wedge \tau_{j}\right)+I(d v)
$$

where

$$
v=\lambda \wedge\left(\sum_{j=0}^{k} L^{i} \tau_{j}\right)+\left(\sum_{i=0}^{k} L^{i} \omega_{i}\right) \wedge \mu+\lambda \wedge d \mu
$$

is a basic form of degree $4 k-1$. By Corollary to Lemma 2.1, $I(d v)=0$. By (1.5) and by Lemma 3.1, $I\left(L^{i+j} \omega_{i} \wedge \omega_{j}\right)=I\left(\omega_{i} \wedge \omega_{j}\right)=0$, if $i \neq j$. Therefore

$$
\begin{equation*}
I(\omega \wedge \tau)=I\left(\omega_{k} \wedge \tau_{k}\right)+\sum_{i=0}^{k-1} I\left(\omega_{i} \wedge \tau_{i}\right) \tag{3.2}
\end{equation*}
$$

Since $\operatorname{deg} \omega_{k}=\operatorname{deg} \tau_{k}=0$, we obtain that $I\left(\omega_{k} \wedge \tau_{k}\right)=\omega_{k} \tau_{k} I(1)=\omega_{k} \tau_{k}$. By Lemma 3.1, $I(\omega)=I\left(\sum_{i=0}^{k} L^{i} \omega_{i}+d \lambda\right)=\sum_{i=0}^{k} I\left(\omega_{i}\right)=I\left(\omega_{k}\right)=\omega_{k}$. Similarly, $I(\tau)=\tau_{k}$. Therefore,
by (3.2),

$$
\begin{aligned}
I(\omega \wedge \tau)-I(\omega) I(\tau) & =\sum_{i=0}^{k-1} I\left(\omega_{i} \wedge \tau_{i}\right)=\frac{1}{2^{m} m!\operatorname{Vol}(M)} \sum_{i=0}^{k-1} \int_{M} \eta \wedge \Phi^{m-2 k+2 i} \wedge \omega_{i} \wedge \tau_{i}= \\
& =\frac{1}{2^{m} m!\operatorname{Vol}(M)} \sum_{i=0}^{k-1}\left(\eta \wedge \omega_{i}, *\left(L^{m-2 k+2 i} \bar{\tau}_{i}\right)\right)
\end{aligned}
$$

By Lemma 2.4,

$$
*\left(L^{m-2 k+2 i} \bar{\tau}_{i}\right)=(-1)^{k-i} 2^{m-2 k+2 i}(m-2 k+2 i)!\eta \wedge \bar{\tau}_{i}
$$

Hence

$$
I(\omega \wedge \tau)-I(\omega) I(\tau)=\frac{1}{2^{2 k} m!\operatorname{Vol}(M)} \sum_{i=0}^{k-1}(-1)^{k-i} 2^{2 i}(m-2 k+2 i)!\left(\omega_{i}, \bar{\tau}_{i}\right)
$$

This proves the lemma.
Now we are able to prove Theorem 1.1.
Proof of Theorem 1.1. Let ω be a closed basic \mathbf{C}-valued form of bidegree (k, k), representing $\alpha \in H_{B}^{k, k}(M)$. By Theorem $2.5, \omega=\sum_{i=0}^{k} L^{i} \omega_{i}+d \lambda$, where ω_{i} is a harmonic form of bidegree ($k-i, k-i$), and λ is a basic form. Since $h_{B}^{k-1, k-1}=1$, we have by (2.19), that $h_{B}^{k-i, k-i}=1$ for $i=1, \ldots, k$. Hence, by (2.17), $h^{k-i, k-i}=0$ for $i=1, \ldots, k-1$. Therefore there is no harmonic forms of bidegree ($k-i, k-i$) for $i=1, \ldots, k-1$. By Lemma 3.2, we obtain that

$$
(-1)^{k}[I(\omega \wedge \bar{\omega})-I(\omega) I(\bar{\omega})]=\frac{1}{m!\operatorname{Vol}(M)}(m-2 k)!\left(\omega_{0}, \omega_{0}\right) \geqq 0
$$

The equality holds if and only if $\omega_{0}=0$. In this case $\omega=t \Phi^{k}+d \lambda$, where $t=\omega_{k}$. Therefore the equality holds if and only if $\alpha=t \Omega^{k}$. This proves the theorem.
4. Basic Chern forms. Let $\left(M, \eta, X_{0}, \varphi, g\right)$ be a compact $(2 m+1)$-dimensional Sasakian manifold and let ∇ be the Riemannian connection on (M, g). A linear connection on M given by the formula, [Ta]:

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) \varphi Y+\eta(Y) \varphi X+\Phi(X, Y) X_{0} \tag{4.1}
\end{equation*}
$$

will be called the canonical connection on M. The following properties of the canonical connection are easily verified by direct computation:

$$
\begin{equation*}
\bar{\nabla}_{x} \eta=0, \quad \bar{\nabla}_{x} X_{0}=0, \quad \bar{\nabla}_{x} \varphi=0 \tag{4.2}
\end{equation*}
$$

for any tangent vector X on M;

$$
\begin{equation*}
i\left(X_{0}\right) \tilde{\Theta}=0, \quad i\left(X_{0}\right) \tilde{T}=0 \tag{4.3}
\end{equation*}
$$

where $\tilde{\Theta}$ and \tilde{T} are the curvature form and the torsion form of $\bar{\nabla}$, respectively;

$$
\begin{gather*}
\tilde{R}(X, Y) Z=R(X, Y) Z+2 \Phi(X, Y) \varphi Z+[\Phi(X, Z)-\eta(X) \eta(Z)] \varphi Y- \tag{4.4}\\
\quad-[\Phi(Y, Z)-\eta(Y) \eta(Z)] \varphi X+[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] X_{0}
\end{gather*}
$$

where R and \tilde{R} are curvature tensors of ∇ and $\tilde{\nabla}$, respectively;

$$
\begin{equation*}
\tilde{R}(\varphi X, \varphi Y)=\tilde{R}(X, Y) \tag{4.5}
\end{equation*}
$$

Consider M as a base of a vector bundle F with the fibre $D_{x}=\left\{X \in T M_{x}: \eta(X)=\right.$ $=0\}$ at the point $x \in M$. The map $\left.\varphi\right|_{x}: D_{x} \rightarrow D_{x}$ defines a complex structure on D_{x}. Hence F may be considered as a complex vector bundle over M. By (4.2), the canonical connection $\tilde{\nabla}$ induces a complex linear connection in the complex bundle F, which we will denote again by $\tilde{\nabla}$. Let $C_{k}^{(B)}$ be the $k^{\text {th }}$ Chern form of $\tilde{\nabla},[C] . C_{k}^{(B)}$, $k=1, \ldots, m$, are defined by the formula

$$
\begin{equation*}
\operatorname{det}\left[t I+\frac{\sqrt{-1}}{2 \pi} \widetilde{\Theta}\right]=t^{m}+\sum_{k=1}^{m} C_{k}^{(B)} t^{m-k} \tag{4.6}
\end{equation*}
$$

$C_{k}^{(B)}$ is closed. By (4.3), $\widetilde{\Theta}$ is horizontal. Therefore $C_{k}^{(B)}$ is horizontal. Hence $C_{k}^{(B)}$ is basic. Because of (4.5), $C_{k}^{(B)}$ is real and of bidegree (k, k). Thus, for any $k=1, \ldots$ $\ldots, m, C_{k}^{(B)}$ is a canonically defined real closed basic $2 k$-form of bidegree (k, k). We will call $C_{k}^{(B)}$ the $k^{\text {th }}$ basic Chern form of a Sasakian manifold. Substituting $C_{k}^{(B)}$ in (1.10) we obtain that in the case $h_{B}^{k-1, k-1}=1$ the following integral inequality is satisfied

$$
\begin{equation*}
(-1)^{k}\left[I\left(C_{k}^{(B)} \cdot C_{k}^{(B)}\right)-I\left(C_{k}^{(B)}\right) I\left(C_{k}^{(B)}\right)\right] \geqq 0 \tag{4.7}
\end{equation*}
$$

Using (4.4), we obtain by direct computation that in the case $k=1$ inequality (4.7) is the same as inequality (1.1).

Remark. Let (M, η) be a contact manifold. An associated contact metric structure (η, X_{0}, φ, g) is called an associated K-metric structure, [B], if X_{0} is a Killing vector field with respect to g. If a contact manifold (M, η) admits an associated K metric structure, (M, η) is called a K-contact manifold. We will show now how one can define basic Pontrjagin cohomology classes on a K-contact manifold.

Let (M, η) be a $(2 m+1)$-dimensional contact manifold. A linear connection $\tilde{\nabla}$ on M will be called basic if

$$
\begin{equation*}
\tilde{\nabla}_{X} \eta=0, \quad \tilde{\nabla}_{X} X_{0}=0, \quad i\left(X_{0}\right) \tilde{\Theta}=0, \quad i\left(X_{0}\right) \tilde{T}=0 \tag{4.8}
\end{equation*}
$$

where $\tilde{\Theta}$ and \tilde{T} are the curvature form and the torsion form of $\tilde{\nabla}$, respectively.
Assume that (M, η) admits a basic linear connection $\tilde{\nabla}$. Consider M as the base space of a real vector bundle with the $2 m$-dimensional fibre $D_{x}=\left\{X \in T M_{x}: \eta(X)=\right.$ $=0\}$ at the point $x \in M$. By (4.8), $\tilde{\nabla}$ can be considered as a connection in this vector
bundle. Put

$$
\operatorname{det}\left[t I-\frac{1}{2 \pi} \Theta\right]=t^{m}+\sum_{k=1}^{m} E_{k}(\widetilde{\Theta}) t^{m-k}
$$

Then $E_{2 k}(\widetilde{\Theta})$ is a closed and horizontal (since $\widetilde{\Theta}$ is horizontal) $4 k$-form, [C], p. 118. Hence $E_{2 k}(\tilde{\Theta})$ is basic and therefore defines an element $p_{k}^{(B)} \in H_{B}^{4 k}(M, \mathbf{R})$. We will show that $p_{k}^{(B)}$ does not depend on a choice of a basic linear connection. Indeed, let $\tilde{\nabla}^{\prime}$ be another basic linear connection and let $\tilde{\Theta}^{\prime}$ and T^{\prime} be its curvature and torsion forms, respectively. Set $\alpha=\tilde{\nabla}^{\prime}-\nabla, \tilde{\nabla}^{t}=\tilde{\nabla}+t \alpha$. Let $\tilde{\Theta}^{t}$ be the curvature form of $\tilde{\nabla}^{t}$. Then α is a linear form on M of the type ad GL ($2 m, \mathbf{R}$), and by (4.8) and (4.9),

$$
\begin{gathered}
\alpha\left(X_{0}\right) X=\tilde{\nabla}_{X_{0}}^{\prime} X-\tilde{\nabla}_{X_{0}} X=\tilde{\nabla}_{X} X_{0}+\left[X_{0}, X\right]+\tilde{T}^{\prime}\left(X_{0}, X\right)- \\
\\
-\tilde{\nabla}_{X} X_{0}-\left[X_{0}, X\right]-\tilde{T}\left(X_{0}, X\right)=0 .
\end{gathered}
$$

Hence α is horizontal. By [C], p. 42, $\widetilde{\Theta}^{t}=\widetilde{\Theta}+t D \alpha-t^{2} \alpha \wedge \alpha$. Taking $t=1$, we obtain $D \alpha=\widetilde{\Theta}^{\prime}-\widetilde{\Theta}+\alpha \wedge \alpha$. Therefore $\widetilde{\Theta}=(1-t) \widetilde{\Theta}+t \tilde{\Theta}^{\prime}+t(1-t) \alpha \wedge \alpha$. It follows that $\tilde{\Theta}^{2}$ is horizontal for all t. By [C], p. 115, $E_{2 k}\left(\tilde{\Theta}^{\prime}\right)-E_{2 k}(\tilde{\Theta})=d \varrho$, where $\varrho=\int_{0}^{1} \Psi(t) d t$ and where $\psi(t)$ is a polynomial function of α and $\widetilde{\Theta}^{t}$. It follows that ϱ is horizontal. In addition,

$$
L_{X_{0}} \varrho=\left[i\left(X_{0}\right) d+d i\left(X_{0}\right)\right] \varrho=i\left(X_{0}\right) d \varrho=i\left(X_{0}\right)\left[E_{2 k}\left(\Theta^{\prime}\right)-E_{2 k}(\widetilde{\Theta})\right]=0 .
$$

Hence ϱ is basic. Thus, $E_{2 k}\left(\widetilde{\Theta}^{\prime}\right)$ and $E_{2 k}(\widetilde{\Theta})$ are homologous within basic forms. Therefore $E_{2 k}\left(\tilde{\Theta}^{\prime}\right)$ and $E_{2 k}(\bar{\Theta})$ define the same element $p_{k}^{(B)} \in H_{B}^{4 k}(M, \mathbf{R})$. If (M, η) is a contact manifold which admits a basic linear connection, then $p_{k}^{(B)}, k=1, \ldots$ $\ldots,[m / 2]$, will be called basic Pontrjagin classes of (M, η).

Let now (M, η) be a K-contact manifold. Let (η, X_{0}, φ, g) be an associated K-metric structure and ∇ be the Riemannian connection on M with respect to g. Direct calculation shows that the connection

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) \varphi Y+\eta(Y) \varphi X+\Phi(X, Y) X_{0}
$$

is a basic connection on (M, g). Hence the basic Pontrjagin classes $p_{k}^{(B)} \in H_{B}^{4 k}(M, \mathbf{R})$, $k=1, \ldots,[m / 2]$, are well-defined on each K-contact manifold (M, η).

References

[B] D. E. Blatr, Contact Manifolds in Riemannian Geometry, Springer-Verlag (Berlin, Heidelberg, New York, 1976).
[C] S. Chern, Complex Manifolds without Potential Theory, Second Edition, Springer-Verlag (New York, Heidelberg, Berlin, 1979).
[G1] H. Gauchman, An integral inequality for normal contact Riemannian manifolds and its applications, Geometriae Dedicata 23 (1987), 53-58.
[G2] H. GAUCHMAN, Inequalities for cohomology classes of Kaehler manifolds, Geometriae Dedicata, 31 (1989), 261-266.
[1] S. Ianus, Sulle varietá di Cauchy-Riemann, Rend dell Accademia di Scienze Fisiche e Matematiche, Napoli, XXXIX (1972), 191-195.
[KT] F. W. Kamber and Ph. Tondeur, DeRham-Hodge theory for Riemannian foliations, Math. Ann., 277 (1987), 415-431.
[O] Y. Ogawa, On C-harmonic forms in a compact Sasakian space, Tôhoku Math. J., 19 (1967), 267-296.
[S] S. Sasaki, Almost Contact Manifolds, Part 1, Lectures Notes, Mathematical Institute, Tôhoku Univ., 1968.
[SH] S. Sasaki and Y. Hatareyama, On differentiable manifolds with contact metric structure, J. Math. Soc. Japan, 14 (1962), 249-271.
[T1] S. Tachibana, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J., 17 (1965), 271-284.
[T2] S. Tachibana, On a decomposition of C-harmonic forms in a compact Sasakian space, Tôhoku Math. J., 19 (1967), 198-212.
[Ta] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras, and Cartan connections, Japanese J. Math., 2 (1976), 131-190.
[W] R. O. Wells, Differential Analysis on Complex Manifolds, Prentice Hall, (Englewood Cliff, N. J., 1973).
[Y] K. Yano, On harmonic and Killing vector fields, Ann. of Math., 55 (1952), 38-45.

