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Basic cohomology classes of compact Sasakian manifolds

HILLEL GAUCHMAN

1. Introduction and preliminaries. It was proved in [G1] that for any compact
(2m+1)-dimensional Sasakian manifold M the following inequality is satisfied:

2 1 2 —1 2
(1.1 Mf[|S| ~5e +2Q]dV+2—m%m(Mfng) = 2m(2m+1) Vol (M),

where |S|, g, Vol (M), and dV are the length of the Ricci tensor, the scalar curva-
ture, the volume of M, and the Riemannian measure on M, respectively. Inequality
(1.1) was applied in [G1] to a study of cohomologically Einstein—Sasakian manifolds.
The purpose of this paper is to prove a set of inequalities for basic cohomology
classes of compact Sasakian manifolds. The simplest of these inequalities is equivalent
to inequality (1.1).

Let M be a (2m+1)-dimensional differentiable manifold (in what follows we
assume the all manifolds, maps, differential forms, etc. are of class C*). Assume
that M carries a global differential 1-form » such that nA(dn)™=0 everywhere on
M. Then we say that n defines a contact structure on M. A manifold M furnished
with a contact structure n is called a contact manifold. 1t is known, [B], that a contact
manifold (M, n) admits a unique global vector field X, satisfying n(Xy)=1 and
dn(X,, X)=0 for any tangent vector field X on M. X, is called the characteristic
vector field of a contact manifold (M, n). Since vector field X, nowhere vanishes,
M can be considered as a foliated manifold with 1-dimensional leaves. Let w be
a F-valued differential k-form on a contact manifold (M, n), where F=R or C.
We say that o is horizontal if i(Xo)w=0, invariant if Ly =0, and basic if it is
horizontal and invariant. Here i(X,) and Ly are the inner product by X, and the
Lie derivative, respectively. Denote by Ag(M, n, F) (resp. A%(M, n, F)) the set of
all F-valued basic forms (resp. basic k-forms), and by Cy(M, n, F) (resp. C(M, , F))
the set of all F-valued closed basic forms (resp. closed basic k-forms) on M. It is
easy to see that dA% ™ (M,n, F)cC%(M,n,F). Set HX(M,n, F)=C%(M,n, F)/
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jdA (M, n, F). HS(M, n, F) is called the k™ basic cohomology group of (M, n)
over F. In what follows we shall usually write Hi(M) or Hi(M, F) instead of
H%(M, n, F), and similarly for A5(M, n, F) and Cy{(M, n, F). It is easy to see that
if A€CE(M), ueC (M), then AARECE (M), and if 2€CE (M), pedA5 (M), then
ANpedA%T=1(M). Therefore, for any ac HE(M), € Hy(M), we have a well-defined
product «-BcHEH, Clearly,

HYM,F)=F, HEM)={0} for k=2m+l.

Generally, dimy HE(M, F), k=1, ...,2m, may be infinite. However, for “good”
contact structures (such as K-structures or Sasakian structures) dimg Hi(M, R)=
=dimg H}(M, C)<eo.

A contact manifold (M, ) is called regular, [B], if X, is a regular vector field
on M, that is every point x¢M has a cubical coordinate neighborhood # such
that the integral curves of X, passing through % pass through the neighborhood
only once. It is known, [B], that any compact regular (2m+-1)-dimensional contact
manifold M is the bundle space of a principle circle bundle n: M—~B over a 2m-
dimensional simplectic manifold B. It is easy to show that in the case of a compact
regular contact manifold H%(M)is the pullback of H*(B), where H*(B)is the DeRham
cohomology group of B. _

Let (M, ) be a contact manifold. In what follows we will always use the follow-
ing notation:

1.2 o & = dn.

& is a closed basic form. Therefore @ represents a basic cohomology class. In what
follows we will denote this cohomology class by Q. Q€ Hi(M) is called the finda-
mental basic cohomology class.

For a compact contact (2m+-1)-dimensional manifold (M, ) we now define
a linear function I: Az(M, F)—F from the set of all basic F-valued forms on M
into F as follows: If w¢A%(M,F), k=0, 1, ...,m, then

(1.3) I(w) = [nre*Ahw.
M

1
2"m! Vol (M)

If weA¥*Y(M,F), k=1, ...,m, then I(w)=0. We shall denote by the same symbol
I a function I: Hg(M,F)—~F defined as follows: Let a€ Hp(M,F) and let w be
a closed basic form representing a. Then, by definition,

(1.4) 1(@) = I(w).

We will show in Sec. 2 that I(«) is well-defined by formula (1.4), that is I(x) does
not depend on a particular choice of a basic form o representing o. It is clear from
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the definition of I that

(L5 I(P*Aw) = I(w), if weAdy and [I+k=m;
I(-a) = I(2), if a€cHF and I+k=m.
By [S], page 3—4, f A D™ =2"m! Vol (M). Therefore

(1.6) (P =1Q)=1, O0sk=m.

Let (M, n) be a contact manifold. An associated contact metric structure, [B],
for a contact structure n is a collection (7, X,, ¢, g), where X, is the characteristic
vector field, ¢ is a field of automorphisms of the tangent spaces of M, and g is a
Riemannian metric on M such that

P*(X) =—X+n(X)X,,
1(X) = g(X, X,),
8(oX, oY) = g(X, Y)—n(X)n(Y),
¢(X’ Y) = g(X’ ¢Y)’
for any tangent vector fields X and ¥ on M. An associated contact metric structure

for a contact structure n always exists, but is not unique, [B]. We say that a contact
metric structure (1, Xy, @, g) on M is normal, [B], if the almost complex structure T

d d
on M XR defined by T (X s f E) = ((pX —f Xy, n(X) E) is integrable. A differenti-

able manifold M furnished with a normal contact metric structure (n, X,, @, g) is

called a Sasakzan manifold.
Let (M, 1, X,, ¢,8) be a 2m+1)- dlmensmnal Sasakian manifold. For x€M,

set
.7 D, = {X€TM,: y(X) = 0).

D, is called the horizontal subspace at the point x. By (1.7), ¢ induces an almost
complex structure (once more denoted dy ¢) on D,. Denote by DE the complex1ﬁca-

tion of D,. Then DS=D}°® D%, where
8 D’ = {XeDS: oX = Y =1X},
' DY = {XeDS: X =—Y =1 X},

It follows that the set Hor? (M) of all C-valued horizontal p-forms on M may be
bigraded as follows;
Hor?(M) = 2 Hor*'(M),
k+il=p
where Hor*! (M) is the set of all horizontal (k+I)-forms on M which can obtain

5
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non-zero values only for sets of vectors X, ..., X;4,€ TMS among which k vectors
belong to D%° and / vectors belong to D).

Let ac HEYY(M, C). We say that « is of the type (k, 1), if there is a basic form
o representing «, such that weHor*!(M). We will see in Sec. 2 that for a (2m+1)-
dimensional compact Sasakian manifold the notion for a€HE(M), (0=p=m),
to be of the type (k,/) is well defined. That means that if w€Hor*!(M) and
te Hor**(M) represent the same basic cohomology class ac H3(M, C), then k=r
and /=s. For 0sk+/=m, set

(1.9 HY' (M) = {oc H§* (M, C): o is of the type (k,I)}.

Then HX' is a subgroup (as an additive group) of Hi*'(M, C). We will show in
Sec, 2 that for a compact Sasakian manifold there is a direct sum decomposition

HEM.C)= 3 HY'(M). O=p=m.
=p

For O0=k+iI=m, set
Hy! = dime HE'(M).

k%! will be called the basic Hodge number of the type (k, I). By (1.3), ®€¢Hor"}(M).
Hence Q¢ H:*(M). By (1.6), Q*30. Therefore

=1, Wr=1, k=1,.., [%]
Moreover, we will show in'Sec. 2 that
1=hy" = byt =...= Hp/arime,
In Sec. 3 we prove the main result of this paper:
Theorem 1.1, Let (M, n, X,, ¢, &) be a compact (2m+ 1)-dimensional Sasakian

manifold and let k be an integer such that 1=k= —'Zn— Assume that K5 1%"1=1,
Let ac HY*(M). Then
(1.10) (- D (- &) - I(@)I@)] = 0,

and the equality holds if and only if a=1Q*, tcC. Here & means the complex conjugate
of a.

Taking k=1 in Theorem 1.1, we obtain

Corollary 1.2. Let M be a compact Sasakian (2m+1)-dimensional (m=2)
manifold and let a€ Hy'(M). Then

(1.11) I -8)—I@)I@ =0
and the equality holds if and only if a=1Q, where tcC.
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It follows easily from the results of Sec. 2 that if b,(M)=0, where b,(M) is
the second Betti number of M, then h};‘=l. Hence, taking k=2 in Theorem
1.1, we obtain

Corollary 1.3. Let M be a compact Sasakian (2m-+1)-dimensional (m=4)
manifold and let a€ Hy*(M). If by(M)=0, then

(1.12) I(e-&@)—I(x)I(&) = O,
and the equality holds if and only if a=1Q%, where tcC.

In Sec. 4 for any (2m+1)-dimensional Sasakian manifold and for any k=
=1, ...,m we introduce a canonical real closed basic form C® of bidegree (k, k).
We will call this form the basic Chern form of a Sasakian manifold. Substituting
C® instead of « in (1.10), we obtain an integral inequality similar to inequality
(1.1). In the simplest case, when k=1, we obtain inequality (1.1).

If M is a regular Sasakian manifold, then M is a unit circle bundle over a Kacehler
manifold B. It is easy to see that in this case the basic Chern form C{® belongs to
a basic cohomology class which is the pull-back of the Chern class C,(B). It was
shown in {G2] that for B= P?(C)X P3(C),

I(Cs(B)- Co(B)) — I(C5(B)) - I{C2(B)) < O.

Hence, if a Sasakian manifold M is a unit circle bundle over B= P%(C)x P*(C),
then
I(C%”)(M) . Cé’”(M))——I(CéB)(M)) . I(C%B)(M)) < 0.

Comparing this inequality with inequality (1.12), we see that the condition b,(M)=0
in Corollary 1.3 cannot be omitted. More generally, this example shows that the
condition A% »*~'=1 in Theorem 1.1 is essential.

We conclude Sec. 4 by Remark showing how one can define basic Pontrjagin
classes PP¢ HE(M,R), k=1, ...,[m/2], on K-contact manifolds.

Finally we note that for Kaehler manifolds a theorem similar to Theorem 1.1
has been proved in [G2].

2. Decomposition theorems. For a compact metric manifold (M, n, X, 0, 8)
we will denote by (,) the local scalar product with respect to the Riemannian metric

g, and by (4, p)= f (4, uydV the global scalar product, where A and y are diffe-

M
rential forms of the same degree. As usual, % will be the Hodge “star’” operator and
¢ will be the adjoint of the operator of exterior differentiation, i.e. (dA, u)=(4, du),
where A and yu are forms of degrees p and p+1, respectively. We also will denote by
e(n)A the exterior product by n, i.e. e(m)A=nAA Clearly, (i(Xp)A, p)=(4, e(m)n)
for any two differential forms A and p of degrees p+1 and p respectively.
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Lemma 2.1. Let (M, n) be a compact (2m+1)-dimensional contact manifold.
Then the function I. Hg(M,F)-F given by formulas (1.3) and (1.4) is well-defined.
Proof. Let A and A, be basic closed 2k-forms representing the same basic
cohomology class a€ HE¥(M). Then A—21,=du where p is a basic (2k—1)-form.

We must prove that f NAD™*A)= f nA®™*A,. Therefore we must prove
M M
that Jn/\dw=0, where w=@®"*Apu. Clearly, w is a basic form. Let (1, X,, @, £)

be a contract metric structure on M associated with contact structure 5. By [S],
page 3—4,

1
@.n *] = Sl —nAom

Hence,

fn/\dw = (n\dw, x1) = E"'?l;ﬁ'(e(”) dw, e(n)®™) =
. !

= o (0, i(Xo)e () D) = 5y (00, @™) = 55— (@, 50™).
By [SH],
2.2 0" = dr(m—r+ AP 1.
Therefore,
f nAdo = 2,,, |(co, e(nd™") = ,(z(Xo)w, "1 = 0,

since i(Xy)w=0.
Corollary. For any basic form 2, 1(dA)=0.

From now and to the end of this section let (M, n, X;, ¢, g) be a compact
(2m+ 1)-dimensional Sasakian manifold. Let us denote by dg and (, ) the restriction
of the exterior differential and of the global scalar product on the space Az(M)
of basic forms on M. Let 6g: Ag(M)—~Ax(M) be the adjoint operator for dy with
respect to (, ). Then Ag=§zdy+dpdy is called the basic Laplacian. The set %
of basic harmonic k-forms is the kernel of 45 on A%(M). Any Sasakian manifold
M can be considered as a foliated manifold with 1-dimensional leaves. By the Main
Theorem of [KT] (whose conditions are obv1ously satisfied for Sasakian manifolds),
we have

23) AR (M) = Ap(4})© HE(M)
and dimg $}<e. It follows from (2.3) that
(24) AR (M, C) = imdz®im 65 HE(M).

As usual we obtain from (2.4) that HE(M, C)= H%(M).
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Let TMT be the complexified tangent space at the point x€M. Then
(2.5) ™S = DX’ DY & CX,,

where D1® and D! are defined by (1.8). It is known, [I}, that the pair of complex
distributions (D%°, D%*) defines a C—R structure on M. Hence each of the distribu-
tions D:° and D% is integrable. Let {e;, e;, Xo}, i=1, ..., m; I=m+1, ..., 2m, be a
local field of frames adapted to the decomposition (2.6). That means that at the point
x each e, D"° and each D%, Let {6, 6, 4} be the dual basis of C-valued I-
forms on M. Then, by Frobenius’ theorem

dei=0 (mod®, j=1,..,m) and d6 =0 (mod®, j=m+1,...,2m).

Therefore

do' = 3 a0’ NG+ 3 a0 NF+ 3 bin AP,
do' = 3 & N0+ 3 de@ AO*+ 3 By AP,

where al, dig, di,, al, b}, b} are functions. It follows that for any horizontal form
weHor*'(M) of bidegree (k, [)

(2.6) do = o' + 0" +nA0”,

where w’€¢Hor**!{(M), w”’c¢Hor®*'**(M), w”¢Hor*!'(M). Assume now that o
is basic. Then O0=i(X)dw=w"”. Therefore do=o"+w". Set dw’ =X +nAy,
dw”=2"+nAp", where A/, A", i/, and p” are horizontal. If follows that 0=dw’+
+dw” =X +A")+n(W +p1”). Hence u'+pu”=0. Since p’€¢Hor*+'(M) and p’¢
€Hork!+}(M), we obtain that yu'=u”=0. Hence dw’ and dw” are horizontal and
therefore @’ and w” are basic. It follows that if w¢ 4%'(M), where A%'(M) is the
set of basic forms on M of bidegree (k, [), then dw=w’+w”, where w’€ ALHH(M)
and w’€ A5 (M). Set dyo=0w’, dyo=w”. Then we obtain that dy=dp+dy,
where dj and dy are differential operators on Az(M, C) of bidegrees (1, 0) and (0, 1),
respectively. Let 85 Ag(M, C)-~Az(M, C) and §5: Ag(M, C)—Ag(M, C) be the
adjoint operators for dy and dj, fespectively, with respect to the global scalar pro-
duct (, )g. Then J; and &5 are of bidegree (—1, 0) and (0, —1), respectively, and
Sp=0,+0,. Set A,=0,d,+d,0,, An=8nd)+d}8)].

Lemma 2.2. Let w be a basic p-form, 0=p=m. Then
dpo = 2430 = 2430.

Proof. This lemma is analogous to Theorem 3.7 of [W], Chapter V. A proof
Lemma 2.2 can be obtained by repeating the arguments of the proof of the above
mentioned theorem from {W], and we omit it.
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Denote dy I, ; the natural projection from Az(M, C) to 4%'(M). By Lemma 2.2,
. (2.7) ABHk,l =Hk,lAB’ 0§k+1§m.

For any differential form w on M, set Lo=®Aw, where d=dn. If o is basic,
then Lw is also basic. Therefore L induces the map Lg: Ag(M)—~Az(M). Denote
by A the adjoint operator of L with respect to (, ), and by A the adjoint operator of
L, with respect to (, ). Clearly Ly and Ay are operators of bidegrees (1, 1) and
(-1, —1), respectively.

Lemma 2.3.
() If w is basic, then 11, is also basic.
(ii) If w is a basic harmonic p-form and 0=p=m, then II, 0 is also basic
harmonic.
(iii) If o is a harmonic p-form and 0=p=m, then II, ;o is also harmonic.

Remark. By [T1] and [Y], any harmonic p-form, 0=p=m, is basic harmonic.
Therefore the operator 11, is well-defined on the set of harmonic p-forms, 0=p=m.

Proof. (i) Let wcAj(M,C). Then w=w, ,+®; p-1+...+®, 0 where
=11, ;0. By (2.6), dw,,,=A+nAw,,, where 1is horizontal and y, , is horizontal
of bidegree (k, /). Since w is basic,

0 = i(Xo)d(D = i(Xo)(dwo'p'*' vee +dwp,o) = #0,p+”1,p—1+ e +ﬂp.o,

Hence each p,,=0. Therefore i(X,)dw,,,=i(X,)A=0. Thus, o ,=II,,0 is
basic.

(ii) Let @ be a basic harmonic p-form,” 0=p=m. By (2.7), 4(II; ,0)=
=]I,,,(45w)=0. This proves (ii).

(iii) Let A and g be two basic forms on M. For Sasakian manifolds, formula
(3.8) from [KT] gives

(2.9) (44, p) = ((dp+ LA)A, p).

Let @ be a harmonic p-form, 0=p=m. Then o and therefore II, ,® are basic.
Hence, by (2.7) and (2.8),

(A(Hk,lw)s n,,0) = (ABI_Ik.:w'*'LAHk,J‘D» I, ,0) =
= (Il 40 + LII; _,,,— Aw, IT; ;0).

Since any harmonic p-form, O0=p=m, is basic harmonic, we have Adzw=0. By
[T1], any harmonic p-form, O=p=m, is effective, ie. Aw=0. Therefore
(41T, ), I, ,0)=0. 1t follows that (d(II,, ), d(I1, ,w))+(6 (I}, ,w), 5(I1,,;))=O0.
Thus, d(II, ,w)=6(I1,,,w)=0. Therefore, II, ,w is harmonic. This proves (iii).

Let w be a closed basic form of bidegree (k,/), O0=k+/=m. Then, by (2.3),
o=y +45), where ¥ is basic harmonic and 1 is basic. By (2.7), w=II, 0=
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=II, W+ Ag(II, ,4). Since ¥ is uniquely defined by w and since, by Lemma 2.3,
IT, W is basic harmonic, Y=, ,y. Therefore ¥ is of bidegree (k, /). Thus, we
obtain that if a basic cohomology class aEH’,‘,*'(M, C), 0=k+I/=m, contains a
closed basic form of bidegree (k, /), its basic harmonic form is also of bidegree (k, /).
Therefore, the cohomology group HE!(M), defined by (1.9), is well-defined. By
Lemma 2.3, we have a direct sum decomposition

(29) HE(M,C) = HY*(M)® Hy* ' (M)® ... 0HL'(M), O=p=m.

Similarly, let H?(M,C), O=p=m, be the p® DeRham cohomology group, and
let H*!(M) be the set of all elements of HP which are represented by a harmonic
p-form of bidegree (k, ). Then

2.10) HP(M,C) = H**(M)® H¥*'(M)® ... H"*(M), 0=p=m.
Let O=p=m, O=k=l=m. Set
b, = dim¢c H?(M, C), b'® = dim¢c HE(M, C),
B = dime HYY(M, C), Hy' = dimc HE'(M, C).

Here b, are usual Betti numbers. We will call 5, h*! and hiy* the basic Betti numbers,
the Hodge numbers, and the basic Hodge numbers, respectively. By (2.9) and (2.10),
by =HhoP+ P71y AP, O=p=m;

@.11)
b® = hyP 4+ hyP~ 4 L +hE°, O=p=m.

Denote by C a linear operator C: Hor (M)—Hor (M) such that Co=(Y—1)*'w
if w is of bidegree (k, [), where Hor (M) is the set of all horizontal forms on M.
Let * denote the Hodge “star” operator. Remind that w is called effective, if Aw=0.

Lemma 2.4, Let w be a horizontal and effective p-form, 0=p=m, and let
O=r=m—p. Then

*(L'w) = (— l)p(p—l)lz

r! m—p—r
T e(n)L Cow.

Proof. This lemma is similar to Theorem 1.6 from [W], Chapter 5. The proof
of Lemma 2.4 is just a repetition of the proof of the above mentioned theorem from
[W], and we omit it.

We now prove a decomposition theorem for closed basic forms.

Theorem 2.5. Let M be a compact (2m+1)-dimensional Sasakian manifold
and let w be a closed basic p-form on M. Then
(i) w can be decomposed as
{p/2] i
(2.12) o= 2 LY +di,

i=(p—m)*
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where (p—m)*t =max {0, p—m}, ¥; is a harmonic (p—2i)-form, any A is basic. In
addition, harmonic forms ¥, i=(p—m)*, ...,[p/2], are uniquely defined by w.
(i) If w is of bidegree (k, ), then for each i, {r; is of bidegree (k—i,[—i).

Proof. (i) We first consider the case O=p=m. By (2.4), o=y +dA, where
Y is a basic harmonic p-form uniquely defined by w, and A is basic. Since ¥ is basic
harmonic, dgy=0 and &z =0. For Sasakian manifolds formula 3.3 from [KT]
takes the form 6y =38z +e(n)Ay. Therefore

(2.13) dy =0, Sy = e(n)Ay.

Differential forms on Sasakian manifolds satisfying (2.13) were introduced in
[0] and were called there C-harmonic forms. By the decomposition theorem for C-
harmonic forms of degree p, O0=p=m, [T2],

[p/2) ;
(ﬁ: Llﬁ;,

B

where ; are harmonic (p—2i)-forms uniquely defined by . This proves (i) in the
case O=p=m.

Let now m+1=p=2m. Once more, w=y +dA, where ¥ is a basic harmonic
form uniquely defined by w, and 1 is basic. Following [KT], for any basic g-form
1 we set

*p o= (—1)7i(X,) * .

Then * *pu=(—1)7u. By Lemma 2.4, for any horizontal and effective g-form g,
O=g=m, and for any r, 0=r=m-—gy,

r!
2" (m—g—r)!

(2.14) *(Lyp) = (- 1)ela+Dy2 Lm-1-rCy.
Set §=xy. By [KT], x4z=4;%. Therefore § is basic harmohic. Since § is of
degree 2m—p<m, we have a decomposition

- @m—pye]
ll’ = Z Llllljs

Jj=0
where x/;,- are harmonic of degree (2m—p—2j). By (2.24),

_ . lem-p_
V= (mrEg = 3R =

_ [(2»-5'17)/2] - 1)p(p+1)/2—M+J‘ J!

j=0 2="(p—m+j)!

Lp—m+jclpj.
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Set i=p—m+j,
_nyeyi (E—p+m)!
b= ipoonn 2L
Then
[p/2}

(2.15) v= 2 Ly,

i=p—m

2m—
where we used the identity p—m+[ > p]=[%] The degree of ;_p4p is
(p—2i). Therefore deg x[/i_ph,ém for i=p—m, ...,[p/2]. 1t follows by Lemma 2.3,

that IT, ,/;—,+n is harmonic. Since

Clpi—p*l-n; = 2 (V_)k lHk l'pl p+m:

=p—2i
[p/2] _
we obtain that ; is harmonic of degree (p—2i). By (2.15), *y= pZ' * (L))
P

Q=

Using Lemma 2.4, we easily obtain from the last equality that ;, i=p— m, - [p/2],
are uniquely defined by . This completes the proof of (3).

(ii) To prove (ii), assume that w is of bidegree (k, /). Then, by (2.3), o=y +
+Adpu, where \ is basic harmonic and y is basic. Then

[p/2] .
= 2 L ll’i + AB#:

i=(p—m)*
where 1/, is harmonic of degree (p —2i). It follows that
[p/2]

o=I,0= > HO,LYy+I,4pn = Z LI, i)+ I, 1 A .

i=(p—m)+ i=(p—m)+

If p=k+I=m, then, by 2.7, IT, ,Adpu=A4,II, ;u. Let p=k+Il=m-+1. By [KT]
dgé=(—1)?*Ag*u. Therefore, since deg (xu)=m,

I dpp = (= 1P dpxp = (1P %y -y dpF 1t =
= (1% dplly_j -1 ¥ p = (=1 *Ap* I, ju = Al .
Thus, for any p, 0=p=2m,

[p/21
0= - (p;my LIy 1—1¥:) + 41,1 )
By Lemma 2.3, IT_; ;_;; is harmonic and I, ,u is basic. By uniqueness of decom-
position (2.12), ¥,=II,_; ,_;¥;. Hence ¥, is of bidegree (k—i, /[—i). This proves (ii).
In course of the proof of Theorem 2.5 we saw that the notion of a basic har-
monic form is the same as the notion of a C-harmonic form. Therefore we can use
results of [0] and [T2] on C-harmonic forms. If w is C-harmonic, then Lw is also



280 Hillel Gauchman

C-harmonic. Thus we obtain homomorphisms

g L: Hy*(M) ~ H{(M), p=m,
an
L: Hy Y -Y(M) - HY' (M), k+1=m.

These homomorphisms are one-to-one. In addition,

H{(M) = LHF"*(M)® H*(M), p = m,

(2.16) |
HY'(M) = LHS Y1 (M) HY (M), k+1=m.

It follows that
by =5 —b,, p=m,
Kol =Wy —hy Y k+ls=m,

where we set b®)=b") =hk ~1=h;%!=0. It follows from (2.17) that

.17

2.18 b, = b®, p=m,

19) Wit =Hel k+ls=m.
In particular, we have

(2.19) 1 = h%° = hpt = ... = hjv/erime,

Note that the mapping * induces the isomorphisms

H}(M) = HF"-?(M), 0=p=2m,

(2.20)
HY'(M) = HE=""~*(M), 0=kI=m.

In addition, the complex conjugation induces the isomorphism

2.21) HY' (M) = Hy*(M), O=k,l=m.
Therefore we have

o b® = b®_ . 0=p=om,

Kyl = gk = pg-bm—l = pp-tmet O <[ = m,

3. Inequalities for basic cohomology classes. In this section we continue to
assume that (M, n, X,, ¢, g) is a (2m+ 1)-dimensional compact Sasakian manifold.

Lemma 3.1. Let w any t be harmonic forms of degrees 2i and 2j, respectlively.
Assume that 0=i=m/2, 0=j=m/2, and i#j. Then I(wA1)=0, where I is defined
by formula (1.3). In particular, if u is a harmonic form of degree 2i, where 0<i=m/2,
then I(u)=0.

Proof. Let u be a harmonic p-form, 0sp=m. Then, by [T1], u is effective
(i.e. Au=0), and therefore, by [T2],

ALy = 22 (s4 1) ... (s—r)(m—p—s—r+1) ... (m—p—s)L*u.
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Take r=m+1 and s=m—p+1 in this formula. Since r+s>m, we obtain that
L'**u=0. Therefore,
3.1) Im-p+ly — (O,

where # is a harmonic p-form, 0=p=m. By (3.1) we obtain that if i>j, then
Pni-IN@AE = (L—B+U-Dp)AT = 0.
Similarly, if i<j, then

" INWAE = o AN(L™-%+U-D7) = 0.
It follows that

1 ;
m—i—j
I(wA7) = Tl Vol (M) fn/\tP AoAt = 0.

Let w and t be closed basic C-valued forms of bidegree (k, k), where 0=k=
=m/2. By Theorem 2.5, we have

k
L'w;+di, ©= 2 L't;+dy,

i=0

w =
i

M~

where w; and t; are harmonic forms of bidegree (k—i, k—i), and A and u are basic
forms.

Lemma 3.2.
HoAD)—I(w)I(x) = 5 1 "2_'1 (— D)=12%(m — 2k + 2i)\ (w;, 7).

2 m! Vol (M) i=0
Proof.

I(wA7) = ]((1=2:' L‘wi+d).)/\(j=2';' L't;+dy)) = ”2:'0 (L o Aty) + 1(dv),

where

v = /1/\(j§ Liz) +(‘=Z:' Lio)Ap+ANdu

is a basic form of degree 4k—1. By Corollary to Lemma 2.1, I(dv)=0. By (1.5)
and by Lemma 3.1, I(L'+wAw))=I(o;Aw;)=0, if ij. Therefore

3.2 I(wA1) = (o At)+ ':Z_'l I(w;A1)).
i=0

Since deg w,=deg 7,=0, we obtain that I{w.At)=w,7,I(1)=w,t;,. By Lemma
k k

31, I(w)=I (126' L'o+di)= ‘2 Kw)=I(w)=w,. Similarly, I(t)=t,. Therefore,
= =0
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by 3.2),

I@A)~1@)I@) = 3 Iwihw) = > [nAem- 30,7, =

2"m! Vol(Ill) =0 N

1 i
= 2"m! Vol (M) 5 2 (nAw;, % (Lm=%+%)),
By Lemma 2.4,
S (LP=BHBE) = (= 1)F=$2m=B 42 (i — 2 4 20) n AF;.
Hence
1

HoA) = H@)I() = = oran &

2 (= 1)F—2% (m — 2k + 20)! (w;, Tp)-

This proves the lemma.
Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Let w be a closed basic C-valued form of bidegree
(k, k), representing «€ He*(M). By Theorem 2.5, w= Z’ L'w;+d}, where o, is a

harmonic form of bidegree (k—i, k—i), and 1 is a ba51c form. Since A4~ 1¥"1=1,
we have by (2.19), that h~**=i=1 for i=1, ..., k. Hence, by (2.17), h" -hk-i_Q
for i=1, ..., k—1. Therefore there is no harmomc forms of bidegree (k—i, k—I)
for i=1, ...,k—1. By Lemma 3.2, we obtain that

1

(- l@AD) = I@@) = —yoran

(m—2k)(w,, w,) = 0.

The equality holds if and only if w,=0. In this case w=t®*+dA, where r=w,.
Therefore the equality holds if and only if «=¢2*. This proves the theorem.

4. Basic Chern forms. Let (M, n, X,, ¢, g) be a compact (2m -+ 1)-dimensional
Sasakian manifold and let V be the Riemannian connection on (M, g). A linear
connection on M given by the formula, [Ta):

4.1) Vi = Vi Y+ n(X) oY +n (V)X + B(X, ¥) X,

will be called the canonical connection on M. The following properties of the canonical
connection are easily verified by direct computation:

4.2) Ven =0, VxXo=0, Vyp=0
for any tangent vector X on M;

4.3) : i(X)0 =0, i(X))T=0,
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where & and T are the curvature form and the torsion form of V, respectively;
R(X,Y)Z = R(X,Y)Z+20(X,Y)0Z+[P(X, Z)—n(X)n(Z)]) oY —
—[2(¥, Z2)—n(V)n(@)]o X +[g(X, Z)n(Y) - g(¥, Z)n(X)] Xo,
where R and R are curvature tensors of V and V, respectively;
(4.5) R(oX, oY) = R(X, Y).

Consider M as a base of a vector bundle F with the fibre D, ={Xc¢TM,: n(X)=
=0} at the point x¢M. The map o¢|.: D.~D, defines a complex structure on
D,. Hence F may be considered as a complex vector bundle over M. By (4.2), the
canonical connection V induces a complex linear connection in the complex bundle
F, which we will denote again by V. Let C{® be the k™ Chern form of V, [C]. C®,
k=1, ..., m, are defined by the formula

“4.4)

(4.6) det [t1+-— @] = ™4 Z’ CBY pm—k,

C® is closed. By (4.3), O is horizontal. Therefore C? is horizontal. Hence C{®
is basic. Because of (4.5), C® is real and of bidegree (k, k). Thus, for any k=1, ...
wom, C® is a canonically defined real closed basic 2k-form of bidegree (k, k).
We will call C{? the k™ basic Chern form of a Sasakian manifold. Substituting C®
in (1.10) we obtain that in the case h5™"*~1=1 the following integral inequality is
satisfied

4.7 (= DECP - CP) - I(CEP) I(CP)] = 0.

Using (4.4), we obtain by direct computation that in the case k=1 inequality (4.7)
is the same as inequality (1.1).

Remark. Let (M, n) be a contact manifold. An associated contact metric
structure (1, Xy, @, g) is called an associated K-metric structure, [B], if X, is a Killing
vector field with respect to g. If a contact manifold (M, n) admits an associated K-
metric structure, (M, n) is called a K-contact manifold. We will show now how one
can define basic Pontrjagin cohomology classes on a K-contact manifold.

Let (M,n) be a (2m+1)-dimensional contact manifold. A linear connec-
tion V on M will be called basic if

(4.8) Vin =0, VxX,=0, i(X)® =0, i(X)T =0,

where & and T are the curvature form and the torsion form of V, respectively.
Assume that (M, #) admits a basic linear connection V. Consider M as the base

space of a real vector bundle with the 2m-dimensional fibre D,={X€TM,: n(X)=

=0} at the point xcM. By (4.8), V can be considered as a connection in th1s vector



284 Hillel Gauchman

bundle. Put
1

det [rl ~

ol = t"'+k£' Ey()m-*.
=1

Then E,,(6) is a closed and horizontal (since & is horizontal) 4k-form, [C], p. 118.
Hence E, () is basic and therefore defines an element pPc H¥(M, R). We will
show that p® does not depend on a choice of a basic linear connection. Indeed, let
V’ be another basic linear connection and let @ and 7" be its curvature and torsion
forms, respectively. Set a=V'—V, V'=V+ra. Let & be the curvature form of
V'. Then « is a linear form on M of the type ad GL (2m, R), and by (4.8) and (4.9),

2(X) X = Vi, X—Vx X = Vy X, +[Xo, X]+ T (Xo, X))~
—Vx Xo—[Xo, X1- T(Xo, X) = 0.
Hence o is horizontal. By [C], p. 42, &'=8+tDo.—aAa. Taking t=1, we obtain
Do=6& -8 +aha. Therefore O=(1—-1)B+10’+1t(1—-1t)aAa. It follows that &*
is horizontal for all z. By [C], p. 115, E(6")—Ey(8)=dp, where g=0f1 Y (t)dt

and where ¥(¢) is a polynomial function of « and &*. It follows that g is hori-
zontal. In addition,

Ly,o = [i(Xo)d+ di(X)]e = i(Xp)dp = i(XO)[Ezk(@’)_Eﬂc(@)] = 0.

Hence o is basic. Thus, E,(8’) and E, (&) are homologous within basic forms.
Therefore Ey (6’) and E,,(8) define the same element p{®¢c H(M,R). If (M, n)
is a contact manifold which admits a basic linear connection, then p{®, k=1, ...
..o [m/2], will be called basic Pontrjagin classes of (M, n).

Let now (M, n) be a K-contact manifold. Let (n, X;, @, g) be an associated
K-metric structure and V be the Riemannian connection on M with respect to g.
Direct calculation shows that the connection

VxY = Vi Y+ n(X)oY+n(¥) X + 8(X, V)X,

is a basic connection on (M, g). Hence the basic Pontrjagin classes p{®¢ Hi*(M, R),
k=1, ...,[m/2], are well-defined on each K-contact manifold (M, ).
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