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Basic cohomology classes of compact Sasakian manifolds 

HILLEL GAUCHMAN 

1. Introduction and preliminaries. It was proved in [Gl] that for any compact 
(2m +1 )-dimensional Sasakian manifold M the following inequality is satisfied: 

(1.1) [JgdVf ^ 2m(2m + 1 ) V o l ( M ) , 

where g, Vol (M), and dV are the length of the Ricci tensor, the scalar curva-
ture, the volume of M, and the Riemannian measure on M, respectively. Inequality 
(1.1) was applied in [Gl] to a study of cohomologically Einstein—Sasakian manifolds. 
The purpose of this paper is to prove a set of inequalities for basic cohomology 
classes of compact Sasakian manifolds. The simplest of these inequalities is equivalent 
to inequality (1.1). 

Let M be a (2m +1 )-dimensional differentiable manifold (in what follows we 
assume the all manifolds, maps, differential forms, etc. are of class C~). Assume 
that M carries a global differential 1-form t] such that qA(dri)m¿¿0 everywhere on 
M. Then we say that t] defines a contact structure on M. A manifold M furnished 
with a contact structure rj is called a contact manifold. It is known, [B], that a contact 
manifold (M, q) admits a unique global vector field X0 satisfying rj(X0) = \ and 
dt](X0> X)=0 for any tangent vector field X on M. X0 is called the characteristic 
vector field of a contact manifold (M, rj). Since vector field X0 nowhere vanishes, 
M can be considered as a foliated manifold with 1-dimensional leaves. Let co be 
a F-valued differential fc-form on a contact manifold (M, rj), where F = R or C. 
We say that a> is horizontal if i(X0)co=0, invariant if Lx<a>=0, and basic if it is 
horizontal and invariant. Here i(X0) and Lx<> are the inner product by X0 and the 
Lie derivative, respectively. Denote by AB(M, rj, F) (resp. Ak

B(M, rj, F)) the set of 
all F-valued basic forms (resp. basic fc-forms), and by CB(M, r\, F) (resp. Ck

B(M, tj, F)) 
the set of all F-valued closed basic forms (resp. closed basic /c-forms) on M. It is 
easy to see that dAB~1(M, r\, F)cC^(M, rj, F). Set Hk(M,t],F)=Ck

B(M,t],F)/ 
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¡dA1^1 (M, t], F). HB(M,rj, F) is called the kth basic cohomology group of ( M , r j ) 
over F. In what follows we shall usually write HB(M) or HB(M, F) instead of 
Hk

B(M, rj, F), and similarly for Ak
B(M, rj, F) and Ck

B(M, rj, F). It is easy to see that 
if k£Ck

B(M), n£Cl
B(Af), then M ^ C k + \ M ) , and if k£CB(M), ^dA'^iM), then 

A A ¡itdAf-^M). Therefore, for any a £Hk(M), P£H'B(M), we have a well-defined 
product a-0£Hk+l. Clearly, 

HB(M, F) = F, HB(M) = {0} for k is 2m+\. 

Generally, dimF HB(M, F), k=\, ...,2m, may be infinite. However, for "good" 
contact structures (such as /^-structures or Sasakian structures) dimR HB(M, R) = 
=d im c HB(M, C)<°°. 

A contact manifold (M , t]) is called regular, [B], if X0 is a regular vector field 
on M, that is every point x£M has a cubical coordinate neighborhood °U such 
that the integral curves of X0 passing through W pass through the neighborhood 
only once. It is known, [B], that any compact regular (2m + l)-dimensional contact 
manifold M is the bundle space of a principle circle bundle n: M-»B over a 2Tri-
dimensional simplectic manifold B. It is easy to show that in the case of a compact 
regular contact manifold HB(M) is the pullback of Hk(B), where Hk(B) is the DeRham 
cohomology group of B. 

Let (M, t]) be a contact manifold. In what follows we will always use the follow-
ing notation: 
(1.2) <P = dtj. 

4> is a closed basic form. Therefore $ represents a basic cohomology class. In what 
follows we will denote this cohomology class by Q. £2£H$(M) is called the funda-
mental basic cohomology class. 

For a compact contact (2m+l)-dimensional manifold (M, rj) we now define 
a linear function I: AB(M, F)—F from the set of all basic F-valued forms on M 
into F as follows: If co£Af(M,F), k=0, 1, ..., m, then 

<
L 3

> 2 ' m l Y o H M ) J ^ V " t A a ' 

If w£Af+1(M, F), k=1, ..., m, then /(co)=0. We shall denote by the same symbol 
I a function 7: HB(M, F)—F defined as follows: Let <x£HB(M,F) and let co be 
a closed basic form representing a. Then, by definition, 

(1.4) 7(a) = 7(a>). 

We will show in Sec. 2 that 7(a) is well-defined by formula (1.4), that is 7(a) does 
not depend on a particular choice of a basic form to representing a. It is clear from 
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the definition of I that 

I(4>kAa>) = I(co), if toÇy4|' and l+ksm\ 
(1.5) 

/(Í2* • a) = 1(a), if a a n d l+ksm. 

By [S], page 3—4, f rjA<Pm=2mrn\ Vol (M). Therefore 

(1.6) I(<Pk) = I(tt) = 1 , 0 ^ k m. 
Let (M, t]) be a contact manifold. An associated contact metric structure, [B], 

for a contact structure rj is a collection (r¡, X0, cp,g), where X0 is the characteristic 
vector field, cp is a field of automorphisms of the tangent spaces of M, and g is a 
Riemannian metric on M such that 

<p*(X) =-X+r,(X)X0, 

r¡(X) = g(X, X0), 

g(q>X, cpY) = g(X, Y)-r,(X)r,(Y), 

&(X, Y) = g(X, q>Y), 

for any tangent vector fields X and Y on M. An associated contact metric structure 
for a contact structure tj always exists, but is not unique, [B]. We say that a contact 
metric structure (tj, X0, cp, g) on M is normal, [B], if the almost complex structure T 

on M x R defined by T^X, / — j = j is integrable. Adifferenti-

able manifold M furnished with a normal contact metric structure (r¡, X0, (p,g) is 
called a Sasakian manifold. 

Let (M,r¡, X0, q>,g) be a (2m + l)-dimensional Sasakian manifold. For XÇ.M, 
set 
(1.7) Dx = {XZTMx: t,(X) = 0}. 

Dx is called the horizontal subspace at the point x. By (1.7), <p induces an almost 
complex structure (once more denoted dy <p) on Dx. Denote by Dx the complexifica-
tion of Dx. Then Dx =D];°® D°x- \ where 

&0 = {XZLÇ: <pX = f=IX}, 

D*1 = {XíD*: <pX = - i ~ I X } . 

It follows that the set Horp (M) of all C-valued horizontal /7-forms on M may be 
bigraded as follows ; 

HOTp(M) = £ Hor»- ' (M) , 
* + i = p 

where H o r M (M) is the set of all horizontal (fc+/)-forms on M which can obtain 

5* 
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non-zero values only for sets of vectors Xu ..., Xk+t€TM% among which k vectors 
belong to D];0 and / vectors belong to D°A. 

Let a £ H g + l ( M , C). We say that a is of the type (k, I), if there is a basic form 
co representing a, such that (o£tloTk',(M). We will see in Sec. 2 that for a (2m +1)-
dimensional compact Sasakian manifold the notion for a£H%(M), (Osp^m) , 
to be of the type (k, /) is well defined. That means that if £o£Hor*''(M) and 
r£Hor r , s (M) represent the same basic cohomology class <x£Hp

B(M, C), then k=r 
and I=s. For O s H / ^ m , set 

(1.9) Hk
B>'(M) = {a£Hk

B
+l(M, C): a is of the type (k, /)}. 

Then //£•' is a subgroup (as an additive group) of HB
+l(M, C). We will show in 

Sec. 2 that for a compact Sasakian manifold there is a direct sum decomposition 

H%(M, C) = 2 Hk
B-\M), O^p^m. 

t+i=p 
For O ^ k + l S m , set 

= dimc HB'
1

(M). 

hkil will be called the basic Hodge number of the type (k, I). By (1.3), ^€Hor1 , :1(M). 
Hence Qk£Hk-k(M). By (1.6), i2*^0. Therefore 

*5r° = i, 1, k= 1 [-£•]. 

Moreover, we will show in Sec. 2 that 

1 = hy° h\-1 s... ^ hl^/2]-lm'2\ 

In Sec. 3 we prove the main result of this paper: 

Theorem 1.1. Let (M, rj, Xu, <p, g) be a compact (2m+1 )-dimensional Sasakian 

manifold and let k be an integer such that l S & S —. Assume that /jji -1 ,* -1 = l . 
Let ot£Hk-k(M). Then 
(1.10) ( - l ) ' [ / ( a a ) - / ( a ) / ( a ) ] s 0 , 

and the equality holds if and only if a=t£2k, t$ C. Here a means the complex conjugate 
of a.. 

Taking k = 1 in Theorem 1.1, we obtain 

Corol la ry 1.2. Let M be a compact Sasakian (2m+l)-dimensional (m^2) 
manifold and let a£Hl

B-1(M). Then 

(1.11) /(a • a) — 1(a) 7(a) s 0 

and the equality holds if and only if oc=tQ, where t£ C. 
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It follows easily from the results of Sec. 2 that if b2(M) =0, where b2(M) is 
the second Betti number of M, then /¡J;1 = 1. Hence, taking k=2 in Theorem 
1.1, we obtain 

Corol la ry 1.3. Let M be a compact Sasakian (2m+l)-dimensional (m^4) 
manifold and let <x£H%*(M). If b2(M)=0, then 

(1.12) /(a • a) —/(a)/(a) s 0, 

and the equality holds if and only if a = tQ2, where t£ C. 

In Sec. 4 for any (2m +1 )-dimensional Sasakian manifold and for any k= 
= 1, ..., m we introduce a canonical real closed basic form C[B) of bidegree (k, k). 
We will call this form the basic Chern form of a Sasakian manifold. Substituting 
C<B) instead of a in (1.10), we obtain an integral inequality similar to inequality 
(1.1). In the simplest case, when k = 1, we obtain inequality (1.1). 

If Mis a regular Sasakian manifold, then Mis a unit circle bundle over a Kaehler 
manifold B. It is easy to see that in this case the basic Chern form C£B) belongs to 
a basic cohomology class which is the pull-back of the Chern class Ck(B). It was 
shown in [G2] that for B=P2(C)xP3(C), 

l(C2(B) • C2(B)) - I(CZ(B)) • I(C2(B)) < 0. 

Hence, if a Sasakian manifold M is a unit circle bundle over B=P2(C)xP3(C), 
then 

7(C£B>(M) • C<B)(M)) - 7(C<B)(M)) • 7(C<B>(M)) < 0. 

Comparing this inequality with inequality (1.12), we see that the condition b2(M)=0 
in Corollary 1.3 cannot be omitted. More generally, this example shows that the 
condition in Theorem 1.1 is essential. 

We conclude Sec. 4 by Remark showing how one can define basic Pontrjagin 
classes Pft

(B)6ff|*(M, R), fc = l, ..., [m/2], on X-contact manifolds. 
Finally we note that for Kaehler manifolds a theorem similar to Theorem 1.1 

has been proved in [G2]. 

2. Decomposition theorems. For a compact metric manifold (M, tj, X0, <p, g) 
we will denote by ( , ) the local scalar product with respect to the Riemannian metric 
g, and by (A, fi)= J (A, n) dV the global scalar product, where A and p. are diffe-

M 
rential forms of the same degree. As usual, % will be the Hodge "star" operator and 
6 will be the adjoint of the operator of exterior differentiation, i.e. (dk, p)=(X, dp), 
where A and fj. are forms of degrees p and />+1, respectively. We also will denote by 
e(tj)A the exterior product by t], i.e. e(t;)A=>}AA. Clearly, (i(X0)X, n)=(X,e(r])p) 
for any two differential forms A and p of degrees p+1 and p respectively. 
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Lemma 2.1. Let (M, t]) be a compact (2m+\)-dimensional contact manifold. 
Then the function I: HB(M, F)—F given by formulas (1.3) and (1.4) is well-defined. 

Proof . Let X and be basic closed 2fc-forms representing the same basic 
cohomology class a T h e n X—X

x
=dn where p. is a basic (2k— l)-form. 

We must prove that J q A $
m

~ * A A = Jr]A<P
m

~
k

X
1
. Therefore we must prove 

M M 

that J"rjAdco=0, where co = <Prn~kAfi. Clearly, co is a basic form. Let (r\, X0, <p,g) 

be a contract metric structure on M associated with contact structure rj. By [S], 
page 3—4, 

(2-1) *1 = l i f ^ ^ -
Hence, 

friAdco = (riAdco, *1) = ^^{e(ti)d<o, e(t])<Pm) = 
Af 

= - ¿ T ^ ' i(X0)e(n)^) = <P") = -¿f(co, 8$m). 

By [SH], 
(2.2) <54>r = 4 r ( m - r + l)tj A®'"1. 
Therefore, 

fvAdco = ^ K e M r - 1 ) = J?L(i(X0)co, &>-*) = 0, 

since i(X0)co=0. 

Corol la ry . For any basic form X, I(dX)—0. 

From now and to the end of this section let (M, rj, X0, q>, g) be a compact 
(2m + l)-dimensional Sasakian manifold. Let us denote by dB and ( , )B the restriction 
of the exterior differential and of the global scalar product on the space AB(M) 
of basic forms on M. Let 5B: AB(M)-~AB(M) be the adjoint operator for dB with 
respect to ( , ) B . Then AB=SBdB+dBSB is called the basic Laplacian. The set £>B 

of basic harmonic k-forms is the kernel of AB on Ak
B(M). Any Sasakian manifold 

M can be considered as a foliated manifold with 1-dimensional leaves. By the Main 
Theorem of [KT] (whose conditions are obviously satisfied for Sasakian manifolds), 
we have 

(2.3) Ak
B(M) - AB(Ak

B)© &B(M) 

and dimc It follows from (2.3) that 

(2.4) A§(M, C) = im dB® im SB© £>B(M). 

As usual we obtain from (2.4) that HB(M, C)^§*(M) . 
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Let be the complexified tangent space at the point x£M. Then 

(2.5) TMx = Dx°®D°x'1®CX0, 

where Z>x*° and D"'1 are defined by (1.8). It is known, [I], that the pair of complex 
distributions ( D D ® ' 1 ) defines a C—R structure on M. Hence each of the distribu-
tions D^'0 and D"'1 is integrable. Let {eh e:, X0}, i= 1, ..., m; l=m+1, ..., 2m, be a 
local field of frames adapted to the decomposition (2.6). That means that at the point 
x each e£DY and each e^D^1. Let {9\ 0\ t]} be the dual basis of C-valued 1-
forms on M. Then, by Frobenius' theorem 

d9' = 0 (mod 6', j=\, ..., m) and d9l = 0 (mod 93, J = m+1, ..., 2m). 

Therefore 

d0•' = z a ) ^ / \ e k 2 b'jnh eJ, 

dff = 2 4 + 2 a +2 b)r,A0], 
where al

jk, a'^, ajk, ajj, bp b] are functions. It follows that for any horizontal form 
(o£UoTk-'(M) of bidegree (k, I) 

(2.6) dco = o)' + to" + t}A(o'", 

where m'£Hork+1J(M), co"<EHork<l+l(M), a/"eHorM(M). Assume now that co 
is basic. Then 0=i(X0)dm=m"'. Therefore dm=m'+m". Set dm'=X'+»/A/t', 
dm"=)."+r\t\\i , where )', /.", p.', and n" are horizontal. If follows that 0=dm'+ 
+dco"=(X' + A")+ri(ii'+n")- Hence n'+n"=0. Since /¿ '€Hork + 1- l(M) and / ' € 
£HorM + 1(Af), we obtain that f i '=fi"=0. Hence dm' and dm" are horizontal and 
therefore m' and m" are basic. It follows that if m£Akjl(M), where A^'(M) is the 
set of basic forms on M of bidegree (k, I), then dm—m'+m", where m'€AB

+1''(M) 
and m"£Ak

g
+1'l(M). Set d'Bm=m', dBm=w". Then we obtain that dB=dB+dB, 

where d'B and d"B are differential operators on AB(M, C) of bidegrees (1, 0) and (0, 1), 
respectively. Let ¿'B: AB(M, C)-~AB(M, C) and 5B: AB(M, C)-+AB(M, C) be the 
adjoint operators for d'B and d"B, respectively, with respect to the global scalar pro-
duct ( , ) B . Then 5B and 5B are of bidegree (—1,0) and (0, —1), respectively, and 
<>B = SB + SB- S e t = AB = &BdB + dB&B-

Lemma 2.2. Let m be a basic p-form, O ^ ^ m . Then 

ABm = 2A'Bat = 2ABco. 

Proof . This lemma is analogous to Theorem 3.7 of [W], Chapter V. A proof 
Lemma 2.2 can be obtained by repeating the arguments of the proof of the above 
mentioned theorem from [W], and we omit it. 
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Denote dy JJk<l the natural projection from AB(M, C) to Ak
B'(M). By Lemma 2.2, 

(2.7) = Ilk<lAB, O s H / ^ m . 

For any differential form co on M, set Lco=<P/\(o, where <P=drj. If co is basic, 
then Leo is also basic. Therefore L induces the map LB: AB(M)^AB(M). Denote 
by A the adjoint operator of L with respect to ( , ), and by AB the adjoint operator of 
LB with respect to ( , ) B . Clearly LB and AB are operators of bidegrees (1, 1) and 
( —1, — Irrespectively. 

Lemma 2.3. 
(i) If (o is basic, then nk tco is also basic. 

(ii) If co is a basic harmonic p-form and O^p^m, then nk to) is also basic 
harmonic. 

(iii) If co is a harmonic p-form and 0S/)Sm, then nkJco is also harmonic. 

Remark . By [Tl] and [Y], any harmonic/»-form, O s p ^ m , is basic harmonic. 
Therefore the operator IIkl is well-defined on the set of harmonic p-forms, Osp^m. 

Proof , (i) Let co^A^(M,C). Then co=co0(P+eoliP_i + ...+cOp>0, where 
coktl=nk la). By (2.6), d(okii=X+t]t\nkt l, where A is horizontal and ¡ikl is horizontal 
of bidegree (k, /)• Since co is basic, 

0 = i(X0)doo = i(X0)(da>0tP + ... +d(oPf0) = n0.P + P i ,„-i + ••• +HP,o, 

Hence each nktt=0. Therefore i(X0)da>kit=i(X0)A=0. Thus, (ok,=nktla) is 
basic. 

(ii) Let o be a basic harmonic /»-form, 0 S p ^ m . By (2.7), AB(IIkl(o)= 
=nktt(AB(o)=0. This proves (ii). 

(iii) Let A and p. be two basic forms on M. For Sasakian manifolds, formula 
(3.8) from [KT] gives 
(2.8) (Ak,ii) = {(AB + LA)X,p). 

Let co be a harmonic /»-form, O s p s m . Then co and therefore n k J o) are basic. 
Hence, by (2.7) and (2.8), 

(J(J7Mco), J7Mco) = (ABnktlm + LAJIkj(o, nkila>) = 

= (JIkAABw + LIlk-lt..-xAco, nk,,co). 

Since any harmonic /»-form, is basic harmonic, we have ABca=0. By 
[Tl], any harmonic /»-form, O^psm, is effective, i.e. Aco=0. Therefore 
(A(nKI<o), nkil(o)=0. It follows that (d(nkJ(o), d(nk<la>))+(d(nkJaj), <5(/7M))=0. 
Thus, d(nktlco)=8(nkJco)=0. Therefore, IIkiloj is harmonic. This proves (iii). 

Let co be a closed basic form of bidegree (k, I), O s k + l ^ m . Then, by (2.3), 
o)=ij/+ABX, where \j/ is basic harmonic and A is basic. By (2.7), co=77Meo= 



Basic cohomology classes 277 

=nktl\l/+AB(IIktlX). Since ip is uniquely defined by co and since, by Lemma 2.3, 
TIk>l\l/ is basic harmonic, \p = nk l\p. Therefore i¡/ is of bidegree (k, I). Thus, we 
obtain that if a basic cohomology class a£HB

+l(M, C), O ^ f c + l s m , contains a 
closed basic form of bidegree (k, I), its basic harmonic form is also of bidegree (k, I). 
Therefore, the cohomology group HB'l(M), defined by (1.9), is well-defined. By 
Lemma 2.3, we have a direct sum decomposition 

(2.9) H\{M, C) = HI-<'(M)®H1bp~1(M)® ... ®Hfr°(M), 0 ^ p s m. 

Similarly, let HP(M, C), OSpSm, be the ptb DeRham cohomology group, and 
let Hk,l(M) be the set of all elements of H" which are represented by a harmonic 
/»-form of bidegree (k, /)• Then 

(2.10) H"(M, C) = H°-p(M)®H1-p-1(M)® ... ®H"-°(M), O^p^m. 

Let O ^ p ^ m , O ^ k ^ l ^ m . Set 

bp = dimc H"(M, C), b^ = dimc H&M, C), 

hk-' = d i m c H k , l ( M , C), hk/ = dimcHk
B- l(M, C). 

Here bp are usual Betti numbers. We will call b f \ hk,l and h^1 the basic Betti numbers, 
the Hodge numbers, and the basic Hodge numbers, respectively. By (2.9) and (2.10), 

b. = H>'p + h1-p-1+...+hp-°, O^p^m; 
(2.11)

 P 

bw = Hj(' + hii>-1+...+ht-0, 0 m. 

Denote by C a linear operator C: Hor (M)—Hor (M) such that Cco=(\f—i)k~l(o 
if co is of bidegree (k, I), where Hor (M) is the set of all horizontal forms on M. 
Let * denote the Hodge "star" operator. Remind that cO is called effective, if AOJ=0. 

Lemma 2.4. Let co be a horizontal and effective p-form, O^pSm, and let 
OSr^m-p. Then 

*(L'co) = (-1 y<r-W 2m-p-2r£J_p_ry
 e(ri)Lm~p~rCco. 

Proo f . This lemma is similar to Theorem 1.6 from [W], Chapter 5. The proof 
of Lemma 2.4 is just a repetition of the proof of the above mentioned theorem from 
[W], and we omit it. 

We now prove a decomposition theorem for closed basic forms. 

Theorem 2.5. Let M be a compact (2m+l)-dimensional Sasakian manifold 
and let co be a closed basic p-form on M. Then 

(i) co can be decomposed as 
[p/2] 

(2.12) co= 2 L'fa + M, 
t=(p-m)* 
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where (p — m)+ =max {0,/? — m), ipt is a harmonic (p-2i)-form, any ). is basic. In 
addition, harmonic forms \ph i=(p-m)+, ...,[p/2], are uniquely defined by co. 

(ii) If a) is of bidegree (k, I), then for each i, ipi is of bidegree (k — i, l—i). 

P r o o f , (i) We first consider the case O ^ p ^ m . By (2.4), œ = ip+dÀ, where 
ip is a basic harmonic /?-form uniquely defined by co, and / is basic. Since \p is basic 
harmonic, dBip=0 and SBip=0. For Sasakian manifolds formula 3.3 from [KT] 
takes the form ô\p-ôBtp+e(rj)A\p. Therefore 

(2.13) dip = 0, dip = e(tj)Aip. 

Differential forms on Sasakian manifolds satisfying (2.13) were introduced in 
[0] and were called there C-harmonic forms. By the decomposition theorem for en-
harmonic forms of degree p, O^p^m, [T2], 

[p/2] 

Z L ti> i=o 

where ipt are harmonic (p—2/)-forms uniquely defined by ip. This proves (i) in the 
case O ^ p ^ m . 

Let now m + l s / ? s 2 m . Once more, <o=\p+dA, where \p is a basic harmonic 
form uniquely defined by co, and X is basic. Following [KT], for any basic for m 
p. we set 

*H = ( - 1 yi(X0)*fi. 

Then * *p = (— l)®/i. By Lemma 2.4, for any horizontal and effective q-iovm ft, 
O s ^ ë m , and for any r, 0 ^ r ^ m — q , 

(2.14) *(Lr[i) = ( - 1 ) ^ > / 2 L™-*->Cp. 

Set ip=*\p. By [KT], *AB = AB*. Therefore \p is basic harmohic. Since ip is of 
degree 2m—p<m, we have a decomposition 

t(2m—p)/2] 
ip= Z L^xPj, 

0 

where ipj are harmonic of degree (2m—p—2j). By (2.24), 

[(2m-p)/2J 
xP = ( - 1 )*">-•> *ip = 2 *(LJipj) = 

j=0 

t<2m-p)/2] , / I . „ 

= & ( - 1 )P ( P + 1 ) / 2"m + J y - 0 , - m + y ) ! L " J C ^ 
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Set i—p—m+j, 

Then 
IP/2] 

(2.15) 2 I-'ti, 
i—p—m 

where we used the identity p—m + j^—2~~~] = [t]' c'e®ree 

(p—2i). Therefore deg $ f _ p + I B Sm for i=p—m, ...,[p/2]. It follows by Lemma 2.3, 
that J7M$,_ p + m is harmonic. Since 

C$I-
P + M

= 2 0
+ k+/=p-2i 

[P/2] _ . 
we obtain that is harmonic of degree (p—2i). By (2.15), *t// = 2 

i — p — n 
Using Lemma 2.4, we easily obtain from the last equality that i//¡, i=p—m, ..., [/»/2], 
are uniquely defined by \J/. This completes the proof of (i). 

(ii) To prove (ii), assume that co is of bidegree (k, /). Then, by (2.3), co = \j/ + 
+ABn, where i// is basic harmonic and /t is basic. Then 

[P/2] 
co = 2 L'\j/i + ABp, 

i=(p—m) + 

where i¡/t is harmonic of degree (p—2i). It follows that 

[p/2] [p/2] 
eo = i7Mco = 2 + = 2 £ ' № - ¡ , 1 - ^ 0 + ^ i B p . 

i = (p—m)+ i=(p-m) + 
If p=k+l^m, then, by 2.7, nklABfi=ABIIkln. Let By [KT] 
AB£=(—l)p*ABWfi. Therefore, since deg(i; t)='"> 

nk,iABfi = ( - 1 )pnktl*AB*ix = (-l)p*nm-lim-kAB*n = 

= ( - 1 ) " * ABnm.itm.k* fi = (-iy*AB*nkilu = ABnkt,fi. 

Thus, for any p, 0^p^2m, 

[p/2] 
(0= 2 Li(nk_il-i\l/i) + AB(IIkjn). 

i = (p-m) + 

By Lemma 2.3, is harmonic and n k ln is basic. By uniqueness of decom-
position (2.12), \j/ i=nk_u i^ i\j/ i . Hence i/f( is of bidegree (k—i,l—i). This proves (ii). 

In course of the proof of Theorem 2.5 we saw that the notion of a basic har-
monic form is the same as the notion of a C-harmonic form. Therefore we can use 
results of [0] and [T2] on C-harmonic forms. If co is C-harmonic, then Lea is also 
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C-harmonic. Thus we obtain homomorphisms 

L: H$~*(M) - Bi(M), psm, 
and 

L: Hl-u-^M) - Hk
B>l(M), k + l sm. 

These homomorphisms are one-to-one. In addition, 

HUM) = LHl~\M)®IP(M), p^m, 
Hg,l(M) = LHk

B-1-l~1(M)®Hk-l(M), k + l s§ m. 
It follows that 

/!*•' = hh-'-Wf1-1-1, k + l ^ m, 

where we set =fc<_B
1>=/i£-1=/£1-'=0. It follows from (2.17) that 

(2,8, 
ht1-'-1 ^ k + l s m. 

In particular, we have 

(2.19) 1 = h°B-° hy s ... ^ cm/a] 

Note that the mapping * induces the isomorphisms 
HUM) == Hlm~p(M), 0 =g 2m, 

(2.20) 

Hh
B-\M) ^ H%-l>m-k(M), 0 s i , / s m . 

In addition, the complex conjugation induces the isomorphism 
(2.21) Hk

B-\M) ^ Hlik(M), 0^k,l^m. 
Therefore we have 

b™ = b™_p, O g p g 2m, 
(2.22) 

Hit' = Hf = h^~k-m~l = hB~Um~k, OrSkJ^m. 

3. Inequalities for basic cohomology classes. In this section we continue to 
assume that (M, rj, Xa, <p,g) is a (2m+l)-dimensional compact Sasakian manifold. 

Lemma 3.1. Let co any T be harmonic forms of degrees 2 i and 2j, respectively. 
Assume that 0^ /^M/2, O^jSm/2, and i?±j. Then 7(coAt)=0, where I is defined 
by formula (1.3). In particular, if u is a harmonic form of degree 2 i, where 0< i^m/2 , 
then l(u)=0. 

Proof . Let u be a harmonic p-form, O ^ p S m . Then, by [Tl], u is effective 
(i.e. Au=0), and therefore, by [T2], 

ArLr+su = 22r{s+ 1) ... (s-r)(m-p-s-r+1)... ( m - p - s ) L ' u . 
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Take r=m+1 and s=m—p+1 in this formula. Since r+s^-m, we obtain that 
Lr+'u=0. Therefore, 
(3.1) Lm-p+1u = 0, 

where u is a harmonic /»-form, 0S/>Sm. By (3.1) we obtain that if / > / , then 

$»- ' -Ma>A{ = (Lm~ i i+ l i~J )(o)Ax = 0. 

Similarly, if /< / , then 

i"- ' - - 'Aa>Ai = ®A(L"-v+U-oT) = o. 
It follows that 

/ ( f l , A T ) = 2 ^ ! Vol ( i O / " A * * " W A a , A t = 

Let co and r be closed basic C-valued forms of bidegree (&, fc), where O ^ k s 
^m/2 . By Theorem 2.5, we have 

k & 
co = ^L'coi + itt, t = 2 + 

i = 0 ( = 0 

where co, and T, are harmonic forms of bidegree (k—i, k—i), and A and ¡x are basic 
forms. 

Lemma 3.2. 

/(coAT) — 7(CO)7(T) = ^ ^ ( M ) g ( - l )*-*2 a ' (m-2k + 2Ql(co,, i,). 

P r o o f . 

7(COAT) = 7(( J L'coi + dX)A( 2 L'zj + dfij) = J / ( L ' + ^ A r ^ / ^ v ) , 
i=0 j=o ¡,./=0 

where 

V = A A ( 2 L'z^+iiL^An + XAdfi 
j~0 i = 0 

is a basic form of degree 4A:—1. By Corollary to Lemma 2.1, l(dv)=0. By (1.5) 
and by Lemma 3.1, 7(7.'+Jco,Aa>j)=7(cu,A coy)=0, if / V / Therefore 

(3.2) 7(e)AT) = I(<okAxk) + *2 
i=0 

Since deg cofc=deg zk=0, we obtain that I(cokAzk)=(okzkI(l)=cokzk. By Lemma 
k k 

3.1, I(co)=I( 2 L cot+d£)= 21(c°d=I((ok)=cok. Similarly, I(z)=zk. Therefore, 
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by (3.2), 

/ ( « , A T ) - / ( « » / ( T ) = Z « . » M ) = = 

1 2 {t\r\«>i, *{Lm-*k+*%)). 
2mrn\ Vol (M) ,fo 

By Lemma 2.4, 
^(Ln.-2*+2if() = l) l-'2m_2fc+2i(/7i —2fe + 2/)!i/Afj. 

Hence 

I(coAT) - / ( £ B ) / ( T ) = 2 T T M , V O L ( M ) J C - T F - ^ O " - 2k + 2/)!(CO I , I , ) . 

This proves the lemma. 
Now we are able to prove Theorem 1.1. 

Proof of Theorem 1.1. Let a> be a closed basic C-va1ued form of bidegree 

(k, k), representing a.£Hik(M). By Theorem 2.5, co= 2 iJ&t+dl, where cot is a 
<=o 

harmonic form of bidegree (k—i,k—i), and A is a basic form. Since hk
B~1,k~1 = 1, 

we have by (2.19), that ^ - ^ - ' = 1 for i=l,...,k. Hence, by (2.17), hk-i-k~i=0 
for /=1, ..., k — 1. Therefore there is no harmonic forms of bidegree (k—i, k—i) 
for /=1, ..., k—l. By Lemma 3.2, we obtain that 

1 )*[/(© A to) — /(co)/(ftj)] = m]Y
l
ol(M) (m-2k)\(co0, co0) s 0. 

The equality holds if and only if cu0=0. In this case (o=t$k+dA, where t=cok. 
Therefore the equality holds if and only if a = tQk. This proves the theorem. 

4. Basic Chern forms. Let (M,t ] ,X 0 , ( p ,g ) be a compact (2m +1 )-dimensional 
Sasakian manifold and let V be the Riemannian connection on (M,g). A linear 
connection on M given by the formula, [Ta] : 

(4.1) V x 7 = VxY+ti(X)<pY+ri(Y)(pX+<P(X, Y)X0 

will be called the canonical connection on M. The following properties of the canonical 
connection are easily verified by direct computation: 

(4.2) Vxr, = 0, V**0 = 0, V x <p=0 

for any tangent vector X on M; 

(4.3) i(X0)6 = 0, i(X0)T = 0, 
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where & and T are the curvature form and the torsion form of V, respectively; 

R(X,Y)Z = R(X, Y)Z + 2<t>(X, Y)<pZ+[$(X, Z)-n(X)ri{Z)}q>Y-
(4'4) -MY, Z) — r\(Y)r\(Z)]<pX+ [g(X, Z)t](Y) — g(Y, ZMX)]X0, 

where R and R are curvature tensors of V and V, respectively; 

(4.5) R(<pX, <pY) = R(X, Y). 

Consider M as a base of a vector bundle F with the fibre Dx—{X£ TMX: t\ (X) = 
=0} at the point x£M. The map cp\x: DX-*DX defines a complex structure on 
Dx. Hence F may be considered as a complex vector bundle over M. By (4.2), the 
canonical connection V induces a complex linear connection in the complex bundle 
F, which we will denote again by V. Let C[B) be the kth Chern form of V, [CJ. C'kB\ 
k—1, ..., m, are defined by the formula 

i/ _ 1 1 m 
(4.6) det — 0 = tm+ 2QB)r-k. 

2n \ t=i 

C(
k
B) is closed. By (4.3), 0 is horizontal. Therefore C<B) is horizontal. Hence C[B> 

is basic. Because of (4.5), C[B) is real and of bidegree (k, k). Thus, for any k — 1, ... 
...,m, C(B) is a canonically defined real closed basic 2fc-form of bidegree (k ,k ) . 
We will call C[B) the ktb basic Chern form of a Sasakian manifold. Substituting C'kB) 

in (1.10) we obtain that in the case hq ^^ 1 the following integral inequality is 
satisfied 
(4.7) ( - l)fc[/(CiB> • C n - I ( C n i ( C t B > ) ] ^ 0. 

Using (4.4), we obtain by direct computation that in the case k—1 inequality (4.7) 
is the same as inequality (1.1). 

Remark . Let (M, >/) be a contact manifold. An associated contact metric 
structure (rj, X0, cp, g) is called an associated K-metric structure, [B], if X0 is a Killing 
vector field with respect to g. If a contact manifold (M , rj) admits an associated K-
metric structure, (M, t]) is called a Af-contact manifold. We will show now how one 
can define basic Pontrjagin cohomology classes on a A'-contact manifold. 

Let (M,r\) be a (2w+l)-dimensional contact manifold. A linear connec-
tion V on M will be called basic if 

(4.8) Vxn = 0, V x Z 0 = 0, i(Xo)6> = 0, i(X0)T = 0, 

where & and f are the curvature form and the torsion form of V, respectively. 
Assume that (M , rj) admits a basic linear connection V. Consider M as the base 

space of a real vector bundle with the 2m-dimensional fibre Dx={X£TMx: rj(X)— 
=0} at the point x£M. By (4.8), V can be considered as a connection in this vector 
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bundle. Put 

det = Z ^ t ^ f - " . 

Then £ ^ ( 0 ) is a closed and horizontal (since & is horizontal) 4/c-form, [C], p. 118. 
Hence E^iQ) is basic and therefore defines an element pk

B)^H^(M, R). We will 
show that pk

B) does not depend on a choice of a basic linear connection. Indeed, let 
V' be another basic linear connection and let &' and T' be its curvature and torsion 
forms, respectively. Set a=V'—V, V' = V + /a. Let 0' be the curvature form of 
V'. Then a is a linear form on M of the type ad GL (2m, R), and by (4.8) and (4.9), 

a(X0)X = YXoX-V^X = VxX0 + [X0, X] + f'(X0, X)-

- Vx Z0 - [X0, X] - T(XQ, X) = 0. 

Hence a is horizontal. By [C], p. 42, & = @+tD<x—t2<xAa. Taking /=1, we obtain 
D<x=&'-0+xAa. Therefore &=(l-t)0 + t&' + t(l-t)<x.Aa.. It follows that 

I 
is horizontal for all t. By [C], p. 115, E2k(0')-E2k(&)=de, where Q= f W(t)dt 

S 
and where i¡/(t) is a polynomial function of a and &. It follows that Q is hori-
zontal. In addition, 

LXoQ = [i(Xa)d+di(X0)]e = i(X0)dQ = i(X0)[E2k(Q')-E2k(d)] = 0. 

Hence Q is basic. Thus, E2k(0') and E2k(&) are homologous within basic forms. 
Therefore E^S') and Eu(0) define the same element p(

k\H^{M, R). If (M,rj) 
is a contact manifold which admits a basic linear connection, then p[B\ fc=1, ... 
..., [m/2], will be called basic Pontrjagin classes of (M , rj). 

Let now (M,rt;) be a /sT-contact manifold. Let (t], X0, (p,g) be an associated 
/^-metric structure and V be the Riemannian connection on M with respect to g. 
Direct calculation shows that the connection 

Vxr= VxY+n(X)cpY+t,(r)(pX+$(X,Y)X0 . 

is a basic connection on (M,g). Hence the basic Pontrjagin classes p(
k
B)dHgk(M, R), 

k=1, ..., [m/2], are well-defined on each 7^-contact manifold (M, t]). 
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