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A note on the strong de la Vallée Poussin approximation 

L. LEINDLER 

1. Let {<pn(x)} be an orthonormal system on the finite interval (a, b). We shall 
consider series 

(1.1) 2cncpn(x) 
11 = 0 

with real coefficients satisfying 

(1.2) ¿ c n
2 < ~ . 

li=0 

By the Riesz—Fischer theorem, series (1.1) converges in the metric Z,2 to a square-
integrable function f(x). We denote the n-th partial sum of series (1.1) by sn(x). 

It is well known that the notion of strong summability is due to H A R D Y and 
LITTLEWOOD [3], and the notion of strong approximation is due to ALEXITS [2]. 

Since the strong approximation investigations have started in the 1960s it has 
become more and more clear that most of the results concerning any property of 
ordinary approximation have an analogue in strong sense. In other words, we have 
the same rate of approximation for strong means as for ordinary ones if we consider 
any one of the most frequently used means. This is true in spite of the facts that, in 
general, neither strong summability nor strong approximation do not follow from 
the suitable general ordinary summability and approximation (see M Ó R I C Z [ 1 1 ] and 
LEINDLER [9]). Some sample theorems showing the great analogy between the ordinary 
and strong approximation results can be found e.g. in the works [1], [4], [5], [6], 
[8], [10]. 

Recently we have discovered that even in the case of the classical de la Vallée 
Poussin approximation there exists a result which has only a weaker analogue in 
strong sense. One of the aims of this note is to fill up this gap. 

In order to formulate our statements precisely we recall some definitions and 
theorems. 
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Now we define the ordinary, furthermore the strong and very strong de la Vallée 
Poussin means with exponent p (p>0): 

1 2n-l 

K(x):=- Z sv(x), (nël), 
n v=n 

f 1 2n-l ll/p 

v„\p-x\:= \ - 2 K(*)-/(*)lp 

I« v=n ' 
and {1 2n—1 11/p 

- 2 M * ) - / ( * ) l p [ , « k - n ' 

where v:={vt} denotes an arbitrary increasing sequence of positive integers. 
In [4] we proved 

Theorem A. Let {A„} be a monotonie sequence of positive numbers such that 

(1.3) KX\m. *) 
k=0 

If 

(1.4) 
B = 0 

then we have that 
K(x)-f(x) = O^n1) 

holds almost everywhere (a.e.) in (a, b). 

A similar, but weaker result in connection with the strong approximation 
(p = 1) was proved in [6] which reads as follows. 

Theorem B. Let {A„} be a monotonie sequence of positive numbers with (1.3). If 

(1.5) Z c l X 
/1=0 

then 
(1.6) V„\p,x\ = ox(A„_1) 

holds a.e. in (a, b) for any 

It is easy to see that if A„=nï with y=»0, then conditions (1.4) and (1.5) are 
equivalent; but if e.g. X„—qn with q > 1, then (1.5) requires much more that (1.4) 
does in order to have the same order of approximation. 

*) K will denote positive constant not necessarily the same one at each occurrence. 
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First we show that (1.4) also always implies (1.6), but this proof will be longer 
than that of the implication (1.5)=>(1.6) in [6]. Thereafter, using a very general 
lemma proved only in 1982, we shall extend our result to the very strong approxima-
tion ; i.e. we shall prove the following result. 

Theorem. Let {A„} be a monotonic sequence of positive numbers with (1.3). If 
(1.4) holds, then 
(1.7) FJp .v ; x| = ox(K1) 

a.e. in (a,b) for any 0</>^2 and for any increasing sequence v:={vt} of positive 
integers. 

2. In order to prove our theorem we need two known lemmas. 

Lemma 1 (Kronecker lemma, see e.g. [1] p. 68). If s„(a) denotes the n-thpartial 
oo 

sum of the numerical series am ^ a n increasing sequence of positive num-
/71 = 0 

oo 

bers such that A„—°° and the series Z converges, then s„(a)=o(A„) holds. 
m-0 

Lemma 2 ([7]). Let 5 > 0 and {<5„} an arbitrary sequence of non-negative 
numbers. Suppose that for any orthonormal system {<p„(x)} the condition 

(2.1) Z U Z c i y — 
11=0 m = n 

implies that the sequence {s„ (x)} of the partial sums of (1.1) possesses a property P, then 
any subsequence {^(x)} also possesses property P. 

3. First we carry out the proof of (1.7) when p=2 and vk=k. An elementary 
consideration shows that 

{1 2n—1 1 2n-l 1 

- 2 | i v ( * ) - n ( * ) l 2 + - 2 m(*) - / (* ) l 2 • n v=i> n ¥=„ ; 

The second term on the right hand side of (3.1) is ox(X~2) a.e. in (a, b) on account 
of Theorem A regarding the monotonicity of the sequence {A„}. Thus we have only 
to estimate the first term. For that purpose we first show that 

(3.2) 2 i := 2 ft"'1 f (s„(x)-Va(x)Y 
n = l a 
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Namely, an easy calculation gives that ' 

~ 1 2n—1 
21= 2 tin-1-* 2 (2«-v ) 2 c*s n = l » v=n + l 

^ 2 ^ cl^ 2 c\ 2 ¿J«-1 ^ 2 № 11 = 1 " v = n + l v = l v/2 <n<v V = 1 

whence, by (1.4), (3.2) obviously follows. From (3.2), using B. Levi's theorem, we 
get that 

2 ftn-'isnW-Kix))* 

n=l 

a.e. in (a, 6). Hence, by Lemma 1, the estimation 

2m (3.3) 2 № ( * ) - KM)2 = 0x(2m) 
n = l 

holds a.e. in (a, 6). But (3.3) clearly implies that 

1 2m—1 — 2 \sn(x)~K(xr = ox(}->) m n=m 

also holds a.e. in (a, b). Summing up our partial results we get that 

(3.4) V„\2>x\ = ox(X-1). 

On account of the Holder's inequality, we get, for any 0</?^2, that 

V„\p,x\^V„\2,x\ 
whence, by (3.4), 
(3.5) Vn\p,x\ = ox(k~l) 

also holds a.e. in (a, b). This completes the proof when vk—k. 
Finally, the statement of Theorem in its generality, i.e. for arbitrary v:={vt}, 

follows from (3.5) using Lemma 2 with ¿ = 1 and 8„:—X2—(2_1=0); further-
more the property P in this case will be just the estimation given by (3.5). 

Theorem is hereby proved completely. 
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