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On strong approximation by Cesaro means of negative order

L. LEINDLER

1. Let {¢,(x)} be an orthonormal system on the finite interval (a, b). We shall
consider series

(L.1) Z caa()
with real coefficients satisfying
1.2) 5t <oo.

[
]

By the Riesz—Fischer theorem, series (1.1) converges in the metric L2 to a square-
integrable function f(x). We denote the partial sums and the (C, «)-means of series
(1.1) by s,(x) and 6%(x), respectively. Furthermore, T, will denote a positive regular
summation method determined by a triangular matrix (a,/4,) (0x=0 and A4,:=

n
= > d,, and if s tends to s, then
k=0

1 n
2D Oy Sy — S).

T,:=
An k=0

G. SunoucHi [7] proved the following result.

Theorem A. If O<y<1 and

(1.3) 3 c2n® < oo,
n=1
then
.. p
(4 {2 are-swrf” = o)
holds almost everywhere (a.e.) for any a>0 and O<p<y~', where A::=(n—:a).
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In [3] we generalized this result in such a way that we replaced the partials in
(1.4) by Cesaro means of negative order. Qur theorem reads as follows, where and
in the sequel X will denote positive constant, not necessarily the same one.

Theorem B. Suppose that 0<y<1, O<p<y~! and (1.3) holds, furthermore
that there exists a number ¢>1 such that

ip_22

(1.5) T =

and with this ¢ for any 0<w<1 and 2"<n=2m+!

: m min(2!+1,n) -
(1.6) >{ 3 & @+1e-o-thie < Knmog,.
I1=0 =~ y=2i-1

Then, for arbitrary

Q.—_
1.7 d-1-2-1
an R

1 n p
(1) {5 Zanlre-et@p = om
holds a.e. in (a, b). :

It is easy to verify that in the special case a,,= 4%} («>0) condition (1.6) is
satisfied, thus Theorem B with d=1 reduces to Theorem A.

But if we set «,,=(v+1)#~*(8=0), then condition (1.6) will be satisfied only
if B=1. Consequently, for 0<f<1, we cannot apply Theorem B to get an estimate
for the following strong Riesz means

BB, 9= {4 1) S 04 1P 0 = oA P,

but the Riesz summability is a frequently used summation method in connection
with strong approximation. Nevertheless, if we want to get the estimate

(1.9) h,(f, d, B, p; x) = ox(n™?)

for some 0<p<1, then, as a possible solution, we can try to weaken the requirement
of (1.6).
One of our aims is to give such a generalization of Theorem B. S
We mention that in the special case d=1, i.e. if we approximate the function
f(x) with the partial sums s,(x) (=¢%(x)), then already an estimate of type (1.9)
is known. Namely, in a joint paper with H. SCHWINN [6], we proved among others:
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Theorem C. If y>0 and O<py<p then condition (1.3) implies
(1.10) H,(f, B, p,v; x):={(n+1)7? 3 (k+ 1)) | f(x) =5, (X)P}? = 0,(n")
k=0

a.e. in (a, b) for any increasing sequence v:={v,} of natural numbers.

In [5] we investigated the so-called /imit case of the restrlctlon of the parameters,
ie. if f=py. Among others we proved:

Theorem D. If p and B are positive numbers then for any increasing sequence

vi={v}

(1.11) 5 et <o (3 = Bip)
n=1
implies
(1.12) H,(f, B, p, v; x) = o,(n=#IP(log n)'/?)
a.e. in (a, b).

Theorem E. If a and p are positive numbers then for any increasing sequence

vi={v}

(1.13) f can®lP <o (y = 1/p)
n=1
implies
1 n 1/p
(1.19) C,(f, a,p,v; x) :='{A“ ké') A::,l‘lf(x)—svk(x)p'} = x(n-l/P(log n)l/p)

a.e. in (a, b).

We want to point out that Theorems C, D and E contrary to Theorems A and
B do not claim the extra restriction y-<1. Thisis a great advantage of these theorems,
but they do not allow of approximating with Cesdro means of negative order.

The common kernel of the proof of Theorems A and B is a very interesting result
of T. M. FLETT [1] and a useful lemma of G. SuNoucHI1[7] (here Lemma 2 and Lemma
3, respectively) and they, unfortunately, require the assumption O<y-<1. The
proofs of Theorems C, D and E run on a perfectly different line, and these proofs
do not use the assumption y<]1.

In the present paper we prove such a general theorem which generalizes Theorem
B and includes all of Theorems C, D and E if y<1. Unfortunately, we cannot extend
the validity of our result for y=1. This remains as an interesting open problem, in
our view.

Using the notations introduced above we can formulate our results.

Theorem. Suppose that p=>0 and O<y<1. Moreover let us suppose that
there exists a number g=1 with property (1.5) and that with this ¢ and with n(l):=
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:=min (2%, n), 2" <n=2"+!

m n(l+1)
(1.15) {2 ab(v+1pe-moe < Kg(n) d,n,
=0 ‘v=n(l)—3

where g(t) denotes a non-decreasing positive function defined for 0=t<co,

Then, for any d satisfying (1.7), (1.3) implies

(116) {5 Zantrm-ot1cor}” = 0(geen)

n v=0
a.e. in(a, b).
If, in addition, for every fixed I,

n(l+1

)
1.17) { > o) =o0(g(m)d,n~""), as n-»e,

v=n(l)—1

then the 0. in (1.16) can be replaced by o,.
Hence, by a useful lemma (here Lemma 1) we easily get the following result.

Corollary 1. Under the assumptions of Theorem we have the estimate

(118) [ 2 anirm—ot-2u o} = 0lgrrn)

n v=0
a.e. in (a, b), where p:={w} is an increasing sequence of natural numbers and

1
ot (s x)i= = 3 ABTds (%),

n k=0

If (1.17) also holds, then the O, in (1.18) can be replaced by o,.

From Corollary 1, by an easy consideration to be detailed later on, we get the
following results:

Corollary 1.1. If O<y<l1, d>max(1/2, (p—1)/p) and O<py<pB, then (1.3)
implies

{nt1)* vg:" v+ 1P f ()= 07 (5 x)PYP = o0 (n77)

a.e. in (a, b) for any increasing sequence p:={u}.
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Corollary 1.2. If a>0, 0<y<l, O<p<y~* and d=>max(1/2,(p—1)/p,
(p—0a)/p), then (1.3) implies

n 1/
(119) (o 2 417090t 0P} = 0,679
n v=0
a.e. in (a, b) for any increasing sequence p:={u}.
Corollary 1.3. If O<y<l, d>max(1/2,(p—1)/p) and B=py, then (1.3)
implies '

(1.20)  {(n+1)~* Z"(') G+ 1P f(x)— 037 (u; X)PF? = o,((log n)/Pn™7)

a.e. in (a, b) for any increasing sequence u:={u}.

Corollary 1.4.If 0<y<1, py=1, x>0 and d>max (1/2,(p—1)/p, (p —2)/p),
then (1.3) implies

a2y e 3 A W= ot s 9P) = ou((logrien)

n v=0
a.e. in (a, b) for any increasing sequence p:={w}.

First we remark that Corollary 1.2 is a slight improvement of Theorem 1 proved
in [2].

Furthermore we mention that since op(u; x)=s, (x), thus the special case
d=1 of Corollary 1.1 coincides with Theorem C if O0<y<1. But if y=1 -then
Corollary 1.1 does not work, consequently, we cannot say that Corollary 1.1 is a
generalization of Theorem C. So, we can say that Corollary 1.1 is a generalization
of Theorem C if and only if the range of parameter 7 is restricted to O<y<]1.

The same assertion can be made regarding Corollary 1.3 and Theorem D,
moreover in connection with Corollary 1.4 and Theorem E.

Finally we deduce one more statement from Corollary 1.

Corollary 1.5. If p>0, O<y<1 and d>max(1/2,(p—1)/p), then (1.3)
implies

(122 L 3 150-et-1 o} " = 0,077

N y=nt1
a.e. in (a, b) for any increasing sequence p:={u}.

We point out that Corollary 1.5 sharpens and generalizes Corollary 1 proved
in [3]. It can be used for any positive p, not only if p<y~! as in [3].

2. In order to prove our theorem and corollaries we need three known lemmas
and one to be proved now.
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Lemma 1 ({4]). Let =0 and {5,} an arbitrary sequence of non-negative
numbers. Suppose that for any orthonormal system {¢,(x)} the condition

@1 56,3 Ay <o
n=0 m=n

implies that the sequence {s,(x)} of the partial sums of (1.1) possesses a property P,
then any subsequence {s, (x)} also possesses property P.

Lemma 2 ([1]). Set

ni=n() = n{oi®)—oi-1(x)} (= a{oi () —ci(x)} if a=>0).
Let p=g=>1, §=0, a>g—1 and B=a+(q)~*—(p)~ . Then
22) {3 o+ )P PP = K S (ot 1)
n=0 n=0
Lemma 3 ([7]). If O<y<1 and (1.3) holds, then

b o oo
S {gﬁ (n+ 1)~ [o2 1 (x) — o%(x)I%} dx = Kgl c2n®Y

Sfor any a=1/2.

Lemma 4. Under the assumptions of Theorem we have the inequality

b

2.3) f{ sup [g( YA

0=np-<oco

Proof. Set ¢’:=¢/(¢—1), then by (1.5) and (1.7), we have

Z'anvlo'd 1(x)— G"VI(X)IP) } dx = KZ'cz 2y

24 - p=2 and d=1—(¢p)
Applying Holder’s inequality, by (1.15) and ¢=1, we obtain that
@5) 3 anldl = { 3 at,(+ DO L 3 (o4 Lyt (e =
v=0 v=0 v=0
= Kg(yn A, { 3 (v+ e =[xl e
v=0

By the second statement of (2.4) we can choose a* such that
2.6) d + 1 o !

. —— ] T > >

¢p 2

holds. By (2.6), 0<j»<1 and ¢’0=2 the conditions of Lemma 2 are fulfilled with
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p=0¢'p, §=2, 0=y, a=a* and B=d. Using Lemma 2 we get
@D { SO+ P s K{ 3 04+ D s R
v=0 - v=0 Lo

Thus, by (2.5), (2.6), (2.7) and Lemma 3, we have

b

af { s [g(n)A pA “nvlTv(X)I”] }dx§

0s=n<oco

b o oo
= K [{Z 0+ D s = K 3 i <o,

which gives statement (2.3). '

3. Proof of Theorem. It 1s clear that

Sanls—cip) " =

n v=0

3.1) {

= k([ Zar@-atwr} + 3 aioter-ottrf”).

First we show that the first term has the required order.
Since d=1/2, so, e.g. by Theorem A with p=1, we get that

3.2 f(X)=0n(x) = 0x(n™)
a.e. in (a, b).

Let now &¢=>0 be given. If x is a point where (3.2) holds, then let M(x) be a
positive integer such that for n=M(x) the inequality

(3.3) |f(x)—oa(x)| < en™”

is valid. For such x we get that

(3'4) Z' nvlf(x) a—d(x)lp = ( )71.'[,
v=0 )SM(’:) "(’)>M(")
where
n(l+1) (—yp)—10 Ve
mim{ (3 abripemuel TS o (1@ -aeory)

By (1.15) it is easy to see that the first sum remains Ox(g(n)A n=’?), but if
(1.17) also holds, then its order o,(g(n) 4,n~?).

On the other hand, by (1.15) and (3.3), the second sum in (3.4) is always less
than O,(1)e?g(n)A,n=77, that is, its order is always o,(g(n)4,n~"?).
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Consequently we have

1 = S\P Ox(g(m)'?n=7), always,
3.5) {Tu ‘é‘)%v'f(x)—ﬂf(x)l } = {o,(g(n)l/"n_y), if (1.17) holds,

a.e. in (a, b).
Next we show that the second term in (3.1) also has the suitable orders of (3.5),
according as (1.17) is not or is satisfied.
‘Now let & be any positive number. Let us choose N so large that

(3.6) S ot < &
n=N+1

By means of N we split series (1.3) into
N oo
cin® <o and 3 cIn® < &8,
n=1 n=N-+1

and consider the corresponding orthogonal series. More exactly, let

7 oo . ¢, for n=N,
S nét') GWu(x) Wwith g, = 0 for n=> N;
and

38 = h 0 for n=N,
G ) ”é; b,,(P,,(X) wit b, = Cn for n=> N.

If o%(a; x) and o3(b; x) denote the (C, a)-means of series (3.7) and (3.8), res-
pectively, then
(39 05 (x) = an(a; x)+07(b; x).

Since the number of the coefficients 4,70 is finite,

oA )= ola ) = g 2 kil
if v>N; and for any k=N A4%-1/A%=0(1/v), so
(3.10) S anlod(a: x)—ot-ia; Ml =
= 243" ator il 57 (g 1) ot- ot =

m  n(l+1) n(+1)
so0.() >{ > a,'iv(v+1)a(1—rp)-1}1/o{ > (v 1pee-v-1e o

1=0 v=n(l)-1 va=n(l)—-1

=0.(1) 3 4-B,
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By y<1 and B;=2.20-DPU-1(=2) for any £=>0, there exists a positive integer
Iy such that if /=1, then B;<e¢. Thus

m ] m ] m
S4B =(3+ 3)4B =23 A+e 3 A,
1=0 1=0 I=lg+1 1=0 1=1y+1
whence, by (1.15), we get that
(3.11) 2 AB, = Kg(n)A,n™'?;
=0
and if (1.17) also holds then we have the estimate

(3.12) l =2"; AB, = o(g(m) A,n™).

Summing up estimates (3.10), (3.11) and (3.12) we obtain that

si-1(a; ) }1/ {OX(g(n)‘“’n"), always,

2 o lov(a; X)— o.(g(m?n=7), if (1.17) holds,

nv—

(3.13) {

a.e. in (a, b).
In order to estimate the suitable terms of series (3.8) we use Lemma 4 and (3.6).
Then
b
su o lod(b; X o‘ilbx") }dx§Ke*".
Shoop_ (g 2 omlettes 9=ot25 %)

0=Sp<oo

Hence

meas {x|1im sup( 2’ Uy |03(b; X)— i1 (b; x)|”) ES s} = Ke.

g(n )A
This, (3.9) and (3.13) imply

1053P O.(g(m"?n~"), always,
” vg' anvlav(x) 05_ ( )l } = {ox(g(n)l/pn_y)’ if (1.17) hOldS,

(3.14) {

a.e. in (a, b).
Finally, (3.5) and (3.14) yield both statements of Theorem, so our proof is
completed.

Proof of Corollary 1. The statements of Corollary 1 follow from the state-
ments of Theorem and from (1.3) using Lemma 1 with 6=1 and §,:=n*—(n—1)%.
More precisely, now we have to use Lemma 1 twice. First the property P is that the
means 037%(x) of the sequence {s,(x)} approximate f(x), in strong sense regarding
the matrix (e,./4,) and the exponent p, at the order given in Theorem by (1.16)
a.e. in (a, b). Secondly, if (1.17) is also satisfied, then the suitable property P is

7
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»

that the order of the approximation by the means mentioned above is o,(g(7)/?n~?)
a.e. in (a, b).

Proof of Corollary 1.1. Set a,,:=(v+1)’-1. Then, regarding the condi-
tion B=yp, anelementary calculation shows that both (1.15) and (1.17) with g(n)=
=1 hold for any ¢=1.

On the other hand, since d>max (1/2,(p—1)/p) and (1—d)<min (1/2, 1/p)
are equivalent, we can give a number ¢">1 such that (1—d)p<1/¢’<min (1, p/2)
and if ¢:=¢’/(¢’—1), then both (1.5) and (1.7) hold.

Consequently, with this g, all of the assumptions of Corollary 1 can be satisfied,
so, applying Corollary 1, we get (1.18) immediately.

Proof of Corollary 1.2. We set a,,:=4%"} and follow a similar considera-
tion as in the previous proof with the only change that now we choose ¢’ such that
(1-d)p<1/¢’<min (1, &, p/2). Using the suitable ¢ and the condition py<]1, ele-
mentary calculations show that all of the assumptions of Corollary 1 are satisfied;
and Corollary 1 yields (1.19).

The proofs of Corollaries 1.3 and 1.4 run parallel, therefore we detail only the
proof of Corollary 1.4.

Proof of Corollary 1.4, Set a,,:=A4%"1. Using the assumption py=1
and ¢’ chosen by (1—-d)p<1/¢’<min (1, a, p/2), we get that conditions (1.15)
and (1.17) with g(n):=logn and g:=¢’/(¢’—1) hold, furthermore (1.5) and (1.7)
are also fulfilled. Therefore, with these quantities, Corollary 1 can be applied, and
we get (1.21).

Proof of Corollary 1.5. Now we set

0, if v=n,
%env =1, if n<vs2n,
and
Aon,y, if v =2n,

“2"+1'"’={0, if v=2n+l.

An easy calculation shows that both (1.15) and (1.17) with g(n)=1 hold for
any g=1. Since the assumption on d yields to choose ¢’ such that (1—-d)p<1/¢’<
<min (1, p/2), therefore conditions (1.5) and (1.7) can be satisfied simultaneously.
Consequently we can apply Corollary 1, whence (1.22) obviously follows.
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