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On Jessen's inequality 

J. E. PECARIC and I. RA§A 

1. Introduction 

Let X be a compact Hausdorff space and let C(X) be the space of all continuous 
real-valued functions on X, endowed with supremum norm and usual ordering. Let 
M\(X) be the set of all probability Radon measures on X. The following fact is 
well-know [7, Sect. 6]: 

(1) If n is a bounded linear functional on C(X) such that \\n\\ =/x(l) = 1 then 
fi is positive, i.e. i i^M\(X). 

Let K be a compact convex subset of a locally convex Hausdorff real space B 
and let B' be the topological dual of B. Let ii£M\(K). Then (see [7, Sect. 1 and 
Sect. 4]): 

(2) There exists a unique b£B such that fi(l)=l(b) for all KB'. (In fact, 
b£K; it is called the barycenter of /x). 

(3) f(b)^n(f) for every convex function f£C(K). 
The inequality (3) is related to the Jessen's inequality (see [1], [4], [5], [6], [10]). 
We shall use these results to prove a Jessen-type theorem similar to Theorem 

5 of F . V. HUSSEINOV [3] and we shall extend (1), (2), (3) by considering a class of 
sublinear functionals studied by V. TOTIK [12] instead of linear functionals ¡i£M\(K). 

2. A Jessen-type theorem 

Let E be a nonempty set and let L be a linear space of real-valued functions 
defined on E\ suppose that the constant function 1 belongs to L. Let M'. L-+R 
be a linear isotonic (i.e., M(f)sM(g) whenever / , g£L,f^g) functional such that 
M ( l ) = l . 
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Let B be a locally convex Hausdorff real space and let i f be a set of 5-valued 
functions defined on Esuch that loF£L for all F££ and all l£B'. Let Se^B 
be such that l(JtF)=M(loF) for all KB' and F£ 

Let K be a compact convex subset of B, let q>£C(K) be a convex function and 
let if . Suppose that F(E)aK and cpoF^L. Denote H={h£C(K): hoF^L). 

The following theorem contains a Jessen-type inequality (see [1], [2], [6], [10] 
and, especially, [3]). 

Theorem 1. a) MF^K and <p(J(F)SM(<poF). 
b) If cp is a strictly convex function then <p (J(F)=M{<p o F) if and only if 

h(JtF) = M{hoF) for all h£H. 

P r o o f . Let us remark that 1 cp£H and l£H for all l£B'. Consider 
A: H-~R, X(h)=M(hoF) for all h£H. Then A is a positive linear functional with 
HA! = 1. Using the Hahn—Banach theorem we deduce that there exists a bounded 
linear functionaln on C(K) such that fx coincides with A on H and ||/i|| =||A||. It 
follows that M =j i ( l ) = l . Using (1) we infer that ^ M \ ( K ) . 

Now let l£B'. Then n(I)=A(/)=M{loF)=I(JIF) and (2) implies that JtF 
is the barycenter of p, hence JtF^K. Using (3) we deduce (p(J?F)^n(q>)=X((p) = 
=M(<poF). 

Suppose now that q> is strictly convex (such a function exists in C(K) if and 
only if K is metrizable) and cp(J/F)=M((poF). Then n(q>)=(p(JiF). By virtue 
of [8, Lemma], fi is the Dirac measure corresponding to JiF. It follows that M(hoF)= 
=A(/J)=nQi)=h(J(F) for all h£H. 

3. Inequalities for sublinear functionals 

Let X be a compact Hausdorff space. Denote by 3~{X) the set of all sublinear 
functionals A: C(X)-*R such that .4(1)= 1, A(-l)=-l and M|| = l (i.e., 
\ A ( f ) m for all feC(X) with l l /IMl). 

V. TOTIK has proved in [12] that if Ae^(X) then A(f)^maxf for all feC(X); 
moreover, if A'is metrizable then for every A £ ^ ( X ) there exists a sequence (xn)n£N 

in X such that A(f)=\\m sup (f(x1) +...+f(x„))/n for all fiC(X). 
We shall extend (1), (2) and (3) replacing M\ (X) by ST{X). 
Example 1. Let ¡i, v£M\(X). Define A{f)= J max (v(f),f(x))dfi(x) for 

all f£C(X). Then A£&"(X). * 

Example 2. Let (v,) be a net in M\(X). Define A(f)=lim sup v {( / ) for 
all feC(X). Then A£ST(X). 
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Although the following extension of (1) is a consequence of Proposition 2 
below, we insert here a direct proof. 

P ropos i t ion 1. Every A£^~(X) is isotonic. 

Proof . Let f,g£C(X), f&g, A(f)>A(g). Then 0^A(f)-A(g)sA(h) 
where h=f—g^0. Let m=—mjn/i. Clearly 0. We have 0 < A ( h ) s A ( — m ) + 
+A(h+m); this yields A(h+m)>m. On the other hand O s A + m s m and ||/i|| = l 
imply A(h+m)^m, a contradiction. 

P ropos i ton 2. A£&~(X) if and only if there exists a nonempty set SaM\(X) 
such that A(f)=sup {p(f): fi£S} for all f£C(X). 

Proof . Let Ae 9~(X) and let S={fx:C(X)-<-R: p linear, fi^A}. Using the 
Hahn—Banach theorem we deduce that A(f)=sup {p(f): for all f£C(X). 
But if then ||/i||=/i(l) = l ; therefore S<zM\{X). 

The converse is easy to prove. 
The following result extends (2) and (3). 

Theorem 2. Let K be a compact convex subset of a locally convex Hausdorff 
real space B and let A£&~(K). There exists a unique nonempty compact convex subset 
Q of Ksuch that A(h)=m&xh for all h£B'. Moreover: 

a) A is linear on B' if and only if Q reduces to one point. 
b) Let Mc.K. Then y i ( / ) s s u p / for every convex function f£C(K) if and M 

only if McQ. 

Proof . By Proposition 2 there exists ScrM\(K) such that A(f)— 
=sup {n(f): niS} for all feC(K). Let C=conv{b(fi):fx£S} where b(p) is the 
barycenter of pi. Let Q be the closure of C. If h£B' we have A(h)= 
=sup {)u(h): /i€5"}=sup {h(b(fi): [i£S}=sup {h(x): x£C}=maxh. The uniqueness 
of Q is an easy consequence of separation theorems. 

a) Clearly A is linear on B' if Q reduces to one point. Conversely, let A be 
linear on B'. For h£B' we have maxh=A(h) = — A(— h)= — max (— /i)=mjn h. 
It follows that every h £B' is constant on Q, hence Q reduces to one point. 

b) Let MczQ and let f£C(K) be convex. Then A(f)=sup {p(f): 
s sup {/(¿>0)): /i€5'}=sup {f(x): x 6 C } = m a x / s s u p / . 

Conversely, suppose that A ( f ) == sup f for every convex function f£C(K). 
If t£M and t^O, there exists hdB' such that /t(/)>max h. We have sup A s 
^h(t)>maxh=A(h)^suph, a contradiction. Hence M c Q . 

i 
Example 3. Let <a€[0,1], A: C[0, A ( f ) = f m a x ( f ( a ) , f ( x ) ) d x . Then 

A€f<[ 0, 1]) and Q=[( 1 - ( 1 —a)2)/2, (1 +a2)/ 2]. 
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Example 4. Let K=[0, l]2 and 

A = supj^-(e ( 0 ,o)+ e(o,i))' -^(£(i,o) +e(i,i))} 

where e, is the Dirac measure corresponding to t. 

Then 

Example 5. Let l]2 and 

A = sup|-^(e(0>0)+e(i;i)), y (e(o,i)+ £(i,o))}-

Then Q reduces to the point , — j . 

R e m a r k 1. Let n£M\(K) and let b=b(/i). For g£C(K) define 

B«g(P) = / g ( ( t i + - +tn)ln)d((i® ... ..., /„). 
K" 

(B„ is a Bernstein—Schnabl type operator; see [11] and the references given there.) 
For every convex function f£C(K) we have the following improvement of (3): 

K f ) = B 1 f ( b ) ^ B i f ( b ) ^ . . . ^ f ( b ) 

and lim BJ(b)=f(b) (see [11]). In [9] it is shown that ii(f)=f(b) if and only i f / 
is affine on the closure of conv (supp n). 

R e m a r k 2. Let now K be a Choquet simplex. Let ii£M1
+(K) and b=b(fi). 

Let sb be the Dirac measure and let ¡xb^M\(K) be the unique maximal measure 
which represents b. Then for every convex function f€C(K) we have (see [7, Sect. 9]): 

(4) Bb(f) ^ K f ) ^ !<*(/)• 

For K=[a, b]<z.R inequalities similar to the second inequality are studied and 
generalized in [1] and [6], Lemma 1. 

Let S<zM\(K), A= sup{/K fi£S}. Let f£C(K) be convex. Then 
A(f)=sup {//(/): sup {fi„(/): b£Q}. Hence 

(5) sup(6 6 ( / ) : b£Q}sA(f)s s up { ( i„ ( f ) : b£Q}. 

This is an extension of (4). 
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