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On composition operators

ASHOK KUMAR

" 1. Preliminaries

Let (X, &, 1) be a o-finite measure space and let ¢ be a measurable non-singular
(2®~1(E)=0 whenever A(E)=0) transformation from X into itself. Then the
composition transformation. Cy on L*(X, &, A) is defined as

Cof = fod . for every_ fEL¥(X, % 2).

In case C,, is a bounded operator with range in L?'(X, &, A) we call it a composition
operator. In this paper we generalize the Theorem 1 [11] and prove that the result is
also true in case (X,%, 1) is a o-finite standard Borel space. In the subsequent
sections we characterize composition operators with ascent 1 and descent 1 and
give a criterion for partial isometry and co-isometry composition operator. In the
last section hyponormal composition operators on [2(N, &, ), the square summable
weighted sequence space, have been characterized and a necessary condition for
C, to be hyponormal on L2(X &, 1) is given, where (X & 1) isa standard Borel
space.

 Let B(Lg(l)) R(C.,,), R(C.,,)l denote the Banach algebra of all bounded Imear
operators on L2(2), the range of C,, and the orthogonal complement of the range
of C, respectively. We denote by :

_ diemt - d)(Pod)?
f()-f—dr and g, ___dl_

the Radon—leodym derivative of the measure A9~ and l( do <1>)‘ with. respect
to the measure A, respectlvely The symbols X, and X’ will stand for the-set
{x: fo(x)=0} and {x: go(x)=0}. respectlvely The multlphcatlon operators induced
by fo and g, are denoted by M, .and M, .
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If E and F are two measurable sets, then “E=F" will indicate that their sym-
metric difference is of measure zero. We denote the characteristic function of a
measurable set E by yg.

Definition. An operator 4 on a Hilbert space H is called a Fredholm operator
if the range of A is closed and the dimensions of the kernel and co-kernel are finite.

Definition. A standard Borel space X is a Borel subset of a complete separable
metric space T. The class & will consist of all the sets of form XM B, where Bis a
Borel subset of T.

2. Fredholm composition operators

Theorem 1. Let (X,%, ) be a o-finite non-atomic standard Borel space and
Co€B(L*(%)). Then Cy is a Fredholm operator if and only if it is invertible.

Proof. If C, is invertible, then Cy is clearly a Fredholm operator.

Since Ker Cp=Ker C3Cop=Ker M, [17, p. 82], where M, is the multiplica-
tion operator induced by £y, and X is a non-atomic, the nullity of C,, is either zero
or infinite. Suppose Cg is a Fredholm operator. Then, since Cy is one-to-one with
closed range, to prove that C, is invertible it is enough to show that @ is one-to-one
a.e. [18, Theorem 2; 13, Corollary 2.4]. Suppose @ is not one-to-one. By Corollary 8.2
[22] there exist two Borel sets ¥; and Z, such that ¢ is one-to-one on ¥; onto Z, and
A(X\Y)#0. Now (X\Y,) is a Borel set. Let @, =®|(X\\Y;). Again by Corollary
8.2[22] we get two Borel sets Y,& (X\Y)) and Z; such that ¢ is one-to-one on ¥,

onto Z,. Since X is a non-atomic, we can write ¥,= U E, such that 0<A(E,)<ee,

E,NE,=9 whenever n#m, and A(,N&~ 1(<15[E,,]))¢0 From the fact that
R(Co)=L*(X, 2~(¥), 2) [13, Lemma 24], where &~ (&)={P"YE): Ec¥},
follows that, for every nEN, there exists K,€®~'(&#) such that (xg,xx );éO
This shows that y_does not belong to R(Cp)t. Since AF;N@~ l(<15[E,,]));vfﬁ0 we
have E,#®1(E) "for any E€¥, and hence yg can not belong to R(Cyp) also.
Let L*()=R(Cy)* ® R(Cy). Consider {yg}= { fot8g:}, where f,€R(Cg)*t and
£.€R(Cp). Inview of the remark [22, page 3] D[E,)={P(x): x€E,} is a Borel set.
Let F,=®"(®[E,]). Since d|Y; is one-to-one, {F,} is a disjoint sequence of sets.
We claim that 8= XF,- Suppose 8n#&n" XF, Then A(G\F)=0, wheer G,=
={x: g,(x)#0}. Since '
1—g,(x .

£ = {— g.,(x) for x€E,

g.(x) for x€EX\E,.

We can find a set G"S(G,\F,) belonging to the s-algebra ®~1(&) such that
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(fas X6 #0 which is a contradiction. Thus g,=g,-xs, . Since
<f;n fm> = <XE,,_gm XE,.."'gm) =0 whenever n# m,

{f.} is an infinite orthogonal sequence in R(Cp)* which contradicts the assumption
that dim R(Cy)* is finite. Hence & is one-to-one (a.e.). Thus C4 has dense range and
hence Cy is invertible.

3. Ascent and descent of a composition operator

Definition. Let 4 be an operator on a Hilbert space H. Then the ascent a(A)
of A is the least non-negative integer such that Ker 4*=Ker 4**! for all k=a(4)
and the descent 5(A) of A4 is the least non-negative integer such that R(4*)= R(A*+Y)
for all k=&(A), where R(A) is the closure of the range of A.

We shall prove the following theorem which characterizes composition opera-
tors with ascent 1.

Theorem 2. Let Cqo€B(L*(X,¥, A)). Then Cgq has ascent 1 if and only if
M Pod) YE)=0 implies AO~YE)=0 for Ec¥.

Proof. Since Cy is a composition operator, there exists an M < such that
A9~} (®~(E)) = MAP~Y(E) = M*A(E)

for every E€% [20, Theorem 1]. This shows that the measure A(PoP)~! defined as
A(@o®)~1(E)=19~1(P~1(E)) is absolutely continuous with respect to the measure

2, and consequently for every E€% we have A(Pod) Y(E)= ! godA. Suppose

AD~YE)=0 whenever A(PoP) (E)=0. Then, by absolute continuity of A(PoP)~1
and the equation AP~1(E)= f Sod?, it follows that X,=X; and hence by [17,
E

page 82] we conclude that
KerCy = Ker M, = L*(X,) = Ker M,, = Ker C.

This shows that Cy is of ascent 1. ‘
Conversely, suppose Ker Co=Ker C3. Since Ker Co=L*(X,) and Ker C}=

=L2(X}), it follows that X,=X,. Since Ad~}(E)= i[ fodA and A(Pod)"YE)=
= [ gdl, it follows that A(®o®)~*(E)=0 implies A$~(E)=0.
E

Theorem 3. Let X be a 6-finite standard Borel space and let Co€ B(L*(X, &, 4)).
Then the operator Cgq has ascent 1 if and only if ®[X1]12X,, where ®[X}]=
={€D(x1)3 XIEXI} and X1=X\X0,'
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Proof. Suppose ®[X,12X,. .Then, since Ker Co=L%(X,) and L3%(X)=
=L*(Xo) ® L*(X,), every feKer Cj can be written as

f=f1+gl9
where f,€Ker C, and g,€ L%(X;). Since
81000d =Chg, =C%f=0 and O[X,]2 X;,

it follows that g;=0 a.e. on X;. Hence f=f;. Thus Ker C3SKer Cq. The inclu-
sion otherway is true in general for every operator. This shows that Ker Cy=Ker C3.

" Conversely, suppose ®[X,] 2 X,. Now, if E is a measurable subset-of X;\®[X;]
of non-zero finite measure, then -C3x;=0. Since E is a subset of X, it follows that
Co xE;éO which implies Ker Cy5<Ker C%. Hence the proof of the theorem i§
completed. L ' '-

"Corollary 4. Let CocB(IX(N, %, 1)). Then Ker Co=Ker C% if and only if
(Po®)[N]=P[N], where ®[N] is the range of ®.

Exarhple 5. Let X=R, the set of real numbers, and let #(x)=|x|, x€R.
Then C, is a composition operator with .ascent 1 on L2(R).

- In the following theorem, we shall characterize composition operator with
descent 1.

Theorem 6. Let Co€B(L?*()). Then R(Cd,) R(C2) ifandonly if &=1(&F)=
=(Po®)~U(SF), where & is the o-algebra of measurable subsets of X. ' ,

Proof. Suppose @~ }(¥)=(Po®) (). Then, since the ranges of Cy and
Cg are dense in L2(X, @Y%), 1) and L*(X,(Po®)~(¥), ) respectively [13,
Lemma 2.4], it follows that R(C,)= R(C3).

Conversely, suppose m ='IT(C_3,). Then

(X, 27H), 2) = L(X, (S0 B)HF), A).

We claim that &-1(%)= (d50 d)~ 1(.9) Suppose P-YF)=(PoP)~(&). Then,
since (Po @)1 (&) is a subfamily of ®~1(&), there exists an element E=@~(F)
which does not belong to (Po (15'1(.?,). _Since,X_ is o-finite, we can write

X = UX: IL_J1<P‘1(X) = U(‘PO‘P) ‘(Xz),

where {X,} isa dlS]Olnt sequence of sets of ﬁmte measure. Let F= E N(Pod)~1(X)).
Then F, does not belong to (Pod~1(F) for some -icN or otheswise E will be in
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(Bo®)~1(¥). This shows. that ;4 R(C3) for that i€N; which is-a contradiction.
Thus the proof of the theorem is complete.
In the following theorem we CharacterIZe composmon operators ‘with descent

Y

1 in particular.case. Lo e L e e e

‘Theorem 7. Lét X be a o- finite standard Borel space and’ lef Cq,eB(Lz(,l))
Then - R(C,,,)—-R(C R(C%) if-and only if ®|X, is.injective a.e., where X;={x: fo(x)¢0}.

Proof. Since R(4)2R(4? for any bounded operator 4 on a Hllbertrspace,
it follows that R(CO)DR(CI‘;,) We will show that if @|X] is m_]ectlve a.e., thén the
equality prevails. Suppose xEER(C,,). Then there exists a measurable subset FE X;
such that E=®~!(F). Since P|X, is injective a.e. and X is a o-finite standard Borel

space, ®[F] is a Borel set and ®[F]= U E, for some disjoint sequence {E,,} of

‘measurable subsets of ﬁmte measure. Con51der the sum

Eno(bocb = Z' CixE,-

."'Ms"'

It is easy to see that the sum converges to xg a.e. By the Lebesgue dormnated conver-
gence theorem it converges to xg in L*-norm. Hence y; belongs to the closure of
R(C3). From this it follows that all simple functions which belong to R(Ca,) also
belongs to R(C ). This is enough to establish the equality R(C0) R(C ).
Conversely, suppose ®|X; is not injective a.e. Then, since X; is a Borel set, by
Corollary 8.2 [22], there exists two Borel sets 4 and Z such that &, =®|X, is one-to-
oneon Aonto Z, Ad; 1(XI\Z) 0 and A(X;\4)#0. Let FS(X,\4) bea measur-
able set of finite measure such that l(Aﬂ(P 1((15[F]))¢0 Then o-1r)=ColXr€
€R(Cyp). We claim that -y -does not belong to R(C“) If 3e-1n€ER(CE)=
=L*(X, (90 ®)"(¥), 7), then there exists E€¥ such that @~} (F)=(®od)~Y(E)=
=P~ HG)=P Y GNA)U S~ l(G\(GﬂA)) where G=9@~Y(E). Since A(4N
N&-1(P[F])>0, we can conclude that A(GNA)=0, and hence l(tb 1(GﬁA))--
= f /o720 which is a contradiction.
G4 o e
Corollary 8. Let inf{A(n): néN}>c=0 and sup {1(n): ncN}<eo and let
C¢.€B(12(N &, 2)). Then R(Co)=R(C%) if any only if ®|®[N] is. one-to-one.

. Example 9. Let X=[-1, 1] and A be the Lebesgue measure on the Borel
subscts of X. Let &(x)=|x|. Then Cg€B(L*(A)) and R(Cy)=R(C3).
" We shall give an example of a composmon opeartor when R(Cq,)#R(C )
but R(Cgq)=R(C3).

‘Example 10.. Let X=R, and let & be the g-algebra of Borél'subsets of R
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wint 4 as the Lebesgue measure. Define the measurable function & as follows

1/x if x¢€]0, 1,
O(x) =1—-x—m—2) if x€[l, [ and n=x<n+l, n=123, ...,
x—(n—1) if x€]—e,0] and n=—-x<n+1, n=0,12,....

This & induces a composition operator C, on L*(R). Since x;-;,¢R(C3) and
11-1,00€ R(Co), it follows that R(Cy)#R(C}). But, since (Po®)~1(F)=d"1(¥),
we have R(Cp)=R(Ch).

4. Partial isometry and co-isometry

Definition. An operator 4 on a Hilbert space is said to be a partial isometry
if it is an isometry on the orthogonal complement of its kernel.

Theorem 11. Let Cy be a composition operator on L¥(X,¥, 2). Then Cq is
a partial isometry if and only if f, is a characteristic function.

Proof. Suppose Cq is a partial isometry. Then Cy=CoC4Cs, [8, Corollary
3, Problem 98] and it follows that C}Cy=CiCoC3Cs which is equivalent to
M, =M, -M, =M. From this we conclude that f, is a 9haracteristic function.
Conversely, suppose f;, is a characteristic function. Then, since Ker Co=
=L*(X,) and (Ker Cg)t =L%(X,, 4, ), where X;=X\X, and #={ENX;: Ec¥},
it follows that
CoCof =M, f=f forall fe(KerCg)t.

This shows that Cy is an isometry on the orthogonal complement of its kernel.

Corollary 12. Let Co€B(I*(N)), where B(N)={{a,}: Z|a,|*<}. Then C,
is a partial isometry if and only if @ is one-to-one.

Proof. Since

Joln) = %,)92 = 40-1(n),

the Corollary follows.
Example 13. Let X=[0,«[ and 1 be the Lebesgue measure on the Borel
subsets of X. Let &.(x)=x+c¢, where c£X. Then C¢°€B(L2(/l)); Jo(x)=1, for

c=x<e, and fy(x)=0, for 0=x<c. Hence by the above theorem {Co,: ceX}
is a family of partial isometries on L2(X).

Definiton. An operator 4 on a Hilbert space is called a co-isometry if AA*=1I.
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Theorem 14. Let Co€B(L?(1)). Then Cy is a co-isometry if and only if Cy
is onto and fyod=1 a.e.

Proof. Since, for every f€ R(Cy),
[=CoCof=CoCiCo8 = CoMsg=Co(fo-8) = foo?-f,
where Cpg=f, Cg is is co-isometry if and only if Cg is onto and fro®@=1 a.e.

Corollary 15. Let Co€B(I*(N)). Then the following statements are equivalent:
(i) Cy is partial isometry,

(ii) Cy is co-isometry,

(iii) Cy is onto,

(iv) & is one-to-one.

5. Hyponormal composition operators

Definition. An operator A on a Hilbert space H is called hyponormal if
A*A— AA*=0.

In [9] hyponormal composition operators have been studied but it remains an
open problem to find measure theoretic condition which is both necessary and
sufficient for the hyponormality of C.

Lemma 16. Let Cq be a composition operator on L*(2). Then Cyg is hyponormal
only if Cq is one-to-one.
Proof. Suppose Cg is hyponormal. Then
KerCoCq 2 KerC3Cy = Ker Cq = L2(Xy).

Since Ker CoCh =Ker Ch =R(Cy)* =L*(X, $71(¥), 1)*, then, for every measur-
able subset E of X, of non-zero finite measure, there exists an element F in & such
that

(xe> Coxr) = (Xes Xo-1y) # 0,

which is contradiction. Thus it follows that the measure of X, is zero. This shows
that C, is one-to-one.

Corollary 17. Let Co€i2(N, &%, 2). Then Cq is hyponormal only if ® is onto.
Lemma 18. Let Co€B(IX(N, ¥, 2)). Then

___Mn
©297Y(d(n))

€n Xo-1 @yt el’l ’
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where e, is the characteristic function of {n}, and
ec(P(N, o~1(F), )L, ¢-1(F) = {~Y(E): Ec¥).

Proof. Since : ' '

I2(N, &, A) = R(Co)® R(Cg): = Iz(N, (), A)ea(lz(N, o1(9), 1)L,
e, admits the form ‘
. o €y = Clo-yomytens €ER(Ce)t,
and it follows that :
. €n = € —Clo-Y(om)-
Since ¢)g-1(pm) L €

(CXo-10m> € — CXo-1 ) = 0>
which implies that
An)

‘T 7o (0m)

This completes the proof of the Lemma.

~ Using the notation .
A01(n)

S = W’ _

C3, the adjoint of Cy, can be expreséed as follows:
A(n)
AP~ (D(n)

___
A0~ (o(n)
M MeTem) am)
= ,{Q'l(¢(n)) A(@( )) *Aom = )@(n) X(D(n)

___A(n
- A07Y(0(n)

Mn)
161 (® (n))

Cien= C;[ X¢-'(¢(n))+e::] CiColom =

Jor Xomy = Joo ®(N) - Xom =

The proof of the following theorem is analogous to the proof of the Propos1t10n
11.5[2].

Theorem 19. Let Cd,EB(Iz(N .9’ ). Then Co is hyponormal if and only lf
P is onto and : .
(A(m))?
C med1m AP (m) T
Proof. Suppose C, is hyponormal. Then by Corolllary’ 17 ¢ is onto. Let
¢, be the subspace spanned by {e,},co- -~y fe {, and f=2c.e,. Then

J1/o0dh = (Cof; Cof) = (51, Co1Y = (C5 3 tnms C3 3 Cmem

= A(n).
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and thus, by the above computation,

2 - A( m) | ( ) |
flfl dAQ <2 Cm lQ(m) Q(m)’ 2 m ).Q(m) O(m)>

This implies

) P U
/o = | ca%}% A = g |2 end(m)f! = o K HET Whio-af'

where
di

h= e

Since the innerﬁproduct with hltﬁ‘l(n) in LZ(N, &, A®~ 1) induces a linear functional,

2 A(m))?
Am) = [hid (m)l3e-1 = 2( 1;"1"() )) AB = (m) '=",€,,,2.,(,,,—z(q>(—'72n)'

Conversely, suppose the hypothesis of the theorem holds. Then
<Cocof N =(CafiCaf)= <Cd>26 €, C3 2 Cn e> =

y .
= <2 CnT(:)‘Xo(n)a 2 Cn %X@(n)> =

) A i
—<§ i€d>2':(n) () ?:ewzl(n) '1‘15(')

- Z )'(”) lew l(")c,/l(i)| - ?Kﬂ?- (n)f Wh>zo-;
= Z 1167 (M)l%o-1 = | flfo-2 = (Cof. Cof) = (CiCof, /)

which shows that Cq is hyponormal.

Let X be a o-finite standard Borel space and X be the maximal subset of X
such that =Y B(xX)NX\{x)))#=P for x€X,. Let X,=d[X;]={P(xy): x,€X1}.
Then X, is a Borel set [22, page 3). Let fy(x)=c, for x€ X{", where {X{} is a disjoint
sequence of sets such that |J X” =X, and let Y”=0-1(X™).

In the following theorem we consider measurable transformation ¢ on a o-
finite standard Borel space such that f; satisfies the above property and find necessary
condition for Cg induced by such @ to be hyponormal which would explain f,=
=fpod [9 Theorem 9, Example 16] is not a necessary condition for hyponormality
of Co Lo - : . E
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Theorem 20. Let Cg4 be a composition operator induced by above type measur-
able transformation. Then Cg is hyponormal only if

Z—A(E'_)__ o n) .
Ej fodd = ——= @@ Ef foo®dA, EcCY™

and
fo(X) = fooP(x) ae on xeX\X:,

where X, is the maximal subset of X, o-finite standard Borel space, such that
YD (x)NX \{x) =8 for x€X;.

Proof. It follows similarly as in Lemma 18 that

A(E)

X = —l¢_1(¢(E)) Xo-1oE) + 8> gER(C'¢).L, ECYa(n)

and
A(E) A(E)

Coie = WE-)—)—C;C¢XQ(E) = mfo * Xo(E)-

Since Cg, is hyponormal, then for Ec Y™
A
Efﬁ)dl = {C3Coxes x£) = CoClXe> XE) = T_l(é)—(i‘)‘)' (fooPXo-1 o> XE) =
AE) AE)
4 Sl &y, = —— @ dA.
).¢_1(¢(E)) <.ﬁl° XE XE> }.Q_l(¢(E) E/-ﬁ)o

If E={x:f,(x)<fooP(x), xe X\ X;} has a positive measure, then for a finite set
FcE.

[ £odh = (C3Cote, 15) < [ fr0®dh = (CoCir: e
F . F )

which is a contradiction. This proves the theorem. :

The above theorem explains why the function in Example 10 [9, p. 131] does
not induce hyponormal composition operator. '

Since in Example 10 [9, p. 131]

A[(, 3/2))
dl=1/4-12=1/8 < ddl =
tl,éll;lﬁ) A9~ (2(1, 3/2]] u.ia//‘zlﬁ)o
__» _

C, is not hyponormal.
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