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On composition operators 

ASHOK KUMAR 

1. Preliminaries 

Let (X , i f , A) be a tr-finite measure space and let <P be a measurable non-singular 
(?.<P~1(E)=0 whenever A(£)=0) transformation from X into itself. Then the 
composition transformation C® on L2(X, SP, A) is defined as 

C0f = fo<P for every f^L\X,Sf,X). 

In case C0 is a bounded operator with range in L2(X, Sf, A) we call it a composition 
operator. In this paper we generalize the Theorem 1 [11] and prove that the result is 
also true in case (X, Sf, A) is a c-finite standard Borel space. In the subsequent 
sections we characterize composition operators with ascent 1 and descent 1 and 
give a criterion for partial isometry and co-isometry composition operator. In the 
last section hyponormal composition operators on /2(N, A), the square summable 
weighted sequence space, have been characterized and a necessary condition for 
CQ to be hyponormal on L2(X, Sf, A) is given, where (X, Sf, A) is a standard Borel 
space. 

. Let B(L2(X)), R(C0), RiCJ-1 denote the Banach algebra of all bounded Jinear 
operators on L2(X), the range; of C0 and the orthogonal complement of the range 
of C 0 respectively. We denote by 

' dXQ-1 , dX(4>o<P)~x 

= ~dT~ 3nd g°= dX 

the Radon—Nikodym derivative of the measure A<2>_1 and A(<fo4>)_1 with respect 
to the measure A, respectively. The symbols X0 and X'Q will stand fot the set 
{x:/0(*)=0} and g0(x)=O} respectively. The multiplication operators induced 
by fa and g„ are denoted by Mfo and M^. 
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If E and F are two measurable sets, then "E=F" will indicate that their sym-
metric difference is of measure zero. We denote the characteristic function of a 
measurable set E by %E-

Def in i t ion . An operator A on a Hilbert space His called a Fredholm operator 
if the range of A is closed and the dimensions of the kernel and co-kernel are finite. 

Def in i t ion . A standard Borel space X is a Borel subset of a complete separable 
metric space T. The class Sf will consist of all the sets of form XC\B, where B is a 
Borel subset of T. 

2. Fredholm composition operators 

Theorem 1. Let (X,6f, A) be a a-finite non-atomic standard Borel space and 
B(L2(X)). Then C0 is a Fredholm operator if and only if it is invertible. 

P r o o f . If C0 is invertible, then C0 is clearly a Fredholm operator. 
Since Ker C0=Ker C% Q , = K e r Mfo [17, p. 82], where Mfo is the multiplica-

tion operator induced by / 0 , and A'is a non-atomic, the nullity of C0 is either zero 
or infinite. Suppose C0 is a Fredholm operator. Then, since C0 is one-to-one with 
closed range, to prove that C0 is invertible it is enough to show that $ is one-to-one 
a.e. [18, Theorem2; 13, Corollary 2.4]. Suppose <P is not one-to-one. By Corollary 8.2 
[22] there exist two Borel sets and Zx such that <P is one-to-one on Yx onto Z2 and 
AfTVjTiO. Now (A'Vi) is a Borel set. Let <PX = ^ ¡ ( X ^ ) . Again by Corollary 
8.2 [22] we get two Borel sets ^^ ( -^X^ i ) and Z2 such that <P is one-to-one on Y2 

oo 
onto Z2 . Since A'is a non-atomic, we can write F2 = U En such that 0<A(£'„)-=:°°, 

nsl 
E„f)Em=& whenever n ^ m , and A ^ D ^ - ^ [ J E , , ] ) ) ? ^ . From the fact that 
R(C0)=L2{X,^-\Se),X) [13, Lemma 2.4], where Ee^}, it 
follows that, for every «6N, there exists A ^ i - 1 ^ ) such that (xE , XK 
This shows that XE„ does not belong to R(C^. Since A f l $~ 1 ( [ £ „ ] ) ) ^ 0 , we 
have En7i<P~1(E) for any E^Sf, and hence XE can not belong to R(C0) also. 
Let L2(X)=R(C0)±®R(C0). Consider {/£n} = {/„+g„}, where fndR(C0)^ and 
g„£R(C0). In view of the remark [22, page3]" $[En] = {<t>(x): x£En} is a Borel set. 
Let = <P-1(<P[.E'(I]). Since <P\Y2 is one-to-one, {F„} is a disjoint sequence of sets. 
We claim that gn=g„-xFn- Suppose gn^gn-xFn- Then X(Gn\Fn)?iO, wheer G„ = 
= {x: Since 

f l — f o r xdEn, 
U x ) for x£X\Ett. 

We can find a set G'Q(G„\F„) belonging to the a-algebra such that 
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( f n ^ X c ) ^ which is a contradiction. Thus g„—gn-XFn- Since 

</„. fm) = (XE„ - gn, XE
M
 -gm) = 0 whenever n * m, 

{/J,} is an infinite orthogonal sequence in R(C<p)L which contradicts the assumption 
that dim RiC^)-1 is finite. Hence <f> is one-to-one (a.e.). Thus C 0 has dense range and 
hence C® is invertible. 

3. Ascent and descent of a composition operator 

Def in i t ion . Let A be an operator on a Hilbert space H. Then the ascent a (A) 
of A is the least non-negative integer such that Ker Ak=Ker Ak+1 for all k^a(A) 
and the descent 3(A) of A is the least non-negative integer such that R(Ak) = R(Ak+1) 
for all k^S(A), where R(A) is the closure of the range of A. 

We shall prove the following theorem which characterizes composition opera-
tors with ascent 1. 

Theorem 2. Let Ca>£B(L2(X,S^ A)). Then C0 has ascent 1 if and only if 
A($o$) - 1 (£ )=0 implies X<P~\E)=0 for E<i9>. 

Proo f . Since is a composition operator, there exists an such that 

X0~
1

(0~
1

(E)) S MX<P~\E) =§ M
2

X(E) 

for every [20, Theorem 1]. This shows that the measure X(<Po<P)~1 defined as 
X(4>o(E)=X<P^1('P~1(E)) is absolutely continuous with respect to the measure 
X, and consequently for every E££f we have X($o$)-\E)= fg0dX. Suppose 

X<P~1(E)=0 whenever A($o3>)_1(.E)=0. Then, by absolute continuity of A(<Po$)-1 

and the equation X<P~HE)= f f0dX, it follows that Xa=Xg and hence by [17, 
E 

page 82] we conclude that 

KerC® = Ker M
F O
 = L

2

(X
0
) = KerMeo = K e r C | . 

This shows that C 9 is of ascent 1. 
Conversely, suppose KerC®=KerC^. Since Ker C,J,=L

2

(X
0
) and Ker 

=L
2

(Xq), it follows that X
0
=X'

Q
. Since X<P~1(E)= f fadX and A(<f>o 

= / g 0 d X , it follows that X(^oi>)~1(E)=0 implies X4>~1(E)=0. 
£ 

Theorem 3. Let Xbe a a-finitestandardBorelspace and let C0£B{L2(X, i f , A)). 
Then the operator C0 has ascent 1 if and only if 4>[X1]^X1, where <&[Xx] = 
= x ^ X j and X1=X\X0. 
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Proof . Suppose « P ^ J i Z i . Then, since KerC„=L*(X 0 ) and L2(X) = 
= L2(X0)®L2(Xl), every /i~Ker C2 can be written as 

f = fi+gi, 

w h e r e K e r C® and g1£L2(X1). Since 

ftoíoí = C%gl = C S / = 0 and 

it follows that g !=0 a.e. on Xt. Hence f=f1. Thus Ker C%gKer C0. The inclu-
sion otherway is true in general for every operator. This shows that Ker C 0 = K e r C j . 

Conversely, suppose Now, if E is a measurable subsetof A W i ^ ] 
of non-zero finite measure, then C |x E =0 . Since E is a subset of X1, it follows that 
CdXe^O, which implies Ker C05¿Ker C®. Hence the proof of the theorem is 
completed. 

Corol la ry 4. Let ^ /)). Then Ker Q , = K e r C% if and only if 
(4>o$)[N] = #[N], where i>[N] is the range of 

Example 5. Let A"=R, the set of real numbers, and let 4>(*) = |JC|, 
Then CQ is a composition operator with ascent 1 on L2(R). 

In the following theorem, we shall characterize composition operator with 
descent 1. 

Theorem 6. Let C9$B{L* (A)). Then R(C0) = R(C%) if and only if <¡>-\<f>)= 
= (<Po<P)~1(Sf), where SP is the o-algebra of measurable subsets of X. 

Proof . Suppose Then, since the ranges of C 0 and 
CJ are dense in L\X, Q-^ST), A) and L2(X, (<¡>o<P)-\Sf), A) respectively [13, 
Lemma 2.4], it follows that JR(C®) = R(C 

Conversely, suppose R(C0) = R(C%). Then 

L\X, A) - L\X,{<¡>o<P)-i(<?), A). 

We claim that Suppose ^ ( ¿ ^ ( ¿ o í ) - 1 ^ ) . Then, 
since is a subfamily of there exists an element E=<P~1(F) 
which does not belong to ($o<P~l(5p). Since X is c-finite, we can write 

* = U = Ü = ü ¡=i >=i ¡=i 

where {A',} is a disjoint sequence of sets of finite measure. Let Fi=Ef)(0o4>)~1(Xi). 
Then Ft does not belong to ($oQ-^SP) for sonie fgN or otheswise E will be in 
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( ^ o ^ ) " 1 ^ ) . This shows that /F |$K(C|) for that /^N, which is a contradictiotf. 
Thus the proof of the theorem is complete. 

In the following theorem we characterize composition operators with descent 
1 in particular case. ' •. V «! 

Theorem 7 . 'Let X be a a-finite standard Borel space and lei C0^B(L2(X)). 
Then R(C0) = R(C0) if and only if <P\Xx is injective a.e., where = fQ{x)^0}. 

Proof . Since R(A)^±R(A2) for any bounded operator A on a Hilbertrspace, 
it follows that R(C0)^R(C%). We will show that if <P\Xx is injective a.e., then the 
equality prevails. Suppose xE€.R(C9). Then there exists a measurable subset FQXx 

such that E=<P~1(F). Since 0\X± is injective a.e. and Xis a c-finite standard Borel 
oo 

space, <P[F] is a Borel set and <&[F]= U E„ for some disjoint sequence {E„} of 
n = l 

measurable subsets of finite measure. Consider the sum . 

. 2 X E „ O<PO$= 2C%XE„-n=l >1 = 1 

It is easy to see that the sum converges to XE a.e. By the Lebesgue dominated conver-
gence theorem it converges to Xe in I<2-norm. Hence y_E belongs to the closure of 
R(C%). From this it follows that all simple functions which belong to R(C0) also 
belongs to R(C%). This is enough to establish the equality R(C0) = R(C0). 

Conversely, suppose <P\Xx is not injective a.e. Then, since Xx is a Borel set, by 
Corollary 8.2 [22], there exists two Borel sets A and Z such that is one-to-
one on A onto Z, A$~ 1 (Z 1 \Z)=0 and ¿(A^VO^O. Let FQ(Xx\A) be a measur-
able set of finite measure such that X(AN^_1(^[F]))T I0. Then X®-I(FJ=C,®Xf€ 
^RIC^), We claim that X#--

H
E) does not belong to R(C%). If XO-HF)^R(C%) = 

= L2(X,(<Po<P)-1(Sf),X), then there exists E^P such that 4>-i(F)=($o$yi(E)= 
= <p-i(G)=<I>-1(Gr\A)U<I>-1(G\(Gr)A)), where Since X(Af) 
fl <P~1(<P[F])^0, we can conclude that X(GDA)^0, and hence ?.{4>-1(GC\A))^ 
= f fo?*0 which is a contradiction. 

Gr\A 

Corol lary 8. Let inf{A(rt): n€N}>c=>0 and sup{A(n): n£N}«*> and let 
C0£B(l2(N,^,A)). Then R(C0)=R(C%) if any only if <P\$[N] is one-to-one. 

. Example 9. Let X=[ — 1, 1]. and A be the Lebesgue measure on the Borel 
subsets of X. Let 4>(x)=\x\. Then C0£B(L 2(X)) and 7?(C0)=i?(C2). . 

We shall give an example of a composition opeartor when R(C
0
)T£R(C

0
) 

but K(C^=.R(C|) . 

Example 10. Let Af=R, and let Sf be the <7-algebra of BoreLsubsets of R 
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wint X as the Lebesgue measure. Define the measurable function $ as follows 

1/* if xÇ]0,1[, 
—x—(«—2) if x€[l,°°[ and n s x < «+1 , « = 1 , 2 , 3 , . . . , 
x - (n—1) if *€] — °°,0] and n x < «4-1, « = 0 , 1 , 2 , . . . . 

This $ induces a composition operator C 0 on L2(R). Since X]-i>0]$.R(C|) and 
it follows that R(C0)*R(C%). But, since 

we have R(C0) = R(C2
0). 

4. Partial isometry and co-isometry 

Def in i t ion . An operator A on a Hilbert space is said to be a partial isometry 
if it is an isometry on the orthogonal complement of its kernel. 

Theorem 11. Let C0 be a composition operator on L2(X,SP, X). Then C0 is 
a partial isometry if and only i f f is a characteristic function. 

Proof . Suppose C0 is a partial isometry. Then C0=C0C0C0, [8, Corollary 
3, Problem 98] and it follows that C*C0=C0C0C0C0 which is equivalent to 
M¡=M¡^-Mf=Mf«. From this we conclude that f0 is a characteristic function. 

Conversely, suppose / 0 is a characteristic function. Then, since Ker C0 = 
=L2(X0) and (Ker C0)±=L2(X1,#i, X), where X1=X\X0 and Ed?}, 
it follows that 

C%C0f= MfJ = f for all /e(KerC®)-L. 

This shows that C0 is an isometry on the orthogonal complement of its kernel. 

Corol lary 12. Let C0dB(P{N)), where / 2 (A0={R}: I k l 2 « » } . Then C0 

is a partial isometry if and only if <P is one-to-one. 

Proof . Since 

the Corollary follows. 

Example 13. Let ^= [0 , «=[ and X be the Lebesgue measure on the Borel 
subsets of X. Let $c(x)=x+c, where c£X. Then C0£B{L2(X))\ / 0 ( x ) = l , for 

and / o (x)=0, for O s x < c . Hence by the above theorem {C0 : c(iX} 
is a family of partial isometries on L2(X). 

Defini ton. An operator A on a Hilbert space is called a co-isometry if AA*=I. 
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Theorem 14. Let C0£B(L2(X)). Then C0 is a co-isometry if and only if Co 
is onto and f0 o = 1 a.e. 

Proof . Since, for every feR(C0), 

/ = C * C £ / = C0C%C0g = C0Mug = C0(fo-g) = / 0 o<?. / , 

where C0g=f, C0 is is co-isometry if and only if C0 is onto and / O o $ = l a.e. 

Corol lary 15 .Let C0£B(l2(N)). Then the following statements are equivalent: 
(i) C0 is partial isometry, 

(ii) C0 is co-isometry, 
(iii) C0 is onto, 
(iv) 4> is one-to-one. 

5. Hyponormal composition operators 

Def in i t ion . An operator A on a Hilbert space H is called hyponormal if 
A*A-AA**sO. 

In [9] hyponormal composition operators have been studied but it remains an 
open problem to find measure theoretic condition which is both necessary and 
sufficient for the hyponormality of C 0 . 

Lemma 16. Let C0 be a composition operator on L2(X). Then C0 is hyponormal 
only if C0 is one-to-one. 

Proof . Suppose C0 is hyponormal. Then 

Ker C0C% i Ker C%C0 = KerC 0 = L\X0). 

Since Ker C0C0 =Ker C% =R(C0)±=L2(X, Q'1^), then, for every measur-
able subset E of X0 of non-zero finite measure, there exists an element F in £f such 
that 

(XE, C * X F ) = ( X E , X*->(F)) * 0 , 

which is contradiction. Thus it follows that the measure of X0 is zero. This shows 
that C0 is one-to-one. 

Corol lary 17. Let C 0 O 2 ( T h e n C0 is hyponormal only if $ is onto. 

Lemma 18. Let C0£B(l2(N, X)). Then 

_ X(ri) 
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where e„ is the characteristic function of {«}, and 

Proof . Since 

/2(N, A) = = /2(N, <p- 2 ( ,n A)®(/2(N, «P- 1 ^) , A))^ 

en admits the form 

and it follows that 

Since cx#-i(<nn))-Len> 

which implies that 

e'n — en — cX>f-lw))-

(c/®-•(«(„)), en-ex®->(«(»))) = °> 

X(n) c = 

This completes the proof of the Lemma. 
Using the notation 

C%, the adjoint of C®, can be expressed as follows: 

¿00 -- Hn) f ^ = = i ^ i ^ y - Z o o ^ W - M , ) -

A(n) A4>~1(4>(«))̂  A(w) 
~ A$_1(<P(m)) A(*(n)) '**<"> ~ A<2>(n) 

The proof of the following theorem is analogous to the proof of the Proposition 
11.5 [2]. 

Theorem 19. Let C®£5(/2(N, SP, A)). Then C® is hyponormal if and only if 
<P is onto and 

~ ( W ) 2 
^ A(n). 

P roof . Suppose C® is hyponormal. Then, by Corollary 17., $ is onto. Let 
Cn be the subspace spanned by {em}mi0-Hn), feCn and f=2cm«m- Then 

/ \fo$\*dk = <C®/, C®/> <CJ/, C%f) = (C% 2 cmem, C%Zcmem) 
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and thus, by the above computation, 

/ 1 
X(m) 

Cm X<P(m) e<"(m) 

This implies 

11/11!®-' s 

where 

X(m) 
A$(m) ' m = TWI2" CmA(w)la = 7¿J" 

h = dX 
dXQ-1 • 

Since the inner product with /t |$ - 1(«) in L2(N, 3?, Ai>-1) induces a linear functional, 

Conversely, suppose the hypothesis of the theorem holds. Then 

{CoClf, f ) = {Ctf, C t f ) = (C% Z cnen, C% Z cnen) = 

X(n) „ ^ X(n) „ A 
V = ~ C" X<P(n) 

= (z Z ct 

X®(n)> Z Cn } Z®(n)/ 

A(i) " X(i) e»> 2 2 ci X<P(i) e„ ) = 

= 2 "T7rr| 2 c(A(0|a = 2 i€®-'( n) (I 

n i€®-'(n) A$ (i) " 

w l 
S 2 ll/l^_1(")ll!®-' = 11/11!®-' = <C®/, c®/> = {c%c0f, / ) , 

which shows that is hyponormal. 
Let X be a c-finite standard Borel space and X1 be the maximal subset of X 

such that ^ - ^ ( x y n C ^ X M ) ) ^ f ° r Let X ^ ^ X ^ ^ x ^ : x ^ X J . 
Then X2is a Borel set [22, page 3]. Let f0(x)=cn for xtX^, where {A^00} is a disjoint 
sequence of sets such that and let = Q-^X™). 

n 
In the following theorem we consider measurable transformation $ on a a-

finite standard Borel space such that f0 satisfies the above property and find necessary 
condition for C 0 induced by such to be hyponormal which would explain 
'—.fo0<& [9> Theorem 9, Example 16] is not a necessary condition for hyponormality 
of C®. : 
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Theo rem 20. Let C® be a composition operator induced by above type measur-
able transformation. Then C® is hyponormal only if 

and 
fQ(x) ÈÏ f0o<P(x) a.e. on x£X\Xlt 

where Xx is the maximal subset of X, a-finite standard Borel space, such that 
nC-SVXi*})0 for 

P r o o f . It follows similarly as in Lemma 18 that 

and 

Since C® is hyponormal, then for Ec:Y2
(n) 

FF0dX = ( C % C 0 X E , XE) ^ ( C F C Z X E , XE) = (FOO^-'MS,), XE) = 

H E ) , , X ( E ) F 

= I ^ W M ( / o X E t X e ) = M - W V ) / / o 

If E={x:/O(x)</Oo$(x), has a positive measure, then for a finite set 
FcE. 

F F O D X = < C J C „ Z F , ' XF> < / = ( C ® C S X F . XF)> 
F F 

which is a contradiction. This proves the theorem. 
The above theorem explains why the function in Example 10 [9, p. 131] does 

not induce hyponormal composition operator. 
Since in Example 10 [9, p. 131] 

JLA*"1/4'"2 = 1,8' JL**A' 
1 / 2 5 / 2 - 1 / 2 = 1 / 4 , 

1 + 1/2+1 
is not hyponormal. 
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