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On the coadjoint orbits of connected Lie groups

L. PUKANSZKY

- Introduction. Let G be a connected Lie group with the Lie algebra g, O an orbit,
of positive dimension, of the coadjoint representation and w, the corresponding
canonical 2-form (cf. [2], Proposition 5.2.2, p. 182). It is well-known, that pairs
like (Q; w,) play an important role in many questions of the unitary representation
theory of G. The objective of the present paper is to analyse (O, ®,) by aid of suitable
ideals of g. In more details, given an element g of O, we define B(x, y)=([x, y], &)
(x, y€g). Let m be an ideal of g, different from g. We say, that it is admissible, if
it contains its orthogonal complement, with respect to B, for one and hence for all
g of 0. Such ideals always exist if g is nilpotent, and are of a common occurrence
when g is solvable (cf Section 4 below). Let @ be the projection of O on m*, the dual
of the underlying space of nt. Then m determines a subbundle M of the tangent
bundle T(0) of O. Let O” be the subbundle, orthogonal to M, of the cotangent
bundle T*(0) of 0. O and O’ carry canonically the structure of a principal bundle,
with the structure group m+, over 0; O is acted upon by m+ through translations
and both bundles are trivial. Let s be a global section of O; it determines an isomorph-
ism ¢ of principal m*-bundles over 0, from O onto O’ (cf. Lemma 9 and Lemma
11 in Section 2). We set 71=s"wo€Z3(0) and write p for the canonical projection
from O’ onto O. Let 8 be the canonical 1-form on T*(Q). Our principal result (cf.
Theorem 1 in Section 3) states that -

= o*(p*n—d9).

As an application, in Section 4 we glve a new pr'oof for the existence of global Dar-
boux coordinates in the case, when G is is solvable and O is 51mp1y connected (cf
[5], Theorem 3, p. 208). - oo

The organization of the paper is as follows Section 1 dlscusses the bundle
striucture of O, and Section 2 the relation of O to 0’. Section 3 contains the proof
of the result quoted above, and Section 4 the discussion of the Darboux coodordinates.
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The reader is advised to consult the end of the paper, where some key notational
conventions, employed throughout the paper, are explained.

1. As stated above, the objective of this section is the investigation of some
bundle structure on O. The proof of the principal statement (cf. Proposition) could
be abbreviated by the use of standard results (cf. in particular [1], 16.14.1, p. 87)
but some elements of the proof below will be needed later,

Let G be a connected Lie group with the Lie algebra g. If a is a subspace of g,
ay —g will stand for its orthogonal complement with respect to B, belonging to
some g€ g* specified by the context and a for the orthogonal complement in g*.
We fix an orbit O, of positive dimension, of the coadjoint representation and an

ideal m, admissible with respect to O, that is my cm for one, and thus for all
elements of O. Fixing an element g of O, we set K=G,, and consider O as a C=-
manifold by transfer from G/K. Let us note, that the identity map from O into g*
is smooth. We write 4 for g|m, and set T=G,; 0 has a differentiable structure as
G/T. Let = be the restriction map g*—-m*. We recall (cf. [1], 16.14.9, p. 94) that
with the above definitions (O, 0, n) is a fiber bundle with a fiber difftcomorphic to
T/K. In the following we show that this fibration is identical with the orbit space
of m+, acting on O by translation.

Lemma 1. With the above notation we have: (G,), g=g-+m.

Proof. (i) For n=2,3, ..., let {l;:1=j=n} be some subset of g,=mz. We
claim, that / ... 7,g=0. In fact, let L be the left-hand side. Given an element k¢g,
we put I=(—1)"[/,-; ...[l, k] ...]. Since n=2 and g,cm, I belongs to m, and thus
we conclude that (k, L)=([/,, I}, g)=0 by virtue of /,€q,. Since (G,), is generated
by elements of the form exp (/) (/€g,) we conclude that (G,),g=g+a,g. — (ii)
This being so it is enough to prove that if m is an ideal of g containing g,, we have
me=g,g. Note, that if a is a subspace of m, then az =(ag)t. We have therefore

m = m+g, = (85 = (82)*,
whence g,g=m'. Summing up, we have proved that

(Gh)og = g+m,
From here we can conclude

Lemma 2. The triple (O, 0, ) is a principal m*-space.
Lemma 3. The map t—tg (¢€T) induces a diffeomorphism T/K==g+m*t.

Proof. We recall (cf. [1], 16.10.7, p. 62) that if G acts smoothly.on the C=-
manifold X, and x€X is such that Gx is locally closed, then Gx carries a differenti-
able structure, well-determined by the condition that s—sx be a diffeomorphism
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from G/G, onto Gx. We apply this by replacing X, G, x through g¢* G, and g re-
spectively. To conclude our proof it is enough to note that, by Lemma 1, we have:
Tg=g+m*, which is closed in g*.

Lemma 4. There is a global section s: 0—0O.

Proof. We recall (cf. [1], 16.12.2, p. 82) that if (X, B, =) is a fiber bundle, with
a fiber diffeomorphic to R", then there is a global section s: B—X. Thus it is enough
to note that in our case, by Lemma 3, we have T/K=~g+m<.

For a fixed s€I'(0), we define f: O—g* by f(g)=g—s(n(g)). We can note
at once that £ is smooth, takes its values in m+ and satisfies f(g+v)=f(g)+v for
any g€O and vemt. We set X=0Xm* and define ¥:0—~X by ¥(g)=

=n{(g),/(8)} (¢€0).
Lemma 5. ¥ is a smooth bijection O —X.

Proof. Smoothness being evident, it is enough to show that is bijective. In fact,
(i) Assume, that ¥(g)=¥(g’). Then, in particular, n(g)=n(g’) and thus g’'=
=g+v with some v€mt. We have, however, also f(g)=f(g’)=f(g)+v and hence
v=0 and g=g’. — (ii) We claim that ¥ is surjective. In fact, let {h, w}€ X be given.
Suppose that gcO satisfies n(g)=h. Defining g'=g+w—f(g) we have clearly
¥Y(g)={h, w}. Summing up, we have shown, that ¥ is a smooth bijection O—~X.
We'recall that K=G,, h=¢g|m and T=G,.

Lemma 6. The restriction of the canonical map G/K—O to a fiber of G/K~—~
~G/T isan isomorphism of this fiber to an m*-orbit of O (the latter considered as a
submanifold of g*).

Proof. Suppose that g’€0O is given, and, say, g’=ag (a€G). Then a(T/K)
is the fiber corresponding to g’. It is enough to show that the map t—atg (1¢T)
induces an isomorphism T/K-—+~g’+m<. But, by Lemma 3, the map of loc. cit. (h,
say) from T/K onto g+m* induces an isomorphism and thus it suffices to observe
that

a(T/K)— g’ +mt

a( )I Iﬂ( )

T/IK —5— g+mt,

Lemma 7. With the above notation ¥: O—X is an isomorphism of fiber bundles.

Proof. By Lemma 5, ¥ is a smooth fiber preserving bijection ¥: O—+X and
by Lemma 6, the restriction of ¥ to any fiber in O is an isomorphism with its image.
Thus it is enough to recall (cf. [1], 16.21.2, p. 75) that (in particular) if (X, B, n) and
(X’, B, n’) are fiber bundlesand f: X—+X’ is a fiber-preserving smooth map, then it

10
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is an isomorphism of fiber bundles, if its restriction to any fiber is an isomorphism
with its image. : :

Proposition. (O, 0, n) is a principal bundle with the structure group mt acting
on O by translations.

. Proof. By-what we have seen above, it is enough to observe that ¥ is equ1-
variant with respect to the action of m* on O and X respectively.

2. The objective of this section is to present some material needed in the next
section for the proof of Theorem 1, We continue to assume that O i 1s a fixed orbit,
of positive dimension, of the coadjoint representation and m is an adm1551ble ideal
(cf. Introduction). We start by introducing some notational conventlons 1) Ify
is a left G-space, mcY, and x€g=Lie (G), we set

am(x) = (d/dt)exr’(tx)mlt =0-

leen g€g*, we denote by 7, the canonical translation T(g*) —~g* (cf. [1], p- 22).
Note that we have clearly 7,0, (x) =Xxg. 3) Wlth the above notatlon we can write
for x, yEg
@ (de(x)A0, (1)) = B(x, 7).

We remark that if t ag(x) and v€T,(0), then wo(t/\v) (x, T v) In fact assummg
v= ag(y) we have wq(tA 0)=([x, y],8)= (x, yg8)=(x, 7,v). We denote by 9t the
distribution on O such that t,N,=mg. Let us observe, that if v,€R and 1€T,(0)
is such that T (m)t=0; then ‘@o(tAv,)=0." In fact, assuming t=o0,(x), we have
‘0=T,(n)t=0,(x), whence x€gy=mp Em. 'If v,=d,(y) for a ‘yem we have:
wo(tAv)=([x,y],8)=0 by x€g,. We conclude from all this that there is a map
P: R,~(T,(0))* such that P(v,)(T,(n)f)=we(tAv,) (teT(O)) Writing p: T*((D)—»(D
and pr: T(O)—-O for the canonical projections, we note

“ L REELTHO)
prl ' lp
Q LN 0. .

Let ¢ be a section 0—~O (cf. Lemma 4) and form as loc. cit. f(g)=g—o(n(g))
(g€0). If fis any smooth map- O—-m* we can define F(g)€T,(g*) by 7,F(g)=
=/(g), and note that Fis a vector field on O taking its values in R. In fact, to see
this, it is enough to have- m* Cmg; but this is equivalent to. mg =(mg)tcm or
mg <m, which we assume. All this bemg 0, for gEO we set: (p(g) P(F(g))
we have clearly '

02

T*(0)

T e . . -

- 0.
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Lemma -8. With notation as above, we have for/ gE o and xe

o(g) (a,.(X)) = (x, f (g))

Proof.:Writing t=¢,(x), we obtain-’
, . 8)(on(x)) =-P(F(2)(Ty(n) 1) = wo(t/\F(g)) = (x, S (g))
: ;and thus:. ¢(8)(@(x)=(x; /(8)) (g€ 0, x€ g). Co co

" We denote by M the subbundle of T(®) such that 7, M,,—mh Recallmg, that
X=0xm*, we note that there is a canonical identificatién between M* ‘and X.
In fact, given A€M let us put h=p(A). We define L’ém* by A’'(x)=A(g,(x))
(x€g). This being so, weset ' ®(1)={h, 1’}. Weobservethat & is a bijection MM+ - X.
In fact; if ,®(w)=2()={(h, ,l}, say, we have p, vE(T;,((D)) and p(o,(x))=
=A(x)= v(a,,(x)) (x€g), and thus p=v and & is injective. Let now {h, V}e X
be given. If 0,(x)=0, we have x€g,&m .and hence we can define 1e(T(0))*
by A(o,(x))="4(x) (x€g). In this fashion #(1)={h, '}, and & is ‘surjective. Below
we shall write O for’M+. We can définé'on O’ the structure of a principal mt-
bundle as follows. Given veémt, let A,(v)€(T,(0))* such ‘that A,,(v)(a,,(x))._
=(x,v) (x€g). Then.if AcO’ and p(A)=h, we can set Av=21+4;(v).. We note,
that &(iv)=P(A)v. — We remark that if g€O, then we have: ¢(g)¢0’. In fact,
Lemma 8 implies, that (p(g)(a,,(x)) (= f(g)) (xE g); but by f(g)Eml the rlght-
hand-sxde vamshes for xEm , S

Lemma 9. ¢: 0~ 0’ "is an tsomorphtsm of prmapal ml-bundles over 0:

" Proof. Let ¥: O~X be as in Lemma 5 correspondmsz to the section 0-0
employed in the definition of ¢. To obtain the desired conclusion, it is enough to
note that clearly ®op=¥. - -~ '

Lermma 10. Let-8 be the canonical 1-form on T*(0). Then, with notation as
above, we have: (p*S— —l(F Ywg. :

Proof Assume that tET(O) We have |
‘ @90 = ST (@0)) = T (DT (0) 1 0(E) =
= <p(g)(T (po9)1) = @(g)(T(m1) = P(F(g))(T(m)1) =

- wo(rAF<g)) = —(’(F)wa)(t) |
whence ¢*9=—1(F)w,. o 4/ v

B

4 Lemma 11: Let ¢: 0-»0' be an tsomorphzsm qf prtnczpal ml bundles over 0.
Then there i. isa sectzon se r (0) giving rise to ¢ as descrzbed befare Lemma 8.

Proof. (1) Given t€T,(0); by virtue of the computatlon of the proof of Lemma
10 we have: (¢*9)(t)=0¢(g)(T,(n)r). — (ii) We define the vector field .F on O by

10*
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¢*9=—1(F)w, and set f(g)=1,(F(g)). We claim, that for all x€g: ¢@(g)(o4(x))=
=(x,/(g)). In fact, writing t=0,(x) we have

?@)(au() = e(@)(Ty(m) 1) = (9* N(1) = wo(tAF(g)) = (x, f(8))

whence ¢ (g)(0,(x))=(x, f(g)), as stated above. — (iii) a) We observe that f takes
its values in m*. In fact, we have ¢(g)€0’ and thus, by (ii) above: (x,/(g))=
=¢(g)(04(x))=0 forall x¢m. b) We note that for any g€O and vém=: flg+v)=
=f(g)+v. In fact, we have for all x€q:

(x. f(g+v)) = @(g +v)(ou(x)) =
= ¢(8)(ax(¥) + A4 @) (0x(x)) = (%, £(®) +(x, 2) = (x, (&) +7)

and thus f(g+v)=f(g)+v. In this manner we can define s€I'(0) by s(n(g))=
=g—f(g) (g€0). — (iv) We observe that F(g)cN,. We have, in fact t,F(g)=
=f(g)émt cmg, since m is admissible with respect to O. In this fashion we can
form Y(g)=P(F(g)). — (v) We show finally, that ¢ =y. In fact, we have by Lemma
8 and (ii) above: Y (g)(o,(x))=(x,f(g))=¢(04(x)) (x€g), providing the desired
conclusion.

3. The principal objective of this section is Theorem 1. We start with the follow-
ing definition. Let us write b for the quotient algebra g/m and a for the canonical
morphism' g—-b. Given x€g, we write X for the vector field on O satisfying X,=
=0,(x). This being so, we define the b-valued 1-form é by &(¢)=a(x), if t1,=
=0,(x).

Lemma 12, With the above notation we have: dé=[9, )
Proof. Let ¢, 7 be in T (0), t=0,(x), ¥ =a,(y), say (x,y€g). We have
ds(tAt’) = dé(X,A\Y,) = X,06(Y)—Y,6(X)—o([X,Y],).
But §(Y)=6(0,(y))=a(y) and thus X,(5(Y))=0 and similarly, Y,6(X)=0.
Writing z=[x, y], we have Z=—[X, Y]. From this we conclude that
do(t\t') = 8(Z;) = a(z) = a([x,y]) = [2(x), a(y)] = [8(2), 6(¢")],

and therefore: dS(tAr)=[5(t), 5(?)] (¢, Y€ T,(O)).

We note that there is a canonical identification between the dual b* and m<.
Given a b-valued k-form y on O, and a smooth map f: O -m*, we shall write y,
for the numerical-valued k-form defined at g€O by y,( )=(y(),/(g)). In particular,
if f(g)=vem?t is fixed, we write y, for y,. — Below, given v€m’, we denote by
L, the map L,g=g+v (gc0). . :
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Lemma 13. With the above notation we have
Lt we = wo—(db),.

Proof. Let 7 and # be in T,(0) such that t=0,(x), ¥'=0,(y), say. There is

an Xcg such that
xg = Tyt = Tp4, (T(L,)1) = X(g—0)
and analogously for y. From this we conclude, that
(L3 wo)(tAt') = wo (T (L) AT, (L,)t') =
= (% 7l.g+v) = (%, 7 +v) = (%, y8) = (%, 5. &)

and thercfore: (L}wo—wo)(tAt)=([X—Xx, y],£). In this manner it will be enough
to show that ([X—x, y], g)=—(dd),(tAt’). To this end we note that a) ¥—x€g,.
In fact, we have by definition: (Xx—x)g= —Xv, and thus for all /em: ([x—x,[],2)=
=(l, x0)=0. Next we note, that xv=Xv. In fact, to see this, by a) it suffices to
observe that av=0 for all a€g,. In this fashion we can conclude, that

([f"—xsng) = _(y9 (g"'x)g) = (ya 56.0) = (J’, xv) =
=—([x,y],v) = —([6(1), (1)), v) = —(dd),(tA?’)

where we have made use of Lemma 12. Summing up, we have thus obtained L}we=
=wy—(dd),, as claimed at the beginning.

Since, as we have seen in Section 1, O is a principal bundle with the structure
group m+, below, whenever convenient, we shall write gv in place of g+v=L,g
(vém+). Note that gv can stand also for

(dldr)(g + t0)lo=o €T,(0).

Let f: O-m' be a smooth map satisfying f(g+v)=f(g)+v (g€0, vEmt). We
define the m*-valued 1-form { by (()=1,,)(T,(f)?). We have for g€O, t€T,(0)
and vemt: 1) Cg,,(T;(L,,)t)=Cg(t), 2) {,(gv)=v. In this manner { defines a con-
nection form on the principal m+-bundle (O, 0, n). We shall write ¥,(0) for the
collection of all vertical vectors at g thatis ¥,(0)={t; t€T,(0) such that T (n)=0}.
We recall that the dual b* of b is canonically identifiable with m<t,

Lemma 14. We have for t€T(0), weV,(0):
wo(tAw) = (6(¢), {(v)).

Proof. To this end it is enough to note that, if t=0,(x) and w=o0,(y) (¥€g,),
then we have

@o(tAw) = (x, yg) = (5(t), {(W)).

Let us observe that, in particular, ¥,(0) is orthogonal to itself with respect to (wo),.
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Below we assume to be given a fixed choice of s€I'(0); ¢: OO0’ will correspond
to it as preceeding Lemma 8. — We r,ecall that 9 is the canonical 1-form on T*(0).

Lemma 15. Wz;h the prewous notation we have (p*S Op. -

Proof. Let t€T,(0O) be such that r= ag(x) (x€g) We have, as in the proof
of Lemma 10, using Lemma 8, i

@90 = o) (ah(x)) (/@) = ,(6)
and hence ((p*S)(t) 3,(0.

L o ;

Theorem® 1. With the previous noratzon let us put n=s woezz(w) Then we
have wo=¢*(p*n— d9) L P o

Proof (1) ertlng L go*p*nEZ“‘(O) we have e cr

TrL (poq))*n =7* s wo—(son)*wo '» C l.- b

(ii) We have, by virtue of the flat connection, corresponding to { on'the principal
mt-bundle (O, 0, ), the following representation of #,£T,(O) as the sum of hori-
zontal and vertlcal components

(-

() T - (T, (S°7t)( ))f (g)‘fg((lt,).‘

gt

Denoting by"P'gthe horizontal projection, we thus ohtain;_'-
Ty(som) ty = T,(L- s @) (Pty)-
G1ven 1 t’ET(O), we, have by Lemma 13: v R

L(t/\t ) = @ (T (L_ ,(g,) Pt/\T (L) P! ) (mo)p(t/\t )+ (da) s (Pt/\Pt')

(111) We clalm that d&(Pt/\Pt’) dé(t/\t’) In fact we have by Lemma 12
dé(Pt/\Pt’) [6(Pt),5(Pt’)] and thus it suffices to show, that o()= 6(Pt), or -
that §(z)=0 if 1€V (0). 'To see this we can assume that r=c (x) (x€g,). But then
8(H=a(x)=0, by g,Sm=ker(«). In. this manner, by‘the end of (ii) above we
obtain:
L(At) = (wo),,(t/\t)+(d6),(t/\t')

(iv) For the deﬁmtlon to be used below, of the wedge product between two vector-
valued 1-forms we refer to [1],.16.20.15.5, p, 141. — We maintain, that

T (wg)p = B +TEAS.
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In fact, let us write P, for the vertical projection “We have by Lemma 14:
= wo(t/\t )— wo(t/\P (t)) wo(P (At ) =
= wo(tA)=(8(0), L))+ (8(2), L)) = wo(tAY)+(LAS)(AL)
or (wo),,(t/\ )= a)o(t/\t’)+(C ASO(ENAY), provmfy our assertion. In this fashxon
we can conclude that L= wo+{AS+(dd);. — (V) We assert next that d(é,)—
={ /\6+(d6)f In fact, th1s is implied by the following sunple proposition. Let ¥V
be a réal vector’ space of dlmensmn m, M a C=-manifold, y a V-valued 1-form and

I M~V* asmooth map. Then we have d(ys)= df/\y+(dy), In fact, let (v,) be a
basis’ in V and (v_,) the dual bas1s Then we can write

A Ly = -21””” f=’12;f,v}" where (y;) C&(M).
N J= = v
We have

ve=Zfvj andthus dGp) = Z(dfiho)+ 2 -y
.= =1 : = '

Hence it is enough to note that for any pair h, k of tangent vectors we have:
(@ Ay)(h AK)=(df (), y(k))—(df (k.Y y(h)), which concludes our proof. — (vi) Sum-
ming up, we have by (iv)—(v) above: L=w,+d(d,). Lemma 15 asserts that ,=
=¢@*$ and thus- d(é,) 0*(d9). Since L=¢*p*n we get finally .

~ _ = ¢*(p*n—ad
as claimed in Theorem 1.

4. The objective of this concluding section is an alternative approach to the
following result, first proved in [5], Theorem 3, p. 208.

Theorem 2. Let O be a simply connected coadjoint orbit of the connected- and
simply connected solvable Lie group G. Then there is a diffeomorphism B: R"—»O
such that B*wy is constant.

Proof. We denote by g the Lie algebra of G and proceed by induction accordmg
to dim (g). We dlstmgulsh the following two major p0551b111t1es

A. There is an ideal m of codimension one such that g= g,+m for some g
in O. Let n be the restriction map g*—~m*, and M the connected subgroup of G
determined by m. Ther n(O) is a coadjoint orbit of M and 7|0 is a diffeomorphism
O —n(0). We have, in addition, that we=(n]0)*w.). By virtue of the assumption
of our induction there is a diffeomorphism y: R®—»n(0) such that y (co,,(o)) is con-
stant. But then it is enough to take B=(n"'|0)oy. .

B. Here we assume that the hypothesis of A cannot be reahzed Let m be a fixed
ideal of codimension one. Then, for any g€g*, we have g,Sm. Putting h=gjm
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we claim that g,&m. ‘In fact, if k is in g,—m, k is orthogonal, with respect to B
belonging to g, to m. But then k is orthogonal to g and thus k€g, and g=m+g,,
contrary to our assumption. We note, in particular, that in this case m is admissible
with respect to O.

(i) We fix an element y in O, and write x=n(y) and Oy=MxSm*. We claim
that O, is simply connected. In fact, let us put @==(0). We have, by Lemma 1,
O=nr-1(0), and thus 0 is simply connected and G, is connected. But, by what we
have seen above, g, Cm and thus G,cM,and G,=M,, and O,=M/M_ is simply
connected. — (ii) We omit the straightforward verification of the following result.
Let G be an arbitrary connected and simply connected Lie group with the Lie algebra
g. Let « be an automorphism of g; we set f=(x"')*¢End (g*). Then, if O is any
coadjoint orbit, then so is f(0) and B*(w ) =we. — (iii) By virtue of the assump-
tion of our inductive procedure, there is a diffeomorphism g, from R’ onto O, such
that go*(wo.) is constant. We fix an element k€g—m, write y(¢f)=exp (tk) and
define a map h: R*+1-0 by h(t, T)=y(t)go(T) (teR, TER®). Then h is a diffeo-
morphism from R**! onto 0. Let a be the subspace spanned by k; we have g=
=m+a. Let j be the projection onto the second summand. We define 1: m*--g*
such for hem* we have 1(h)ijm=h and i1(h)ja=0. We write 1 also for 1|0cI'(0)
and set #=1*w,. In the following we shall proove that #*(y) is constant. a) Let
h€O be fix and g=i(h). Assuming that ¢, F€T,(0) are given and t=o0,(u),
'=06,(v) (u, v€g) we claim that n(zA2)=B(u, v)—B(ju, v)~B(u,jv). In fact, 1)
we have for any real t: exp (tu)g—i(exp (zu)h)ém*. Hénce there is an ncmt
such that ug=i(uh)+n. 2) By virtue of (ii) in the proof of Lemma 1, we have g,g=
=m-, and thus there is %€ g, with n=iig. From this we can conclude that 7 1,,(f)=
=1(uh)=(u—u)g. Similarly, there is #€g, such that 7,.,,(f)=(v—0)g. 3) We
conclude from this that

”(t/\t’) = wo(l*h (t)/\l*h (t’)) = ([u;ﬁ’ v— 6]’ g) = ([u9 U], g)_([u’ {’]’ g)——([ﬁ, ‘D], g)‘

4) We note that ([u, 7], g)=(u, 5g)=(ju, vg). But, by 2), dg=vg—i(uh) and the
last term is orthogonal to a. Hence ([4, 7], g)=(ju, vg)=B(ju, v), and similarly
((@, v], 8)=B(u, jv). In this manner we obtain for t=g,(1), ¥=0,(v): n(At)=
=B(u, v)—B(ju, v)—B(u, jv) as claimed above. — b) Let U be an M-orbit in 0.
We claim that (idy)*n=wy. In fact, suppose that h€U and ¢, Yc¢T,(U). Then
there are u, v€m such that t=o0,(w), ¥ =0,(v). Since ju=0=jv, we have by a):

(o) n) (1At = ([u, 0], B) = wy(tAt)

and thus (idy)*n=wy as claimed above. For T=(4,, ..., #;) we form vector fields

on 0 by
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To prove that h*y is constant, it will be enough to show that (*n)(D;AD;) is constant
for 0=i,j=6. — c) We start by proving the last claim for i, j such that 1=i,j=4.
In fact, let k be an element of @, h=h(¢t, T), say. We write hy=h(0,T)€0,, and
thus hA=y(t)h,. Putting O,=y(¢)0, we recall (cf. (ii)), that this is an M-orbit in
0. We have also Djl,,=T;,o(y(t))(Djl,,o)eT,’,(O,). Using b) above we conclude from
this that

’1(Di|h/\Dj|h) = (00,(Di|h/\Dj|h) =

= 00, (T (P () Dili)) ATie (7 (D) (Dyhh)) = ((1)* 00, }(DilsgAD;lny)-

But the last expression, by virtue of (ii), is equal to
0o, (Diln, ADjls,)

which, by the choice of g,: R®—~0, is constant, as h, varies over O,. — d) We claim
now that #n(Do,AD,|)=0 (1=j=6). To this end it is enough to show that
n(ox(k) Aop@))=0 if uc¢m. But, by jk=k and ju=O0 this is implied by a). In
this manner we have completed proving that h*yn is constant, as we claimed at the
start of (iii). — (iv) Let (€&, (@) be such that h*({)=dt. We define f: R***.0’
by f(u, t, T)=(h(t, T), ul). Then fis a diffeomorphism from R%**% onto O’. Also,
9 =ul is the pullback of the canonical 1-form on T*(®), to O’. By virtue of what
we have seen in (iii), f*(p*n—d¥’) is constant. — (v) We recall that by Theorem 1,
there is a diffeomorphism ¢: O—+0’ such that wy=¢*(p*n—d¥). Hence B=
=@~of is a diffeomorphism R!-~0O such that B*w, is constant, completing the
proof of Theorem 2. ’

Some notational conventions. 1} Given a Lie group G with the Lie algebra g,
g is considered as a G-module with respect to the adjoint representation. Similarly,
g is a g-module with respect to the adjoint representation of g. Also g*, the dual of
the underlying space of g, is a G or g-module with respect to the coadjoint representa-
tion and its differential respectively. — 2) If a Lie group G acts smoothly on a C*-
manifold X, for x€X, G, stands for the stabilizer of x in G, and g, for the subalgebra
corresponding to G.. — 3) A distribution on X will be denoted by a capital German
letter. If M is such, M T (X) will denote its value at x X. — 4) Given a principal
bundle £ with the structure group G, given x€B and g€G, we shall write sometimes
xg even if the action of g derives from an abelian group structure.
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