
Acta Sci. Math., 56 (1992), 347—334 

On the coadjoint orbits of connected Lie groups 

L. PUKANSZKY 

Introduction. Let G be a connected Lie group with the Lie algebra g, O an orbit, 
of positive dimension, of the coadjoint representation and a>0 the corresponding 
canonical 2-form (cf. [2], Proposition 5.2.2, p. 182). It is well-known, that pairs 
like (O, co0) play an important role in many questions of the unitary representation 
theory of G. The objective of the present paper is to analyse (O, co0) by aid of suitable 
ideals of g. In more details, given an element g of O, we define B(x, y)=([x, y],g) 
(x, y£ g). Let tn be an ideal of g, different from g. We say, that it is admissible, if 
it contains its orthogonal complement, with respect to B, for one and hence for all 
g of O. Such ideals always exist if g is nilpotent, and are of a common occurrence 
when g is solvable (cf. Section 4 belöw). Lét 0 be the projection of O on m*, the dual 
of the underlying space of m. Then m determines a subbundle 9Jt of the tangent 
bundle T(0) of O. Let O' be the subbundle, orthogonal to 9JI, of the cotangent 
bundle T*(0) of O. 0 and O' carry canonically the structure of a principal bundle, 
with the structure group m-1, over 0; O is acted upon by Tnx through translations 
and both bundles are trivial. Let s be a global section of O; it determines an isomorph-
ism <p of principal m-1--bundles over 0, from O onto O' (cf. Lemma 9 and Lemma 
11 in Section 2). We set rj—s*a>0^Z2(0) and write p for the canonical projection 
from O' onto O. Let 3 be the canonical 1-form on T*(0). Our principal result (cf. 
Theorem 1 in Section 3) states, that 

<o0 = <p*(p*n-d8). 

As an application, in Section 4 we give a new proof for the existence of global Dar-
boux coordinates in the case, when G is is solvable and O is simply connected (cf. 
[5], Theorem 3, p. 208). 

The organization of the paper is as follows. Section 1 discusses the bundle 
structure of O, and Section 2 the relation of O to O'. Section 3 contains the proof 
of the result quoted above, and Section 4 the discussion of the Darboux coodordinates. 
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The reader is advised to consult the end of the paper, where some key notational 
conventions, employed throughout the paper, are explained. 

1. As stated above, the objective of this section is the investigation of some 
bundle structure on O. The proof of the principal statement (cf. Proposition) could 
be abbreviated by the use of standard results (cf. in particular [1], 16.14.1, p. 87) 
but some elements of the proof below will be needed later. 

Let G be a connected Lie group with the Lie algebra g. If a is a subspace of g, 
a ^ c g will stand for its orthogonal complement with respect to B, belonging to 
some g£ g* specified by the context and a x for the orthogonal complement in g*. 
We fix an orbit O, of positive dimension, of the coadjoint representation and an 

ideal m, admissible with respect to O, that is m ^ c m for one, and thus for all 
elements of O. Fixing an element g of O, we set K=Gt, and consider O as a C°°-
manifold by transfer from G/K. Let us note, that the identity map from O into g* 
is smooth. We write h for #Jm, and set T=Gh; 0 has a differentiable structure as 
G/T. Let n be the restriction map g*-m*. We recall (cf. [1], 16.14.9, p. 94) that 
with the above definitions (O, <9, n) is a fiber bundle with a fiber diffeomorphic to 
T/K. In the following we show that this fibration is identical with the orbit space 
of m-1-, acting on O by translation. 

Lemma 1. With the above notation we have: (Gh)0 g=g+m±. 

Proof , (i) For n—2, 3, ..., let {/,•: l s / ^ « } be some subset of g f c=m£. We 
claim, that ... l„g=0. In fact, let L be the left-hand side. Given an element k£g, 
we put Z=(—l)n[/n_1...[/,/c] ...]. Since n s 2 and g^ctn, 1 belongs to m, and thus 
we conclude that (k, L)=([/„, l ] ,g)=0 by virtue of /„£ gh. Since (Gh)0 is generated 
by elements of the form exp (/) (/£ gh) we conclude that (Gh)0g=g+Qhg. — (ii) 
This being so it is enough to prove that if m is an ideal of g containing gff, we have 
m ± = !}/>.?• Note, that if a is a subspace of m, then =(ag)±. We have therefore 

m = m + g9 = (qh)i = (g^g)-1-, 

whence gAg=m-L. Summing up, we have proved that 

(G„)og = g+m±. 

From here we can conclude 

Lemma 2. The triple (0, 0, it) is a principal m-1-space. 

Lemma 3. The map t^-tg (t£T) induces a diffeomorphism T/K^g+m-1-. 
Proof . We recall (cf. [1], 16.10.7, p. 62) that if G acts smoothly on the C~-

manifold X, and x^X is such that Gx is locally closed, then Gx carries a differenti-
able structure, well-determined by the condition that s>--sx be a diffeomorphism 
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from G/Gx onto Gx. We apply this by replacing X, G, x through g*, Gh and g re-
spectively. To conclude our proof it is enough to note that, by Lemma 1, we have: 
Tg=g+m±, which is closed in g*. 

Lemma 4. There is a global section s: (9>-*-0. 

P r o o f . We recall (cf. [1], 16.12.2, p. 82) that if (X, B, n) is a fiber bundle, with 
a fiber diffeomorphic to R", then there is a global section s: B~X. Thus it is enough 
to note that in our case, by Lemma 3, we have T/Ksig+m-1. 

For a fixed s£T(0), we define f : 0>-~Q* by f(g)=g—s(n(g)). We can note 
at once that / i s smooth, takes its values in m-1- and satisfies f(g+v)=f(g)+v for 
any g£0 and ^ m 1 . We set X = 0 X m x and define !f: 0-»X by f(g)= 
=*{(g),№)} (giO). 

Lemma 5. is a smooth bijection O—X. 

P r o o f . Smoothness being evident, it is enough to show that is bijective. In fact, 
(i) Assume, that Then, in particular, n(g)=7i(g') and thus g'= 
=g+v with some Dim-1-. We have, however, also f(g) =f(g') =/(g)+v and hence 
t;=0 and g=g'. — (ii) We claim that f is surjective. In fact, let {h, w}£.Ybe given. 
Suppose that g£0 satisfies n(g)=h. Defining g' =g+w—f(g) we have clearly 
¥(g')={h, vv}. Summing up, we have shown, that f is a smooth bijection O—X. 
We recall that K=Gg, h=g\m and T=Gh. 

Lemma 6. The restriction of the canonical map G/K—O to a fiber of G/K— 
--G/T is an isomorphism of this fiber to an mx-orbit of O (the latter considered as a 
submanifold of g*). 

P r o o f . Suppose that g'£0 is given, and, say, g'=ag (a£G). Then a(T/K) 
is the fiber corresponding to g'. It is enough to show that the map t>—atg (t£T) 
induces an isomorphism T/K-*g'+m±. But, by Lemma 3, the map of loc. cit. (h, 
say) from T/K onto £ + m x induces an isomorphism and thus it suffices to observe 
that 

a(TIK)—•g'+mJ-

T/K—I— s+m-L. 
Lemma 7. With the above notation if: O ~-X is an isomorphism of fiber bundles. 

P r o o f . By Lemma 5, W is a smooth fiber preserving bijection !P: O—X and 
by Lemma 6, the restriction of Y to any fiber in O is an isomorphism with its image. 
Thus it is enough to recall (cf. [1], 16.21.2, p. 75) that (in particular) if (X, B, n) and 
(X', B, n') are fiber bundles and / : X—X' is a fiber-preserving smooth map, then it 

10 
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is an isomorphism of fiber bundles, if its restriction to any fiber is an isomorphism 
with its image. 

P ropos i t ion . (O, <S, n) is a principal bundle with the structure group m x acting 
on O by translations. 

• Proof . By what we have seen above, it is enough to observe that W is equi-
variant with respect to the action of m x on O and X respectively. 

2. The objective of this section is to present some material needed in the next 
section for the proof of Theorem 1. We continue to assume that O is a fixed orbit, 
of positive dimension, of the coadjoint representation and m is an admissible ideal 
(cf. Introduction). We start by introducing some notational conventions. 1) If Y 
¡s a left (7-space, m£Y, and x£g=Lie(G), we set 

(rm(x) = (d/dt) exjp (tx) m| ( = 0 . 

Given we denote by r9 the canonical translation 7^(g*) ^g* (cf. [1], p. 22). 
Note that we have clearly: xgcg(x)—xg. 3) With the" above notation we can write 
for x, y£ g: 

' (o0{dg(x)hag(y)) = B(x,y). 

We remark, that if t=ag(x) and v£Tg(0), then a>0(tAv)=(x, xgv). In fact, assuming 
v=ag(y) we have co0(iAt>)=([x, j ] ,g )=(x , yg)=(x, zgv). We denote by 91 the 
distribution on O such that rgNg=mg. Let us observe, that if and t£Tg(0) 
is such that Tg(n)t=0:, then coo(tAvg)=0I In fact, assuming t=ag(x); we have 
0=Tg(n)t=ah(x), whence Qm. If vg=ag(y) for a ydm we have: 
co0(tAvg)=([x, y], g)=0 by xG qh. We conclude from all this that there is a map 
P: %^(Th((9)y such that P(vB)(Tg(Ti)t)=oj0(tAvg) (/€ Tg(Oj). Writing p: T*(G)-*G 
and pr: T(0)-+0 for the canonical projections, we note 

p r \ J , 

O »<S. n 

Let a be a section 0—O (cf. Lemma 4) and form as loc. cit. f(g)=g—o(n(g)) 
(g£O). If / i s any smooth map 0 — m x we can define F(g)£7^(g*) by rgF(g)= 
=f(g), and note that F i s a vector field on O taking its values in In fact, to see 
this, it is enough to have m x g m g ; but this is equivalent to. rn^=( r t tg ) x cm or 
rrtg c m , which we assume. All this being so, for g£0 we set: (p(g)=P(F(g)); 
we have clearly 

" ' o 9 • r*(0) ' 
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Lemma 8. With notation as above, we have for* g£0 arid x£,g: 

<PG?)M*)) = (*,/(*))'"' 
Proof; Writing f=cr9(x), we obtain , ' , 

= P{F(g))(Tg(n)t) = co0{tM(g)) = (x,/(g)) 

.and-thus:, <p(g){oh(x))=(x,f(g))(g<iO',x£Q). , ' V ' ' ' 
' >" We denote by 9JI tlie subbimdle of T{&) such that rhMh = mh. Recalling, that 
X=&Xm-1, we note that there is a canonical identification between and X. 
In fact, given AeStR-1 let us put h=p(X). We define X%m± by X'(x)=X(<xh(x)) 
(x£g). This being so, we set 4>(l) = {h, A'}. We observe that 4> is a bijection 9JI-1-— X. 
In fact; if $(/i) = i>(v) = {/z, A}, say, we have p, v£(Th(G))* and fi(ah(x))= 
=X(x)=v(oh(x)) (x€g), and thus p=v and $ is injective. Let now {h, X'}£X 
be given. If <Th(x)=0, we have and hence we can define ' X£{Tk(0))* 
by A(crft(x))=A'(x) (x£g). In this fashion <P(X)={h, X'}, and 4> is surjective. Below 
we shall write O' for'5Dl+. We can define'on O' the structure of a principal m-1--
bundle as follows. Given rim-1-, let Ah(v)£(Th((9))* such/that Ak(v)((Th(x)) = 
= (x, v) (x,£g). Then.if XdO' and p(X)—h, we can set Xv=X+'Ak(v). We note, 
that <P(Xv)=<P(X)v. — We remark that if gdO, then we have: (p(g)dO'. In fact, 
Lemma 8 implies, that q>{g){ak{x))=(x,f(g)) (x€g); but by f(g)€mx, the right-
hand-side vanishes for x£m. . , , . , , 

Lemma 9. <p: O—O' -is an isomorphism, of principal m-1-bundles over 0: 

Proof . Let T: O—X be as in Lemma 5, corresponding to the section 0-0 
employed in the definition of (p. To obtain the desired conclusion, it is enough to 
note that clearly 0o <p=*F. • .• 

Lemma 10. Let $ be the canonical \-form on T*(§). Then, with notation as 
above, we have: cp*&=— i(F)co0. 

Proof . Assume that t£Tg{0). .We have 

. ' = HT.(v)0 = (M'p)Tg(<p)t, <p(g)) = 

= <P(g){T9(po<p)t) = q>(g) (Tg(n)t) = P(F(g))(Tg(n)t) = 
= co0(tAF(g)) = ~(i(F)co0)(t) 

whence <p*9= — i(F)co0. ' > • v < 

Lemma 11: Let <p; 0—0' be an isomorphism of principal m x -bundles o,ver <9. 
Then there is a section s£T(0) giving rise to (p as described before Lemma 8., 

Proof , (i) Given t£Tg{0)i by virtue of the computation of the proof ofLemma 
10 we have: ((p*&)(t)=cp(g)(Tg(n)t). — (ii) We define the vector field F on O by 

10* 
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<p*&=-i(F)(o0 and set f(g)=rg(F(g)). We claim, that for all x£g: <p(g)(ah(x))= 
=(x,f(g)). In fact, writing t=a9(x) we have 

<p(g) («>(*)) = <p(g)(Tg(x)t) = (<p*m) = M{AF(S)) = (*•/(?)) 

whence <p(g)(o»(;c))=(*,/(£)), as stated above. — (iii) a) We observe t h a t / takes 
its values in m x . In fact, we have <p(g)tO' and thus, by (ii) above: (x,f(g)) = 
=(p(g)(<rh(x))=0 for all b) We note that for any g£0 and v£mx: f(g+v)= 
=/(g)+v. In fact, we have for all xgg: 

(x,f(g+v)) = <p(g + v)(oh(x)) = 

= + = (*./(*)) + (*, v) = (x,f(g) + v) 

and thus f(g+v)=f(g)+v. In this manner we can define s^T(O) by s(n(g))= 
=g~f(g) (gtO). — (iv) We observe that F(g)£Nt. We have, in fact rgF(g)= 
=f(g)£m± cmg, since m is admissible with respect to O. In this fashion we can 
form *l>(g)=P(F(g)). —(v) We show finally, that <p=*p- In fact, we have by Lemma 
8 and (ii) above: ^(g){ah(x))=(x,/(g))=<p(ab(x)) (x£g), providing the desired 
conclusion. 

3. The principal objective of this section is Theorem 1. We start with the follow-
ing definition. Let us write b for the quotient algebra g/m and a for the canonical 
morphism g—b. Given x£g, we write Xfor the vector field on O satisfying Xt= 
=at(x). This being so, we define the b-valued 1-form 5 by S(tg)=ct(x), if tg= 

Lemma 12. With the above notation we have: d5=[d, 

Proof . Let t, f be in Tg(0), t=at(x), f=og(y), say (x, y£ g). We have 

d5(tAt') = d5(XgAYg) = Xg5(Y)-Yg5(X)-5([X,Y]g). 

But S(Yg)=S(at(y))=a(y) and thus Xg(6(Y))=0 and similarly, Yg5(X)=0. 
Writing z=[x,y], we have Z=—[X,Y]. From this we conclude that 

dS(tAt') = S(Zg) = a(z) = «([*,;>]) = [«(*), a ^ ] = [<5(0, <5(0], 

and therefore: d5(tAf)=[5(t), 5 ( 0 ] (', f£Tg(0)). 
We note that there is a canonical identification between the dual b* and m-1-. 

Given a b-valued Ar-form y on O, and a smooth map / : <9—mx, we shall write yf 

for the numerical-valued ¿-form defined at g£0 by yf( )=(y( ),.f(g)). In particular, 
if f(g) = tnx is fixed, we write yv for yf. — Below, given »Cmx, we denote by 
Lv the map Lvg=g+v (g^O). 
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Lemma 13. With the above notation we have 

L*0io - (00 — {dS)v. 

Proof . Let t and f be in Tg(0) such that t=erg(x), t'=crg(y), say. There is 
an x£ g such that 

xg = V = *g+v{Tg(Lv)t) = x(g-v)' 

and analogously for y. From this we conclude, that 

( L > 0 ) ( f A f ) = co0 (Tg(Lp)tATg (Lv) t') = 

= ([*, >*]» g + v) = (*, y(g + v)) = (x, yg) = ([x, y], g) 
and therefore: (L*co0—(o0)(t At')=([x—x, y], g). In this manner it will be enough 
to show that ([x—x, y],g)— — (d5)u(tAt'). To this end we note that a) x—xigh. 
In fact, we have by definition: (x—x)g=—xv, and thus for all / f m : ([x—x, /], g )= 
=(/ ,xv)=0. Next we note, that xv=xv. In fact, to see this, by a) it suffices to 
observe that ¿rv=0 for all a£ g„. In this fashion we can conclude, that 

( [ x - x , >>], g) = -(>>, (x-x)g) = (y, xv) = (y, xv) = 

= — ([•*•» v) = -([¿(0, sen 1, ®) = -(ddUtAf) 
where we have made use of Lemma 12. Summing up, we have thus obtained L*0)o= 
=co0—(dS)a, as claimed at the beginning. 

Since, as we have seen in Section 1, O is a principal bundle with the structure 
group m-1-, below, whenever convenient, we shall write gv in place of g+v=L„g 
(t^m-1-). Note that gv can stand also for 

(dl<h)(g+Tv)\vm0ZTt(O). 

Let / : O— tn x be a smooth map satisfying f(g+v)~f(g) + v (g£0, » fm 1 ) . We 
define the m^-valued 1-form C by £(t)=z/{g)(Tg(f)t). We have for g£0, t£T„(0) 
and i^m-1: 1) tgi>(Tg(Lv)t)=(g(t), 2) (g(gv)=v. In this manner ( defines a con-
nection form on the principal mJ--bundle (O, <5, n). We shall write Vg(0) for the 
collection of all vertical vectors at g that is Vg(0)={t; t£Tg(0) such that Tg(n)=0}. 
We recall that the dual b* of b is canonically identifiable with m x . 

Lemma 14. We have for t£Tg(0), w£Vg(0): 

<o0(tAw) = (6(t),C(v)). 

Proof . To this end it is enough to note that, if t=ag(x) and w=ag(y) (y£ g„), 
then we have 

co0(tAw) = (x,yg) = (8(t),C(w)). 

Let us observe that, in particular, Vg(0) is orthogonal to itself with respect to (<o0)l. 
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Below we assume to be given a fixed choice of s€T(0); cp : 0±0' will correspond 
to it as preceeding Lemma 8. — We Recall that 9 is the canonical 1-form on T*(0). 

.Lemma 15. Wifh the previous notationwe have: <p*9=5f. 

Proof . Let t£Tg(0) be such that t=ag(x) g). We have, as in the proof 
of Lemma 10, using Lemma 8, . 1 

ov* m = <p(g)'(^(4 = (*./(*)) =
 sao 

and hence (<p*3)(/)=<5/(0- ( ' , ; • . 

Theorem1 1. With the previous noration let-us put ri=s*a>0£Z2(@). Then we 
have co0=(p*(p*t]-^d9). . }'.'•• 

Proof , (i) Writing t=ifp*,tj£Z*(0), we have: - : •< • 

, , L = (poq>)*t\ =,-i*s*o)0 = (son)*a>0. i 

(ii) We have, by virtue of the flat connection, corresponding to £ on' the principal 
m-1--bundle (0,(9, n), the following representation of tg^Tg(0) as the sum of hori-
zontal and vertical components , 

, , tg = , . ' " • ' / , 

Denoting by P the horizontal projection, we thus obtain: ' 

Tg{son)tg = Tg(L.M)(Ptg). 

Given t,f£Tg(0)t, we have by Lemma 13: ' • > 

L(tAt') = co0(r9(L_/(s)) PtATg{L_m) Pt') = (co0)P(tAt') + (dS)f (Pt APf). 

(iii) We claim that d5(PtAPf)=d8(t/\t').. In fact, we have by, Lemma 12: 
d8(PtAPf)=[8(Pt),S(Pf)] and thus it suffices to show, that <5(/)=<5(?/), or 
that ¿ ( 0 = 0 if t£Vg(0). To see this we can assume that t=<rg(x)(x£gk). But then 
5(t)=u(x)=0, by g A ^m=ker(a) . In this manner, by- the end of (ii) above we 
obtain: « . • 

L(f AO = (¿0)ktkt') + (d8)f(tAt'). 

(iv) For the definition to be used below, of the wedge product between tyvo vector-
valued 1-forms we refer to [1], 16.20.15.5, p. 141. — We maintain, that 

'. • (co0)p = 0)o + £Ad. ' '• 
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In fact, let us write P0 for the vertical projection. We have by Lemma 14: 

(o>0)P(tAt') = <o0{PtAPt') = o>0{(t-Pv{t))A(t'-P&'))) = 

= co0(tAt')-oio{tAPM)-o)o{Pv(t)At') = 

= w0(tAt')-(S(t), UO) + (S(t'), C(0) = o 0 ( M O + (CA5)(Mi') 

or (co 0 )p( tAf )=co 0 { tAt / )+( .CA8)( tAf ) , proving our assertion. In this fashion 
we can conclude that L=co0+£Ad+(d5)f. — (v) We assert next that d(8f)= 
= CAS+(d8) f . In fact, this is implied by the following simple proposition. Let V 
be a real vector space of dimension m, M a C°°-manifold, y a F-valued 1-form and 
f: M-~V* a smooth map. Then we have d(yf)=df/\y+(dy)f. In fact, let (vj) be a 
basis in F and (up the dual basis. Then we can write 

? = ! № / = Z f j V j where ( y ^ c ^ M ) . 
y=i j=i . • 

We have 
m m m 

7f = 2 / J V j and thus ¿Ov) = ^ ( # 7 ^ . ) + 2 f j • dy}-. j=i j=i j=i 
Hence it is enough to note that for any pair h, k of tangent vectors we have: 
(dfAy)(h A k)=(df(h), y (k))—(df(k,)y(h)), which concludes our proof. — (vi) Sum-
ming up, we have by (iv)—(v) above: L=a>0+d(df). Lemma 15 asserts that 5f= 
=(p*9 and thus d(df)=q>*{d&). Since L—(p*p*t] we get finally 

(o0 = (p*(p*t\-dd) 
as claimed in Theorem 1. 

4. The objective of this concluding section is an alternative approach to the 
following result, first proved in [5], Theorem 3, p. 208. 

Theorem .2. Let O be a simply connected coadjoint orbit of the connected and 
simply connected solvable Lie group G. Then there is a diffeomorphism /?: Rd-*0 
such that p*co0 is constant. 

P r o o f . We denote by g the Lie algebra of G and proceed by induction according 
to dim (g). We distinguish the following two major possibilities: 

A. There is an ideal m of codimension one such that g = g 9 +m for some g 
in O. Let n be the restriction map g* —m*, and M the connected subgroup of G 
determined by m. Then n(O) is a coadjoint orbit of M and n\0 is a diffeomorphism 
O—7t(0). We have, in addition, that co0 — (n\0)*can{0). By virtue of the assumption 
of our induction there is a diffeomorphism y: R s—n(0) such that y*(a>B(0)) is con-
stant. But .then it is enough to take p = (n~1\0)ey. 

B. Here we assume that the hypothesis of A cannot be realized. Let m be a fixed 
ideal of codimension one. Then, for any g£g*, we have gffQm. Putting h=g\m 
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we claim that g , g m . In fact, if k is in Qh—m, k is orthogonal, with respect to B 
belonging to g, to m. But then k is orthogonal to g and thus k£ g9 and g = m + gB, 
contrary to our assumption. We note, in particular, that in this case m is admissible 
with respect to O. 

(i) We fix an element y in O, and write x=n(y) and O0—MxQm*. We claim 
that O0 is simply connected. In fact, let us put G=n(0). We have, by Lemma 1, 
0—n~x{6), and thus 6 is simply connected and Gx is connected. But, by what we 
have seen above, g x Qm and thus GxczM, and GX=MX, and O0=M/Mx is simply 
connected. — (ii) We omit the straightforward verification of the following result. 
Let G be an arbitrary connected and simply connected Lie group with the Lie algebra 
g. Let a be an automorphism of g; we set /?=(a_1)*£End (g*). Then, if O is any 
coadjoint orbit, then so is 0(0) and P*((oKi0))=co0. — (iii) By virtue of the assump-
tion of our inductive procedure, there is a diffeomorphism g0 from R3 onto O0 such 
that <?o(c£>0) is constant. We fix an element m, write y(?)=exp (tk) and 
define a map h: R>JrX-G by h(t, T)=y(t)g0(T) T£Ra). Then A is a diffeo-
morphism from Rt+1 onto 0. Let a be the subspace spanned by k; we have g= 
= m + a . Let j be the projection onto the second summand. We define i: tn*-»g* 
such for h£m* we have i(h)\m=h and i(h)\a=0. We write i also for i\0^r(0) 
and set t] = i*oo0. In the following we shall proove that h*(tj) is constant, a) Let 
h£0 be fix and g=i(h). Assuming that t, t'^Th(0) are given and t=<rh(u), 
t/=all(v)(u, t?€g) we claim that r\(t/\f)=B(u, v)—B(Ju, v)—B(u,jv). In fact, 1) 
we have for any real x: exp (-cu)g—i(exp (ii^/i^m-1 . Hence there is an w£mx 

such that ug=i(uh)+n. 2) By virtue of (ii) in the proof of Lemma 1, we have ghg— 
= m x , and thus there is qh with n=ug. From this we can conclude that t9 i+»(0= 
= i(uh)=(u—u)g. Similarly, there is v£qh such that Tgi*h(t)=(v—v)g. 3) We 
conclude from this that 

(MO = a>oM0Ai+„(O) = ([«-", »-»I g) = ([", ®], g)~([u, ®], g)-([u, v], g). 

4) We note that ([u,v],g)=(u,vg)=(ju,vg). But, by 2), vg=vg—i(uh) and the 
last term is orthogonal to a. Hence ([u, v],g)=(ju, vg)=B(ju, v), and similarly 
([«> v],g)=B(u,jv). In this manner we obtain for t=ah(u), f=ah{v): r\(tf\t')= 
=B(u,v)—B(ju,v)—B(u,jv) as claimed above. — b) Let U be an M-orbit in 0. 
We claim that (idv)*t}=cov. In fact, suppose that h£U and /, t'^Th(U). Then 
there are u (»6m such that t—ah(u), t/=ah(v). Since ju—0=jv, we have by a): 

((idvyt,)(t/\0 = ([«, v], h) = cov(tM') 

and thus (idu)*t]=(ov as claimed above. For 7 ,=(/1 , ..., tt) we form vector fields 
on <P by 

D0 = dldt, Dj = dldtj (1 
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To prove that h*t] is constant, it will be enough to show that (/i*f/)(Z)jA/)J) is constant 
for 0 — c ) We start by proving the last claim for i,j such that 1 ^=/,/^<5. 
In fact, let h be an element of G, h=h(t, T), say. We write h0=h(0, T)£00, and 
thus h—y(t)h0. Putting O,—y(t)O0 we recall (cf. (ii)), that this is an M-orbit in 
0. We have also Dj\h=Th<>(y(t))(Dj\h^Th(Ot). Using b) above we conclude from 
this that 

if(AI»ADy|») = (OoXD^ADjl,) = 

= eoo, (7IO(y (OXAiO) AT;0 (y = (y(0*<»o,)(AkA£,k)-

But the last expression, by virtue of (ii), is equal to 

œO0(AkAZ>,|»„) 

which, by the choice of g0: Rs-*O0 is constant, as h0 varies over O0. — d) We claim 
now that ti(D0\h/\Dj\h)—® (1 =/=<5). To this end it is enough to show that 
r}(<rh(k)A<r*(w))=0 if u£m. But, by jk~k and ju=0 this is implied by a). In 
this manner we have completed proving that h*tj is constant, as we claimed at the 
start of (iii). — (iv) Let {€*,(«) be such that h*(Q=dt. We define / : R3+2-~0' 
by f(u, t, T)=(h(t, T), w£). Then / i s a diffeomorphism from Rs+2 onto O'. Also, 

is the pullback of the canonical 1-form on T*((P), to O'. By virtue of what 
we have seen in (iii), f*(p*t]—dS') is constant. — (v) We recall that by Theorem 1, 
there is a diifeomorphism q>: 0—O' such that (0o—(p*(p*t]—d9'). Hence /? = 
= <p -1o/ is a diffeomorphism Rd-*0 such that /?*a>0 is constant, completing the 
proof of Theorem 2. 

Some notational conventions. 1) Given a Lie group G with the Lie algebra g, 
g is considered as a G-module with respect to the adjoint representation. Similarly, 
g is a g-module with respect to the adjoint representation of g. Also g*, the dual of 
the underlying space of g, is a G or g-module with respect to the coadjoint representa-
tion and its differential respectively. — 2) If a Lie group G acts smoothly on a C°°-
manifold X, for xÇX, Gx stands for the stabilizer of x in G, and gx for the subalgebra 
corresponding to Gx. — 3) A distribution on X will be denoted by a capital German 
letter. If 331 is such, MxczTx(X) will denote its value at x X. — 4) Given a principal 
bundle OS with the structure group G, given x£B and g£G, we shall write sometimes 
xg even if the action of g derives from an abelian group structure. 
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