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Compatibility and incompatibility of Calkin 
equivalence with the Nagy—Foias calculus 

J. ESTERLE and F. ZAROUF 

Introduction. We have shown in [2] that there exist two absolutely continuous 
(a.c.) contractions and T2 which commute and are such that T2—Tx is compact, 
and such that there exists a function h in H°° with h (73,)—h (71) not compact. 

In this article, we give sufficient conditions on 7i and T2 which guarantee that 
h{T^—h(T^) is compact for any h in H°°. In the particular case where 7} is a diagonal 
operator whose eigenvalues are simple we characterize thé a.c. T2 which commute 
with Tx and which verify h (T2)—h (Tx) is compact for any h in H°°. 

Notations. Let H be a separable infinite-dimensionai complex Hilbert space, 
£?(H) the Banach algebra of bounded linear operators on H and Jf(H) the spacé of 
compact operators on H. For . T£J£(H), we denote by r(T) the spectral radius of 
T\ if Tis an absolutely continuous contraction, we denote by h(T), h£H°°, the image 
of h under the Sz.-Nagy—Foias functional calculus. 

P ropos i t ion 1. Let and T2 be two a.c. contractions in such that 
TXT2=T2TX and T2-Ti is of finite rank. Then for every h^H", h(T^-h(T^ is 
of finite rank. 

Proof . Set A=TZ—T1 and let k be the rank of A. Then, for «ÇN, we hâve 
7 ^ = 7 i + AVn, where Vn is 'an element of S.?(H). "Now, let h be in H and (pj) a 
polynomial sequence which converges to h in the weak*-topology. Then Pj(T2) = 
=Pj(T1)+AWj, Wj£g(H). Since the rank oî AWj is less than k, by taking the limit 
in the weak*-topology, we obtain h(T2)=h(T1) + W, where W is an operator whose 
rank is less than k. (It is wellrknown and easy to see. that the set of operators T 
whose rank is less than k is weak*-closed in iS?(//)). This completes the proof of 
the proposition. 

We have the following observation for Tx and T2 with compact difference whose 
spectral radii are less than 1. , j , . 
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Observat ion 2. Let 7i and T2 be two contractions satisfying r(7,
1)< 1, 1 

aw/ T2-T^K{H). Then: 

h{Tt)-h{T^K{H), h£H~. 
oo 

Indeed, let h(z)= 2 be a function in H°°. Then: 
k-0 

hÇTJ-hÇTJ = ZadTi-Tf) 
*=0 

and T2—Tk can be written in the form: 

T}-n= k2 TJiTz-TjTf-J-1. 
j=o 

Hence T2—Tk is compact for every k^ 1 and so h(T2)—h(Tl) is a norm-limit of 
compact operators, hence, it is compact. 

The following theorem gives another example of a.c. contractions Tx and T2 

such that hiTJ-hiTJiJfiH), h£H°°. 

Theorem 3. Let Ty and T2 be two a.c. contractions such that 7̂  = 5'©0 and 
T2=S@K, K£jr(H). Then, S and K are a.c. contractions, r(K)< 1 and h(T)~ 
-/i(71)€X(77) for every hÇ.H°°. 

Proof . It is clear that K is absolutely continuous. If r(K)= 1, then K will 
have a eigenvalue of modulus 1 which contradicts the absolute continuity of T2. 

CO 

Hence /•(£)< 1 and if h(z)= 2 akzk is in /7°°, we have: 
fc = 0 

hÇTJ-hÇTJ = (h(S)®h(K))-(h(S)®h(0j) = 2akKk 

k=1 

which is compact. 
We examine now the particular case where Tx and T2 are diagonal operators. 
Let (en) be an orthonormal basis for H, let (a„) and (/?„) be two sequences in 

the unit disc D and let Ta and Tf be the diagonal operators associated to (a„) and (/?„) 
respectively. Then: 

Theorem 4. The following assertions are eguivalent: 

a) l i m f ^ = 0, 

b) h(Tp) — h{T^) is compact for every h£H~. 

The proof uses the following 
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Lemma 5. Let («„) and (vn) be two complex sequences. 
a) If (un) and (v„) are in D, then: 

lim = 0 o lim V"~U"t = 0 1 ~V„U„ it— l-|rB| 

b) If lim i/„=lim vn=0, then there exists an increasing sequence (nk) cz N 
H-*-00 n ^ o o 

such that: 

K l i f j ^ i A N D ^ 2 . - J - 1 I F i ^ j 

k j l К I 
P roof . Assertion a) results from: 

к - « J _ k - " „ l 
11-^«»! ~ 1 - k l 

and 
к - н - l k - « » l ( i + k l ) 

Assertion b) can be obtained by using a simple induction. 

Proof of Theorem 4. To prove a)=*b), it is sufficient to show that if a) holds 
then: 

lim |й(/?„)-А(«л)1 = 0. 

For and a£D, we can write the function g(z)=h(z)—h(a) under the form 
g(z)=(z-a)ga(z), gttdH- and | | « J s2 | |A |U/ ( l -M) . This implies that 

W „ ) - A(a„)| S 2 ||A|U ' А € Я " 

and so a)=>-b). 
Now, suppose that h{Tf)—h(Ta) is compact for every h£H°° and the sequence 

(v„), vn=\(Pn—a„)/(l — Д,а„)| does not converge to zero. Since the sequence (vn) is 
bounded, it contains a subsequence (vnJ which converges to a positive limit /. As 
Ta — Tpis compact, we have 0^P„k—a„fc—0 and so |а„ь| —1 and |/?„J — 1. Therefore, 
for example, the sequence (/3„ ) contains a Blaschke subsequence (/?„ ) that is к kt 

¿ ( 1 —1/?„. From Lemma 5, by extracting another subsequence, we can 
1=0 1 
suppose that the subsequence is a Blaschke sequence and: 

i f a n d Щ ш ^ if 
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For denote by ea the function: 

We have: 
a l—az ze D. 

l - M - | l - k ( z ) | | s 2 T 

and as \ea(z)\ = \e2(a)\ we have also: 

It results that: 
, v . 

Il~\el>n,(a"M = 2~v~Ji> i so s i 

and for any fixed j 

n\ePA«n)\ S i 7 (1 -2-1'--") i Z X J ^ ( J 7 (1 -2 - k ) ) 2 = c > 0. ' i^j i?~j k=1 
Let : 

B(z)= j y J M J » ^ . 
*=1 Pnk l~P„

K
Z 

be the Blaschke product associated to the sequence (Pnk)- Then: 

IftJ , §ak-<*nj \B(0Lnj)\ = li-kéi Pnk 1 —P„kanj 

hence 5(/?nj)—B(an^ = —B(anj) does not converge to 0. This contradicts the com-
pactness of B(fp)—B(Ta), and the theorem is proved. 

Remark 6. If T=TX, where a=(a„) is a sequence.of distinct elements of D, 
then every element S of the commutant of T can be written S=Tf, where /?=(/?„) 
is a sequence of complex numbers. If S is an a.c. contraction, then /?„£D, h£N. 
Therefore we see that H(S)—h(T) is compact for every HdH°° if and and only if 

ri ' lim f n "" g " = 0. - •• = • .< 
: j , 1 ~ M • ' ' . - ' 

If sup|a„| = l, T is a completely nonunitary contraction with r{T) — \. Hence 
we see that there exist a.c. contractions S?±T such that r(T)=l, ST=TS and 
h(S)-h(T)£JiT(H) for .every M H~. and a.c. cpntractions S' such that r (5")=l , 
S'T=TS', S'-TeX~(H) and h(S')-h{T)i^T{H) for some h£H°°. 
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