Compatibility and incompatibility of Calkin equivalence with the Nagy-Foias calculus

J. ESTERLE and F. ZAROUF

Introduction. We have shown in [2] that there exist two absolutely continuous (a.c.) contractions T_{1} and T_{2} which commute and are such that $T_{2}-T_{1}$ is compact, and such that there exists a function h in H^{∞} with $h\left(T_{2}\right)-h\left(T_{1}\right)$ not compact.

In this article, we give sufficient conditions on T_{1} and T_{2} which guarantee that $h\left(T_{2}\right)-h\left(T_{1}\right)$ is compact for any h in H^{∞}. In the particular case where T_{1} is a diagonal operator whose eigenvalues are simple we characterize the a.c. T_{2} which commute with T_{1} and which verify $h\left(T_{2}\right)-h\left(T_{1}\right)$ is compact for any h in H^{∞}.

Notations. Let H be a separable infinite-dimensional complex Hilbert space, $\mathscr{L}(H)$ the Banach algebra of bounded linear operators on \dot{H} and $\mathscr{K}(H)$ the space of compact operators on H. For $T \in \mathscr{L}(H)$, we denote by $r(T)$ the spectral radius of T; if T is an absolutely continuous contraction, we denote by $h(T), h \in H^{\infty}$, the image of h under the Sz.-Nagy-Foias functional calculus.

Proposition 1. Let T_{1} and T_{2} be two a.c. contractions in $\mathscr{L}(H)$ such that $T_{1} T_{2}=T_{2} T_{1}$ and $T_{2}-T_{1}$ is of finite rank. Then for every $h \in H^{\infty}, h\left(T_{2}\right)-h\left(T_{1}\right)$ is of finite rank.

Proof. Set $A=T_{2}-T_{1}$ and let k be the rank of A. Then, for ' $n \in \mathbf{N}$, we have $T_{2}^{n}=T_{1}^{n}+A V_{n}$, where V_{n} is'an element of $\mathscr{L}(H)$. Now, let h be in H and (p_{j}) a polynomial sequence which converges to h in the weak ${ }^{*}$-topology. Then $p_{j}\left(T_{2}\right)=$ $=p_{j}\left(T_{1}\right)+A W_{j}^{\prime}, W_{j} \in \mathscr{L}(H)$. Since the rank of $A W_{j}$ is less than k, by taking the limit in the weak*-topology, we obtain $h\left(T_{2}\right)=h\left(T_{1}\right)+W$, where W is an operator whose rank is less than k. (It is well-known and easy to see that the set of operators T whose rank is less than k is weak*-closed in $\mathscr{L}(H)$). This completes the proof of the proposition.

We have the following observation for T_{1} and T_{2} with compact difference whose spectral radii are less than 1 .

Observation 2. Let T_{1} and T_{2} be two contractions satisfying $r\left(T_{1}\right)<1, r\left(T_{2}\right)<1$ and $T_{2}-T_{1} \in K(H)$. Then:

$$
h\left(T_{2}\right)-h\left(T_{1}\right) \in K(H), \quad h \in H^{\infty} .
$$

Indeed, let $h(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be a function in H^{∞}. Then:

$$
h\left(T_{2}\right)-h\left(T_{1}\right)=\sum_{k=0}^{\infty} a_{k}\left(T_{2}^{k}-T_{1}^{k}\right)
$$

and $T_{2}^{k}-T_{1}^{k}$ can be written in the form:

$$
T_{2}^{k}-T_{1}^{k}=\sum_{j=0}^{k-1} T_{2}^{j}\left(T_{2}-T_{1}\right) T_{1}^{k-j-1}
$$

Hence $T_{2}^{k}-T_{1}^{k}$ is compact for every $k \geqq 1$ and so $h\left(T_{2}\right)-h\left(T_{1}\right)$ is a norm-limit of compact operators, hence, it is compact.

The following theorem gives another example of a.c. contractions T_{1} and T_{2} such that $h\left(T_{2}\right)-h\left(T_{1}\right) \in \mathscr{K}(H), h \in H^{\infty}$.

Theorem 3. Let T_{1} and T_{2} be two a.c. contractions such that $T_{1}=S \oplus 0$ and $T_{2}=S \oplus K, K \in \mathscr{K}(H)$. Then, S and K are a.c. contractions, $r(K)<1$ and $h\left(T_{2}\right)-$ $-h\left(T_{1}\right) \in \mathscr{K}(H)$ for every $h \in H^{\infty}$.

Proof. It is clear that K is absolutely continuous. If $r(K)=1$, then K will have a eigenvalue of modulus 1 which contradicts the absolute continuity of \boldsymbol{T}_{2}. Hence $r(K)<1$ and if $h(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is in H^{∞}, we have:

$$
h\left(T_{2}\right)-h\left(T_{1}\right)=(h(S) \oplus h(K))-(h(S) \oplus h(0))=\sum_{k=1}^{\infty} a_{k} K^{k}
$$

which is compact.
We examine now the particular case where T_{1} and T_{2} are diagonal operators.
Let $\left(e_{n}\right)$ be an orthonormal basis for H, let $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ be two sequences in the unit disc \mathbf{D} and let T_{α} and T_{β} be the diagonal operators associated to $\left(\alpha_{n}\right)$ and (β_{n}) respectively. Then:

Theorem 4. The following assertions are eguivalent:
a) $\lim _{n \rightarrow \infty} \frac{\beta_{n}-\alpha_{n}}{1-\left|\beta_{n}\right|}=0$,
b) $h\left(T_{\beta}\right)-h\left(T_{\alpha}\right)$ is compact for every $h \in H^{\infty}$.

The proof uses the following

Lemma 5. Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be two complex sequences.
a) If $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are in \mathbf{D}, then:

$$
\lim _{n \rightarrow \infty} \frac{v_{n}-u_{n}}{1-\bar{v}_{n} u_{n}}=0 \Leftrightarrow \lim _{n \rightarrow \infty} \frac{v_{n}-u_{n}}{1-\left|v_{n}\right|}=0
$$

b) If $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}=0$, then there exists an increasing sequence $\left(n_{k}\right) \subset \mathbf{N}$ such that:

$$
\frac{\left|u_{n_{i}}\right|}{\left|v_{n_{j}}\right|} \leqq 2^{j-i-1} \text { if } j<i \text { and } \quad \frac{\left|v_{n_{j}}\right|}{\left|u_{n_{i}}\right|} \leqq 2^{i-j-1} \quad \text { if } i<j
$$

Proof. Assertion a) results from:

$$
\frac{\left|v_{n}-u_{n}\right|}{\left|1-\overline{v_{n}} u_{n}\right|} \leqq \frac{\left|v_{n}-u_{n}\right|}{1-\left|v_{n}\right|}
$$

and

$$
\frac{\left|v_{n}-u_{n}\right|}{1-\left|v_{n}\right|}=\frac{\left|v_{n}-u_{n}\right|\left(1+\left|v_{n}\right|\right)}{\left(1-\overline{v_{n}} u_{n}\right)\left(1+\overline{v_{n}} \frac{\left(u_{n}-v_{n}\right)}{1-\overline{v_{n}} u_{n}}\right)}
$$

Assertion b) can be obtained by using a simple induction.
Proof of Theorem 4. To prove $a) \Rightarrow b$), it is sufficient to show that if a) holds then:

$$
\lim _{n \rightarrow \infty}\left|h\left(\beta_{n}\right)-h\left(\alpha_{n}\right)\right|=0 .
$$

For $h \in H^{\infty}$ and $a \in D$, we can write the function $g(z)=h(z)-h(a)$ under the form $g(z)=(z-a) g_{a}(z), g_{a} \in H^{\infty}$ and $\left\|g_{a}\right\| \equiv 2\|h\|_{\infty} /(1-|a|)$. This implies that

$$
\left|h\left(\beta_{n}\right)-h\left(\alpha_{n}\right)\right| \leqq 2\|h\|_{\infty} \frac{\left|\beta_{n}-\alpha_{n}\right|}{1-\left|\beta_{n}\right|}, \quad h \in H^{\infty}
$$

and so $a) \Rightarrow b$).
Now, suppose that $h\left(T_{\beta}\right)-h\left(T_{a}\right)$ is compact for every $h \in H^{\infty}$ and the sequence $\left(v_{n}\right), v_{n}=\left|\left(\beta_{n}-\alpha_{n}\right) /\left(1-\beta_{n} \alpha_{n}\right)\right|$ does not converge to zero. Since the sequence $\left(v_{n}\right)$ is bounded, it contains a subsequence $\left(v_{n_{k}}\right)$ which converges to a positive limit l. As $T_{\alpha}-T_{\beta}$ is compact, we have $0 \neq \beta_{n_{k}}-\alpha_{n_{k}} \rightarrow 0$ and so $\left|\alpha_{n_{k}}\right| \rightarrow 1$ and $\left|\beta_{n_{k}}\right| \rightarrow 1$. Therefore, for example, the sequence $\left(\beta_{n_{k}}\right)$ contains a Blaschke subsequence $\left(\beta_{n_{k_{2}}}\right)$ that is $\sum_{l=0}^{\infty}\left(1-\left|\beta_{n_{k_{l}}}\right|\right)<\infty$. From Lemma 5, by extracting another subsequence, we can suppose that the subsequence $\left(\beta_{n_{k}}\right)$ is a Blaschke sequence and:

$$
\frac{1-\left|\beta_{n_{j}}\right|}{1-\left|\alpha_{n_{l}}\right|} \leqq 2^{i-j-1} \quad \text { if } \quad i<j, \quad \text { and } \quad \frac{1-\left|\alpha_{n_{j}}\right|}{1-\left|\beta_{n_{1}}\right|} \leqq 2^{i-j-1} \quad \text { if } \quad i<j
$$

For $0 \neq a \in \mathrm{D}$, denote by e_{a} the function:

$$
e_{a}(z)=\frac{|a|}{a} \frac{a-z}{1-\bar{a} z}, \quad z \in \mathbf{D}
$$

We have:

$$
\left|1-\left|e_{a}(z)\right|\right| \leqq 2 \frac{1-|a|}{1-|z|}
$$

and as $\left|e_{a}(z)\right|=\left|e_{z}(a)\right|$ we have also:

$$
\left|1-\left|e_{a}(z)\right|\right| \leqq 2 \frac{1-|z|}{1-|a|}
$$

It results that:

$$
\left|1-\left|e_{\beta_{n_{i}}}\left(\alpha_{n_{j}}\right)\right|\right|=2^{-|i-j|}, i \neq j \quad \text { so } \quad\left|e_{\beta_{n_{j}}}\left(\alpha_{n_{i}}\right)\right| \geqq 1-2^{-|i-j|}, i \neq j
$$

and for any fixed j

$$
\prod_{i \neq j}\left|e_{\beta_{n_{i}}}\left(\alpha_{n_{j}}\right)\right| \geqq \prod_{i<j}\left(1-2^{-|i-j|}\right) \prod_{i>j}\left(1-2^{-|i-j|}\right) \geqq\left(\prod_{k=1}^{\infty}\left(1-2^{-k}\right)\right)^{2}=c>0
$$

Let

$$
B(z)=\prod_{k=1}^{\infty} \frac{\left|\beta_{n_{k}}\right|}{\beta_{n_{k}}} \frac{\beta_{n_{k}}-z}{1-\overline{\beta_{n_{k}}} z}
$$

be the Blaschke product associated to the sequence $\left(\beta_{n_{k}}\right)$. Then:

$$
\left|B\left(\alpha_{n_{j}}\right)\right|=\left|\prod_{k \neq j} \frac{\left|\beta_{n_{k}}\right|}{\beta_{n_{k}}} \frac{\beta_{n_{k}}-\alpha_{n j}}{1-\overline{\beta_{n_{k}}}} \alpha_{n_{j}}\right|\left|e_{\beta_{n_{j}}}\left(\alpha_{n_{j}}\right)\right| \geqq c\left|e_{\beta_{n_{j}}}\left(\alpha_{n_{j}}\right)\right| \rightarrow c l .
$$

hence $B\left(\beta_{n_{j}}\right)-B\left(\alpha_{n}\right)=-B\left(\alpha_{n_{j}}\right)$ does not converge to 0 . This contradicts the compactness of $B\left(T_{\beta}\right)-B\left(T_{\alpha}\right)$, and the theorem is proved.

Remark 6. If $T_{:}=T_{\alpha}$, where $\alpha=\left(\alpha_{n}\right)$ is a sequence of distinct elements of \mathbf{D}, then every element S of the commutant of T can be written $S=T_{\beta}$, where $\beta=\left(\beta_{n}\right)$ is a sequence of complex numbers. If S is an a.c. contraction, then $\beta_{n} \in \mathbf{D}, n \in \mathbf{N}$. Therefore we see that $\dot{h}(S)-h(T)$ is compact for every $h \in H^{\infty}$ if and and only if

$$
\lim _{n \rightarrow \infty} \frac{\beta_{n}-\alpha_{n}}{1-\left|\alpha_{n}\right|}=0
$$

If sup $\left|\alpha_{n}\right|=1, T$ is a completely nonunitary contraction with $r(T)=1$. Hence we see that there exist a.c. contractions $S \neq T$. such that $r(T)=1, S T=T S$ and $h(S)-h(T) \in \mathscr{K}(H)$ for every $h \in H^{\infty}$; and a.c. contractions S^{\prime} such that. $r\left(S^{\prime}\right)=1$, $S^{\prime} T=T S^{\prime}, S^{\prime}-T \in \mathscr{K}(H)$ and $h\left(S^{\prime}\right)-h(T) \nsubseteq \mathscr{K}(H)$ for some $h \in \dot{H}^{\infty}$.

References

[1] H. Bercovicl, C. Foias and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, C.B.M.S. Regional Conference Series in Math., No 56, A.M.S. (Providence RI, 1985).
[2] J. Esterle et F. Zarouf, Sur la non compatibilité de l’équivalence de Calkin avec le calcul fonctionnel de Nagy-Foias, Canad. Math. Bull., 33 (3) (1990), 261-263.
[3] K. Hoffman, Banach spaces of analytic functions, Prentice hall (Englewood Cliffs, 1962.)
[4] B. Sz. Nagy et C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson et $C^{i e}$ (Paris), Akadémiai Kiadó (Budapest, 1967).

UNIVERSITE BORDEAUX I

U. F. R. DE MATHÉMATIQUES ET INFORMATIQUE

351, COURS DE LA LIBERATION
33405 TALENCE CEDEX
FRANCE

