On the joint Weyl spectrum. III

MUNEO CHŌ
Dedicated to Professor Tsuyoshi Ando on his 60th birthday

1. Introduction. In [3], we proved that the Weyl theorem holds for a commuting pair of normal operators on a Hilbert space. In this paper we show, by a simple proof, that the Weyl theorem holds for a commuting n-tuple of normal operators and, moreover, its Weyl spectrum coincides with the essential spectrum.

Let \mathfrak{S} be a complex Hilbert space. Let $\mathscr{B}(\mathfrak{H})$ be the algebra of all bounded linear operators on $\mathfrak{5}$ and $\mathscr{K}(\mathfrak{5})$ be the ideal of all compact operators on \mathfrak{H}. Let $\mathscr{E}(\mathfrak{H})$ denote the Calkin algebra $\mathscr{B}(\mathfrak{H}) / \mathscr{K}(\mathfrak{H})$, with corresponding Calkin map $\pi: \mathscr{B}(\mathfrak{H}) \rightarrow \mathscr{C}(\mathfrak{S})$. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a commuting n-tuple of operators on \mathfrak{H}. Let $\sigma(\mathbf{T})$ be the (Taylor) joint spectrum of \mathbf{T}. We refer the reader to [9] for the definition of $\sigma(\mathrm{T})$.

The joint Weyl spectrum $\omega(\mathbf{T})$ of $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ is defined as the set
$\omega(\mathbf{T})=\cap\left\{\sigma(\mathbf{T}+\mathbf{K}): \mathbf{T}+\mathbf{K}=\left(T_{1}+K_{1}, \ldots, T_{n}+K_{n}\right)\right.$
is a commuting n-tuple for $\left.K_{1}, \ldots, K_{n} \in \mathscr{K}(\mathfrak{Y})\right\}$.
The joint essential spectrum $\sigma_{e}(\mathbf{T})$ of $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ is defined as the set

$$
\sigma_{\mathrm{e}}(\mathrm{~T})=\sigma(\pi(\mathrm{T}))
$$

where $\pi(T)=\left(\pi\left(T_{1}\right), \ldots, \pi\left(T_{n}\right)\right)$.
For a commuting n-tuple $\mathrm{T}=\left(T_{1}, \ldots, T_{n}\right), \pi_{00}(\mathrm{~T})$ is the set of all isolated points in $\sigma(\mathrm{T})$ which are joint eigenvalues of finite multiplicity.
2. Theorem. From Corollary 3.8 in [6] and Theorem 2.6 in [7], we have the following

Theorem 1. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on H. Then $\mathrm{z}=\left(z_{1}, \ldots, z_{n}\right) \in \sigma_{\mathrm{e}}(\mathrm{T})$ if and only if there exists a sequence $\left\{x_{k}\right\}$ of unit vectors in $\mathfrak{5}$ with $x_{k} \rightarrow 0$ weakly such that $\left(T_{i}-z_{i}\right)^{*} x_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Immediately, we have the following result.
Theorem 2. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on \mathfrak{H}. Then $\sigma_{\mathrm{e}}(\mathrm{T}) \subset \omega(\mathrm{T})$.

Lemma 3. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on \mathfrak{G}. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an isolated point of $\sigma(\mathbf{T})$, then α is a joint eigenvalue of T .

Proof. Let $\mathbf{\Gamma}$ be a surface $|\mathbf{z}-\boldsymbol{\alpha}|=\varepsilon(\varepsilon>0)$, whose interior has no point of $\sigma(\mathbf{T})$ except α. Define

$$
P=\frac{1}{(2 \pi i)^{n}} \int_{\Gamma} R_{\mathbf{z}-\mathrm{T}} \wedge d z_{1} \wedge \ldots \wedge d z_{n}
$$

Then P is a nonzero projection which commutes with every $T_{i}\left(i=1, \ldots, T_{n}\right)$ (see [10]). Let $\mathrm{T}_{\mid P}=\left(P T_{1} P, \ldots, P T_{n} P\right)$. Then $\mathrm{T}_{\mid P}$ is a doubly commuting n-tuple of hyponormal operators and $\sigma\left(\mathrm{T}_{\mid P}\right)=\{\alpha\}$. By Theorem 3.4 in [5], α is a joint eigenvalue of T.

Theorem 4. Let $\mathrm{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of hyponormal operators on \mathfrak{S}. Then $\omega(\mathrm{T}) \subset \sigma(\mathbf{T})-\pi_{00}(\mathrm{~T})$.

Proof. For every $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}, \quad \mathbf{T}-\mathbf{z}=\left(T_{1}-z_{1}, \ldots, T_{n}-z_{n}\right)$ is a doubly commuting n-tuple of hyponormal operators. Hence we may only prove that if $0 \in \pi_{00}(\mathbf{T})$, then $0 \notin \omega(T)$. Let 0 be in $\pi_{00}(T)$. Then $\mathfrak{N}=\operatorname{Ker}\left(T_{1}^{*} T_{1}+\ldots+T_{1}^{*} T_{n}\right)$ is a finite dimensional subspace. Let P denote the orthogonal projection of \mathfrak{S} onto \mathfrak{R}. Since then P is a compact operator and $P T_{i}=T_{i} P=0(i=1, \ldots, n), \mathbf{T}+\mathbf{P}=$ $=\left(T_{1}+\frac{1}{\sqrt{n}} \cdot P, \ldots, T_{n}+\frac{1}{\sqrt{n}} \cdot P\right)$ is a doubly commuting n-tuple of hyponormal operators. We let $\mathrm{R}=\left(\left(T_{1}+\frac{1}{\sqrt{n}} \cdot P\right)_{\mid \mathfrak{M}}, \ldots,\left(T_{n}+\frac{1}{\sqrt{n}} \cdot P\right)_{\mid \mathfrak{M}}\right)$ and $\mathrm{S}=\left(\left(T_{1}+\frac{1}{\sqrt{n}} \cdot P\right)_{\mid \mathfrak{M} \perp}, \ldots\right.$ $\left.\ldots,\left(T_{n}+\frac{1}{\sqrt{n}} \cdot P\right)_{\mid \Re \perp}\right)$. Since then \Re is a reducing subspace for every $T_{i}(i=1, \ldots, n)$, it follows that \mathbf{R} and \mathbf{S} are doubly commuting n-tuples of hyponormal operators on \mathfrak{N} and \Re^{\perp} respectively and $\sigma(\mathbf{T}+\mathbf{P})=\sigma(\mathbf{R}) \cup \sigma(\mathbf{S})$. It is clear that $0 \notin \sigma(\mathbf{R})$. If $0 \in \sigma(\mathbf{S})$, then 0 is an isolated point of $\sigma(\mathbf{S})$. Hence by Lemma 3, 0 is a joint eigenvalue of \mathbf{S} and so of \mathbf{T}. So there exists a nonzero vector x in \mathfrak{R}^{\perp} such that $T_{i} x=0(i=1, \ldots, n)$. This is a contradiction. Therefore we have $0 \notin \sigma(\mathbf{T}+\mathbf{P})$.

Theorem 5. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a commuting n-tuple of normal operators on 5. Then $\sigma_{\mathrm{e}}(\mathbf{T})=\omega(\mathbf{T})=\sigma(\mathbf{T})-\pi_{00}(\mathrm{~T})$.

Proof. By Theorems 2 and 4, we may only prove that

$$
\sigma(\mathbf{T})-\pi_{00}(\mathbf{T}) \subset \sigma_{\mathbf{e}}(\mathbf{T})
$$

In [8], Fialkow proved that if γ is a nonisolated point of $\sigma(\mathbf{T})$, then $\gamma \in \sigma_{\mathrm{e}}(\mathbf{T})$. It is also clear that if γ is a isolated point of $\sigma(\mathbf{T})$ with infinite multiplicity, then $\gamma \in \sigma_{\mathrm{e}}(\mathbf{T})$.

Acknowledgement. We would like to express our thanke to Professor R. Curto for his advice.

References

[1] J. Baxley, Some general conditions implying Weyl's theorem, Rev. Roum. Math. Pures Appl., 16 (1971), 1163-1166.
[2] J. Baxley, On the Weyl spectrum of a Hilbert space operators, Proc. Amer. Math. Soc., 34 (1972), 447-452.
[3] M. Сhō, On the joint Weyl spectrum. II, Acta Sci. Math., 53 (1989), 381-384.
[4] M. Сhō and M. Takaguchi, On the Joint Weyl spectrum, Sci. Rep. Hirosaki Univ., 27 (1980), 47-49.
[5] M. Сhō and M. Takaguchi, Some classes of commuting n-tuple of operators, Studia Math., 80 (1984), 245-259.
[6] R. Curto, On the connectedness of invertible n-tuples, Indiana Univ. Math. J., 29 (1980), 393-406.
[7] A. T. Dash, Joint essential spectra, Pacific J. Math., 64 (1976), 119-128.
[8] L. A. Fialkow, The index of an elementary operator, Indiana Univ. Math. J., 35 (1986), 73-102.
[9] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191.
[10] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38.

[^0]
[^0]: DEPARTMENT OF MATHEMATICS
 JOETSU UNIVERSITY OF EDUCATION
 JOETSU 943, JAPAN

